
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996 67

A Temporal Access Control Mechanism
for Database Systems

Elisa Bertino, Member, /€€E, Claudio Bettini, Elena Ferrari, and Pierangela Samarati

Abstract-This paper preoents a discretionary access control model in which authorizations contain temporal intervals of validity.
An authorization is automatically revoked when the associated temporal interval expires. The proposed model provides rules for the
automatic derivation of nevi authorizations from those explicitly specified. Both positive and negative authorizations are supported.
A formal definition of those concepts is presented in the paper, together with the semantic interpretation of authorizations and
derivation rules as clauses of a general logic program. Issues deriving from the presence of negative authorizations are discussed.
We also allow negation in iules: it is possible to derive new authorizations on the basis of the absence of other authorizations. The
presence of this type of rules may lead to the generation of different sets of authorizations, depending on the evaluation order. An
approach is presented, based on establishing an ordering among authorizations and derivation rules, which guarantees a unique
set of valid authorizations. Moreover, we give an algorithm detecting whether such an ordering can be established for a given set of
authorizations and rules. Administrative operations for adding, removing, or modifying authorizations and derivation rules are
presented and efficiency issues related to these operations are also tackled in the paper. A materialization approach is proposed,
allowing to efficiently perform access control.

index Terms-Database security, temporal authorization, database management, temporal reasoning, general logic programs,
access control.

4

1 INTRODUCTION

N many real-world situations, permissions have a tempo- I ral dimension, in that they are usually limited in time or
may hold only for specific periods of time. In general, how-
ever, access control mechanisms provided as part of com-
mercial data management systems do not have temporal
capabilities. In a typical commercial Relational DBMS
(RDBMS), for example, it is not possible to specify, by using
the authorization command language, that a user may ac-
cess a relation only for a (day or a week. If such a need
arises, authorization management and access control must
be implemented at application program level. This ap-
proach makes authorizatioin management very difficult, if
at all possible. Thus the need of adding temporal capabili-
ties to access control model appears very strong, as pointed
out also by Thomas and Saridhu in [ll].

In this paper, we present an authorization model that ex-
tends conventional authorization models, like those pro-
vided by commercial RDBIVISs, with temporal capabilities.
Our temporal authorization model is based on two main
concepts. The first concept is the temporal interval for
authorizations. Each authorization has a time interval as-
sociated with it, representing the set of time instants for
which the authorization is granted. An authorization ex-
pires after the associated time interval has elapsed. The sec-
ond concept is the temporall dependency among authoriza-

The authors are with the Dipartiinento d i Scimze dell'lnformazione, Uni-
versitd di Milano, via Comelico 39,20135 Milano, Italy.
E-mail: {ebertino, bettini, ferrarir: samaratil@dsi.unimi.it.

Manuscript received Feb. 1,1995; revised Oct. 4,1995.
For information on obtaining reprints of this article, please send e-mail to:
transactionsQcomputer.org, and reference IEEECS Log Number K96007.

tions. A temporal dependency can be seen as a rule allow-
ing an authorization to be derived from the presence (or
absence) of another authorization. A temporal dependency
can be used, for example, to specify that a user has an
authorization as long as another user has the same or a dif-
ferent authorization. Four different temporal dependency
operators are provided in our model. Temporal dependen-
cies are expressed in form of derivation rules. Such rules
may be parametric, in that a single rule may denote a set of
dependencies. For example, a single derivation rule may
specify that a user can read all the files that another user
can read, relatively to an interval of time.

Besides these temporal capabilities, the model supports
both positive and negative authorizations. The capability of
supporting explicit denials, provided by negative authori-
zations, can be used for specifying exceptions and for sup-
porting a stricter control in the case of decentralized
authorization administration [5]. The combination of posi-
tive/negative authorizations with temporal authorizations
results in a powerful yet flexible authorization model.

A critical issue in our model is represented by the presence
of derivation rules that allow to derive new authorizations on
the basis of the absence of other authorizations. From one
point of view these rules provide more expressiveness for the
representation of temporal dependencies. From another point
of view they introduce the problem of generating a unique
set of authorizations. Indeed, a given set of authorizations
and derivation rules may generate different sets of authori-
zations, depending on the evaluation order. To avoid this
problem we impose a syntactical restriction on the set of
derivation rules and we show how this condition guarantees
the uniqueness of the set of derived authorizations. In the

1041 -4347/96$05.00 Q1996 IEEE

http://transactionsQcomputer.org

68 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

paper, we show also how this problem is related to the pmb-
lem of negation in logic programming.

