
COSMOS/ORBIT
Hello-World

Tutorial

ORBIT
• Indoor wireless and radio research facility at WINLAB.
• Sandboxes and grid of compute node with various attached HW

– software defined radios
– Wireless NICs
– Bluetooth, IoT
– etc…

• Allows large-scale experiments
– proof of concept prototyping
– network virtualization
– spectrum utilization
– etc...

Work Flow Process
Registration for

ORBIT account &
wait for approval

Configure SSH

client keys and

upload public key

to profile mgmt

page

Create reservation

for console

Configure node/

resource with OMF

Work / develop

using nodes/

resources

Save your work with

OMF prior to

reservation expiringLog into console

Account Creation, Login
(ssh), Scheduler and Status

Page

Account Creation
● Account registration and approval

https://www.orbit-lab.org/userManagement/register

https://www.orbit-lab.org/userManagement/register

Control Panel
● Resource status & reservation using online scheduler

https://orbit-lab.org/cPanel/controlPanel/start

https://orbit-lab.org/cPanel/controlPanel/start

Reservation System
● Calendar based reservation system.

● Select console & start time for further details.

Reservation System
● New reservation pop-up

● Start time & end time

● Max 2 hours

● Minimum 30 min

Reservation Auto-approval
• Two stage algorithm:

– “Early bird” – runs once a day (at 2 PM) and resolves conflicts and
approves first two hours for all users for the next day
• (e.g if you ask for your first slot daily slot from 10-12 the next day , at 2 PM a

day earlier you will know whether you got it).

– “Just in time” – for reservations made after 2 PM or for more than 2
hours per day per domain, the slots will be automatically approved at
the beginning of the slot.

• Conflicts are resolved based on usage in the last three weeks
– (the less you (ab)use it the more likely you are to get it ☺).

• Be aware of major (conference) deadlines

Status Page
Gives a detailed breakdown of

deployed resources on the

consoles and nodes.

1. Select console tab on top

2. Apply filters of left panels.

3. Provides topology list at

bottom of page.

(not shown)

Status Page
Gives a detailed breakdown of

deployed resources on every node.

1. Select domain tab on top

1. Apply filters of left panels.

1. Provides topology list at bottom

of page (node list area)

Access to console
1. Open putty
2. Enter session info

○ Enter host name of reserved machine.
○ A name for this session

3. Scroll down to SSH → Auth
○ Enter directory for private key file.

4. Connection-->SSH-->X11
○ Enable X11 forwarding

5. Scroll back to session category and hit

save, then open the saved session.

Basic OMF commands

omf {tell, stat, load, save}

Testbed(s)

….

Control & Management
Network

Experiment
Description

Console

Experiment
Controller

(Node Handler)

Server(s)

Aggregate
Managers

(Grid Services)

DB

Exp
e

rim
e

n
tal N

e
tw

o
rk(s)

Node 1

Resource Controller
(Node Agent)

Apps AApps AApps A

OML Client

Node K

Resource Controller
(Node Agent)

Apps AApps AApps A

OML Client

OMF is a framework to use
and manage experimental
platforms (testbeds)

-- Developed in Ruby language
-- Single interface in

“experiment cycles”

-- Reduce effort while scaling
experiments.

-- Allows for validating and
reproducing results in
same context.

ORBIT Management Framework

DBDB

OMF Command
(aka “NodeHandler”)

Subcommand Description

omf help Display the help for using omf commands.

omf exec Execute an experiment script.

omf load Load a disk image on a given set of nodes.

omf save Save a disk image from a given node into a file.

omf tell Switch a given set of nodes ON/OFF.

omf stat Returns the status of a given set of nodes

omf [SUBCOMMAND] [ARGUMENT]...

OMF Sample Runs
A typical set of OMF commands issued by user during a reservation.
Assuming we are using node21-1 & node21-7 on the grid.

● Check status of set of nodes: omf stat -t node21-1,node21-7

● Load baseline.ndz image on the nodes: omf load -i baseline.ndz -t node21-1,node21-7

● Turn node on: omf tell -a on -t node21-
1,node21-7

Work / develop / collect measurements on nodes.