Another issue discussed in the paper is the efficiency of
the access control. Whenever an access must be enforced,
the system must check whether the appropriate authoriza-
tion is present in the authorization catalogs or whether it
can be inferred from the authorizations in the catalogs
through the derivation rules. The activity of inferring an
authorization can be rather expensive, like performing a
query on a deductive database. Thus, a materialization ap-
proach has been adopted. This approach is very similar to
the view materialization approach used in deductive and
relational databases [6], [SI. Under such an approach, the
results of a view are calculated and stored when the view is
defined, rather than being recomputed each time the view
is queried. We use a similar approach each time a new
authorization is added, all authorizations that can be in-
ferred from it are calculated and stored into the authoriza-
tion catalogs. Thus, access control is very efficient, since
there is no difference in costs between explicit authoriza-
tions and derived authorizations. Note that administrative
operations become more expensive, but they are much less
frequent than access control. Moreover, we use proper
maintenance algorithms to update the materialized
authorizations without need of recomputing them all upon
execution of administrative requests.

Time issues in access control and derivation rules for
authorizations have come to the attention of the researchers
only recently. The Kerberos system [lo], based on the client-
server architecture, provides the notion of ticket, needed for
requiring a service to the server, with an associated validity
time. The validity time is used to save the client from the
need to acquire a ticket for each interaction with the server.
The ticket mechanism is not used to grant accesses to the
resources managed by the system. Rather, it is only used to
denote that a client has been authenticated by the authenti-
cation server. Thus, the scope of the temporal ticket
mechanism is very different from our access control model.

Woo and Lam in [13] have proposed a very general for-
malism for expressing authorization rules. Their language
to specify rules has almost the same expressive power of
first order logic. A major issue in their formalism is the
tradeoff between expressiveness and efficiency which
seems to be strongly unbalanced in their approach. We
think that it is important to devise more restricted lan-
guages focusing only on relevant properties. The temporal
authorization model we propose in this paper is a step in
this direction.

A logic language for stating security specifications, based
on modal logic, has been proposed by Abadi et al. in [l].
However, their logic is mainly used to model concepts such
as roles and delegation of authorities and their framework
does not provide any mechanism to express temporal op-
erators for authorization derivation.

A preliminary version of the authorization model pre-
sented in this paper was presented by Bertino, Bettini, and
Samarati in 241. The model presented in this paper has a
number of major differences with respect to the previous
model. The current model supports both positive and
negative authorizations, and it provides substantial exten-

sions to derivation rules. In particular, in the current model,
derivation rules also have temporal interval of validity. This
extension coupled with negative and positive authoriza-
tions leads to several interesting questions concerning both
theory and implementation, that we investigate in the cur-
rent paper. We investigate also efficiency issues, by propos-
ing a materialization strategy for computing the set of valid
authorizations and by giving algorithms for the mainte-
nance of such materialization.

In this paper, we only deal with discretionary access con-
trol and not with mandatory access control. Note, however,
that the majority of DBMS only provide discretionary access
control. Therefore, since the focus of our research is how to
extend the authorization facilities provided by a conventional
DBMS, we only address discretionary access control. Recent
multilevel DBMS (like Trusted Oracle [9]) provide mandatory
access control coupled with discretionary access control. The
new features provided by our model could be orthogonally
incorporated into such systems as well.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the authorization model giving the basic
definitions and examples. In Section 3, we present the for-
mal semantics for authorizations and derivation rules and
explain the problems due to the presence of negations in
d e s . A sufficient condition to guarantee the presence of a
unique set of derived authorizations, and an algorithm for
checking this condition are given. In Section 4, we show
how all the valid authorizations can be computed. Admin-
istrative operations that allow the users to add, remove, or
modify temporal authorizations and rules are described in
Section 5. Efficiency issues concerning the need of updating
the set of valid authorizations upon administrative opera-
tions are considered in Section 6. For lack of space we refer
the reader interested in proofs to [3].

2 THE AUTHORIZATION MODEL

In this section, we illustrate our authorization model. To keep
our authorization model general and thus applicable to the
protection of information in different data models, we do not
make any assumptions on the underlying data model against
which accesses must be controlled and on the access modes
users can exercise in the system. The choice of the data model
and of the access modes executable on the objects of the
model is to be made when the system is initialized.