Note: before saving run /root/prepare.sh on the node.

● Save node image (only one node): omf save -n node21-1.grid.orbit-lab.org

OEDL
in a nutshell

OMF Experiment Description Language (OEDL)

• Domain-specific Language based on Ruby

• Two parts of experiment description (ED):

– Resource requirements and configuration: specifies
experimental resources

– Task description: state-machine that enumerates
tasks to perform

hello-world-wireless.rb
defProperty('res1', 'node1-1.grid.orbit-lab.org', "ID of
sender node")
defProperty('res2', 'node1-2.grid.orbit-lab.org', "ID of
receiver node")
defProperty('duration', 60, "Duration of the experiment")

defGroup('Sender', property.res1) do |node|
node.addApplication("test:app:otg2") do |app|

app.setProperty('udp:local_host', '192.168.0.2')
app.setProperty('udp:dst_host', '192.168.0.3')
app.setProperty('udp:dst_port', 3000)
app.measure('udp_out', :samples => 1)

end
node.net.w0.mode = "adhoc"
node.net.w0.type = 'g'
node.net.w0.channel = "6"
node.net.w0.essid = "helloworld"
node.net.w0.ip = "192.168.0.2"

end

defGroup('Receiver', property.res2) do |node|
node.addApplication("test:app:otr2") do |app|
app.setProperty('udp:local_host', '192.168.0.3')
app.setProperty('udp:local_port', 3000)
app.measure('udp_in', :samples => 1)

end
node.net.w0.mode = "adhoc"
node.net.w0.type = 'g'
node.net.w0.channel = "6"
node.net.w0.essid = "helloworld"
node.net.w0.ip = "192.168.0.3"

end

onEvent(:ALL_UP_AND_INSTALLED) do |event|
info "This is my first OMF experiment"
wait 10
allGroups.startApplications
info "All my Applications are started now..."
wait property.duration
allGroups.stopApplications
info "All my Applications are stopped now."
Experiment.done

end

defProperty is used to defined parameters that can be used thought out the script and

passed in via the command line

defGroup is used to define a set of resources that will be provisioned

similarly.
configure network resource properties

Sets up application to call within node

What does it do?

Now try the running the
hello-world-wireless example

in the first experiment.
Follow the instructions in the

tutorial handout.

• Focus on ultra high bandwidth, low latency, edge cloud
• Open platform (building on ORBIT) integrating mmWave, SDR, and optical x-

haul
• 1 sq mile densely populated area in West Harlem
• Local community outreach
• Research community:

– Develop future experiments, provide input
– (short term) get involved in the educational outreach

More information:

http://advancedwireless.org http://www.orbit-lab.org http://www.cosmos-lab.org
http://omf.orbit-lab.org http://oml-doc.orbit-lab.org

COSMOS Summary

http://advancedwireless.org/
http://www.orbit-lab.org/
http://www.cosmos-lab.org/
http://omf.orbit-lab.org/
http://oml-doc.orbit-lab.org/

Supplementary information
• Orbit Management frame work (https://omf.orbit-lab.org/)
• OMF Experiment Description Language (https://oml-doc.orbit-lab.org/)

Appendix

https://omf.orbit-lab.org/
https://oml-doc.orbit-lab.org/

OMF Command
○ Find the status of a node or group of nodes in console.

○ omf stat -t TOPOLOGY

○ Retrieve status of a single node

○ omf stat –t node21-1

○ Specify a comma separated list (no spaces) to get status of multiple nodes.

○ omf stat –t node21-1,node21-2

OMF Command
○ Load disk image onto nodes. After load finishes the nodes are turned off.

○ omf load -i IMAGE -t TOPOLOGY

○ IMAGE

○ Name of disk image from repository

○ Example use

○ omf –i baseline-uhd.ndz –t node21-1.sb1.orbit-lab.org,node21-7.sb1.orbit-
lab.org

OMF Command
● Save disk image of a single node to repository for later use

○ omf save –n NODE

● NODE

○ Specify FQDN of the node

● Example use

○ omf -n node21-1.grid.orbit-lab.org

OMF Command
● Power cycle nodes or issue reboot

○ omf tell –a ACTION -t TOPOLOGY

● Actions

○ on turns on the nodes

○ offh turns off the nodes

○ reset power cycle the nodes

● Example use

○ omf –a on –t node21-1.sb1.orbit-lab.org,node21-7.sb1.orbit-lab.org

OEDL Commands
8 groups:

• Top-level commands

• Topology-specific commands

• Group-specific commands

• Prototype-specific commands

• Application-specific commands

• Execution-specific commands

• Resource Paths

• Testbed-specific commands

OEDL Top-level Commands: defProperty

• name: name of the property. This name will be used to refer to
this property in any consecutive OEDL commands.

• initialValue: the initial value of the property. This also
determines the type of the property.

• description: Textual description. Used in Experiment Controller's
help message, as well as for the default web interface.

defProperty(name, initialValue, description)

Usage:
defProperty('rate', 300, 'Bits per second sent from sender')
defProperty('packetSize', 1024, 'Size of packets sent from sender')

OEDL Top-level Commands: prop

• propName: Name of experiment property.

• newValue: New value to assign to the property.

prop.propName
prop.propName = newValue

Usage:
defProperty('rate', 300, 'Bits per second sent from
sender') …
'rate' => prop.rate
…
[500, 1000, 2000].each { |newRate|
prop.rate = newRate 14
}

OEDL Top-level Commands: logging

• arg1: None or more strings to be logged

debug(arg1, ...)
info(arg1, ...)
warn(arg1, ...)
error(arg1, ...)

Usage:
info("Starting")
debug(i, " resource(s) are up")

Note: DEBUG and INFO log normal progress and can be ignored, while
WARNING and ERROR report on abnormal behavior.

OEDL Top-level Commands: wait

• time: pause experiment execution for time seconds

wait(time)

Usage:
whenAllInstalled {
...

[500, 1000, 2000].each { |newRate|
prop.rate = newRate
wait 30

}
}

OEDL Topology Commands: defTopology

• name: Name of the defined topology.
• arrayOfNodes: (optional) array of resources (e.g. nodes) to include in

this topology.
– the list of valid definition patterns are:

• [x,y]: Describes a single node at location x@y
• [x1..x2, y]: Describes a set of nodes along a line starting at x1@y and ending at

x2@y. For instance, [2..4, 5] defines the nodes [2,5], [3,5], [4,5].
• [x, y1..y2]: Same as previous, but for the y coordinate.
• [x1..x2, y1..y2]: This defines a rectangle area of nodes within the grid.
• [[x1,y1], [x2,y2], [x3,y3]]: An arbitrary long list of single nodes.

• block: (optional) a block of commands that can be used to
build/configure this topology.

defTopology(name , arrayOfNodes = nil , &block = nil)

Used to specify topology consisting of a set of nodes
and links each with certain characteristics

OEDL Topology Commands: defTopology (cont’d)
Topology Sub-

Commands
Description

addNode(x,y) Add node at location x@y to the topology.

removeNode(x,y) Remove node at location x@y from the topology.

addLink (x, y, spec)
Adds a link between nodes x and y and configures it with the characteristics

defined in the 'spec'.'spec' is a hash with the following valid keys {:rate , :per,

:delay, :asymmetric}

RemoveLink (x, y) Severs the link between nodes x and y.

size() Return the number of nodes in this topology.

getNode(index)
Return the node at the position index in this topology. Return nil if index is

greater than the number of nodes in the topology.

getFirstNode() Return the node at the 1st position in this topology.

getLastNode() Return the node at the last position in this topology.

getRandomNode() Return a random node from this topology.

getUniqueRandomNode(

)

Return a unique random node from this topology. When all the available nodes

in this topology have been drawn, this method will return nil and output a

warning message to the console.

eachNode(&block) Execute the commands in block on each node within this topology.

setStrict()
Set the strict flag for this topology. By default, the strict flag is NOT set for a

topology.

unsetStrict() Clear the "strict" flag. By default, the strict flag is NOT set for a topology.

hasNode(x, y)
Return true if the node at location x@y is part of this topology, return false

otherwise.