In the following, U denotes the set of users, 0 the set of ob-
jects, and M the set of access modes executable on the objects.

Our model allows the specification of explicit authoriza-
tions, stating the permission or denial for users to exercise
access modes on objects, and of derivation rules stating the
permission or denial for users to exercise access modes on
objects conditioned on the presence or the absence of other
permissions or denials. Each authorization and derivation
rule has a time interval associated with it indicating the
time at which the authorization/rule is applicable.

We assume time to be discrete. In particular, we take as
our model of time the natural numbers IN with the total
order relation <.

We are now ready to introduce temporal authorizations
and derivation rules.

BERTINO ET AL.: A TEMPORAL ACCESS CONTROL MECHANISM FOR DATABASE SYSTEMS 69

2.7 Temporal Authorizations
In our model, both positive and negative authorizations can
be specified. Positive authorizations indicate permissions
whereas negative authorizatiions indicate denials for access.

DEFINITION 2.1 (Authorization): An authorization is a 5-tuple
Authorizations are formally defined as follows.

s , o , m, pn, g) where:
s E U is the user to whom fhe authorization is granted;
o E 0 is the object to which the authorization refers;
m E M is the access mode, or privilege, for which the authori-

pn E { + , -} indicates whether the authorization is positive

g E U is the user who granted the authorization.

zation is granted;

(+) or negative (-);

Tuple (s,o,m, +,g) states that user s has been granted ac-
cess mode m on object o by user g. Tuple (s , 0 , m, - , g) states
that user s has been forbidden access mode m on object o by
user g.

We consider a temporal constraint to be associated with
each authorization. We refer to an authorization together
with a temporal constraint (as a temporal authorization. Tem-
poral authorizations are defiined as follows.
DEFINITION 2.2 (Temporal authorization): A temporal authori-

zation is a pair (time,aut.h), where time is a time interval

(s , 0 , m, pn, g) isanauthorization.
Temporal authorization ([tl, t 2 i , (s , 0, m, pn, 9))

states that user g has panted user s an authorization
(positive if pn = 1 + I or negative if pn = 1 - J) for access mode
m on object o that holds between times tl and t2. For example,
authorization ([lo, 501, (John, 01, read, +, Bob)) states
that John can read object o1 between time instants 10 and 50
and that this authorization ’was granted by Bob.

Note that an authorization without any temporal con-
straint can be represented as a temporal authorization
whose validity spans from the time at which the authoriza-
tion is granted to infinity.

In the following, given a temporal authorization A =

([tbrtel, (s,o,m,pn,g)) vve denote with s(A),.O(A), m (A) ,
pn (A) , g (A), tb(A), and te I ,A) , respectively the subject, the
object, the privilege, the sign of the authorization (positive
or negative), the grantor in A, and thwstarting and ending
time of A. /

2.2 Derivation Rules
Additional authorizations (can be derived from the authori-
zations explicitly specified. The derivation is based on tem-
poral propositions, used as rules, which allow new tempo-
ral authorizations to be derived on the basis of the presence
or the absence of other temporal authorizations. Derivation
rules can be applied to both positive as well as negative
authorizations. Like authorizations, derivation rules have a
time interval associated with them. The time interval asso-
ciated with a derivation rule indicates the set of instants in
which the rule is applied.

Derivation rules can also contain variables in their
specification. We refer to derivation rules where all the
terms in the authorizations are explicitly specified as ground

[tb, tel, with tb E IN, te E IN U m, tb te, and auth =

,
/

derivation rules and to derivation rules containing variables
as parametric derivation rules.

2.2.1 Ground Derivation Rules
Ground derivation rules are defined as follows.
DEFINITION 2.3 (Ground derivation rule): A ground derivation

rule is defined as ([tbr tel , A ~ (o P) A ~) , where [tb, t,i is the
time interval associated with the rule, tb E IN, te E IN U 00,
tb I t , A ~ , and are authorizations, g(A1) is the user who
specified the rule, and (OP) is one of the following operators:
WHENEVER, ASLONGAS, WHENEVERNOT, UNLESS.

Rule ([tbrtel I (sl,ol,ml,pnl,gl) (op) (s2,oz,m2,pnz,g2))
states that user s1 is authorized (if pnl = ’+’) or denied (if pnl
= ’-I) for access mode ml on object o1 according to the pres-
ence or absence (depending on the operator) of the authori-
zation (S Z , 0 2 , m2, pn2, 93).