OEDL Topology Commands: defTopology (cont’d)

defTopology('test:topo:circle') { |t|

nodeNum = 8

xCenter = 10

yCenter = 10

radius = nodeNum

use simple 4-way algorithm to pick the nodes

r2 = radius * radius

t.addNode(xCenter, yCenter + radius)

t.addNode(xCenter, yCenter - radius)

(1..radius).each { |x|

y = (Math.sqrt(r2 - x*x) + 0.5).to_i

t.addNode(xCenter + x, yCenter + y)

t.addNode(xCenter + x, yCenter - y)

t.addNode(xCenter - x, yCenter + y)

t.addNode(xCenter - x, yCenter - y)

}

}

http://mytestbed.net/repositories/revision/omf/2
http://mytestbed.net/repositories/revision/omf/2

OEDL Group Commands: defGroup

• groupName: name of the defined set of resources
• selector: selects the resources to be contained in this

set. Group selector can be also defined with topology
URI (i.e. set of nodes that form the topology)

• block: instructions for all resources in the group

defGroup(groupName, selector, &block = nil)

Usage:
defGroup('sender1', [1, 1]) # set contains 1 resource
defGroup('sender2', [2, 1..8]) # set contains 8 resources [2,1], [2,2], ... [2,8]
defGroup('sender', ['sender1', 'sender2', [3, 1..8]]) {|node|

node.prototype("test:proto:sender", {
'destinationHost' => '192.168.1.1',
…

}
node.net.w0.mode = "master" #802.11 Master Mode

}

OEDL Group Commands: defGroup (cont’d)

addApplication Install an application on a node

exec Execute a command on all nodes in this group.

image
Check whether a node boots in the required image.
(not available in version 4.4 of the NH)

netmask This is the network mask resource path.

onNodeUp Execute a block of commands when a node is up.

pxeImage(...)
Instructs a resource to boot from a network PXE image
(recommended for expert users only).

OEDL Group Commands: group and allGroups

• groupSelector: set of resources to use.
• command: command to run for that set.
• resource_path: is the parameter to be set
• value: is the value to assign to the resource path

parameter

group(groupSelector).command()
group(groupSelector).resource_path = value
group(groupSelector).resource_path {...}

Usage:
group('sender1').startApplications
group(['s1', 'r1']).net.w0.essid = "orbit"
allGroups.net.w0 { |w|

w.essid = "orbit“
}

http://mytestbed.net/repositories/revision/omf/1

Resource Paths
• A resource path allows the access and

the value assignment of a specific
configuration parameter of a resource

• Can be used in any section of the ED.

• Follow a hierarchical organization:
<resource_selector>.<hierarchical_path>

allGroups.net.w0.type = g

Set of all nodes defined
in the ED are the resource

Network
parameter Of the first

wireless device

Type
attribute

Set it to 802.11g

net - network resource path
– {e0, e1} Ethernet interface

• arp = true|false En/disable ARP

• forward = true|false Enable forwarding

• ip = address/netmask IP address of interface

• up = true|false En/disable interface

– {w0, w1} Wireless interface
• All the above

• channel (intel only) = 1..11; 36, 40, 44, 48, 52, 56, 60, 64, 149, 153,
157, 161

• frequency (intel only) = 2.412..2.462GHz (5 Mhz steps); 5.18GHz
(20Mhz steps)

• essid = arbitrary string

• mode = master|managed|monitor, ad-hoc (intel only)

• rts (atheros only) = packetSizeThreshold [bytes]

• rate (intel only) = 1, 5, 11; 6, 9, 12, 18, 24, 36, 48, 54

• tx_power = -12..15 dBm (intel), 0..20 dBm (atheros)

• type = a/b/g