The formal semantics of the temporal operators used in
the derivation rules will be given in Section 3. Their intui-
tive semantics is as follows:

([tb, tel , A1 WHENEVER A2 1.
We can derive A1 for each instant in [tb, te] for which
A2 is given or derived. For example, rule R~ in Fig. 1,
specified by sam, states that every time, in [7 , 3 5 I, Ann
can read object o1 thanks to an authorization granted
by Sam, also Chris can read object ol.

We can derive A~ for each instant t in [tb, te] such that
is either given or derived for each instant from tb to

t. Note that, unlike the WHENEVER operator, the
ASLONGAS operator does not allow to derive at an
instant t in [tb, t,l if there exists an instant t‘, with
tb 5 t’ 5 t, such that A~ is not given and cannot be de-
rived at t‘.

We can derive

([tb, tel ,A1 ASLONGAS A2) .

(tb, tel ,A1 WHENEVERNOT A2).
for each instant in [tb, te] for which

is neither given nor derived.
([tb,tel ,AlUNLESSA2).
We can derive A~ for each instant t in [tb, tel such
that is neither given nor can be derived for each
instant from tb to t. Note that, unlike the
WHENEVERNOT, the UNLESS operator does not allow to
derive at an instant t in [tb, tel if there exists an instant
t’, with tb 5 f 5 t, such that k given or derived at t’.

(Al) ([lo, 201, (Ann, 01, read, +, Sam))
(A2) ([3 0 , 401, (Ann, 01, read, +, Sam))
(RI) (~ 7 , 351, (Chris, 01, read, +, Sam) WHENEVER

(Ann, 01, read, +, S a m))

(Ann, 01, read, +, Sam))

(Ann, 01, read, +, Sam))

(R2) ([lo, 351, (Matt, 01, read, +, Sam) ASLONGAS

(R3) ([5 , -1 (John, 01, read, +, Sam) WHENEVERNOT

(R4) (15, 151, (Bob, 01, read, +, Sam) UNLESS
(Ann, 01, read, +, Sam))

(Bob, ol, read, +, Sam))
(R5) ([I, 801, (Jim, 01, read, +, Sam) WHENEVER

Fig. 1. An example of authorizations and derivation rules.

70 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

EXAMPLE 2.1. Consider the authorizations and derivation
rules illustrated in Fig. 1. The following temporal
authorizations can be derived:

* ([10,20], (Chris,ol,read,+,Sam)) and
([3 0 , 351, (Chris, ol, read, +, Sam)) from
authorizations A~ and

* ([10,201, (Matt,ol,read,+,Sam)) from authoriza-
tion and rule R2.

* ([5,9], (John,ol,read, +,Sam)),

([21,29], (John,ol,read,+,Sam)),and
[[4 1 , m l , (John, 01, read, +, Sam)) from rule R3.

* ([5,9], (Bob,oi,read,+,Sam)) frOmmkR4.
* ([5,9] , (J i m , 01, read, + , Sam)) from rules R4 and R5.

and d e R1.

2.2.2 Authorizations and Derivation Rules Specification
Before proceeding to illustrate the semantics of derivation
rules and authorizations we need to make a remark on
authorizations and rules. In our model, only users explicitly
authorized can specify authorizations and derivation rules.
Administrative privileges give users the authority of
granting accesses on objects to users either directly (explicit
authorizations) or indirectly (through derivation rules).
Three different administrative privileges are considered
refer, administer, and own. The semantics of these privi-
leges is as follows.

* refer: If a user has the refer privilege on an object,
he can refer to the object in a derivation rule, i.e., the
object can appear at the right of the temporal operator
in a derivation rule specified by the user.

* administer: If a user has the administer privilege on
an object, he can grant to and revoke from other users
authorizations to access the object (either explicitly or
through rules).

* own: It indicates session of an object. When a user
creates an object he receives the own privilege on it.
The own privilege allows the user to grant and revoke
access authorizations as well as to grant and revoke
administrative privileges (but own) on his object.

Administrative authorizations, i.e., authorizations for
administrative privileges are not constrained to a specific
time interval but hold from the time at which they are
specified until the time they are revoked by the object’s
owner. However, for sakebf simplicity and uniformity with
respect to other authorizations, we associate time intervals
also to administrative authorizations. The time interval as-
sociated with an administrative authorization spans from
the time at which the authorization is specified to W. Ad-
ministrative authorizations are formally defined as follows.
DEFINITION 2.4 (Administrative authorization): An adminis-

trative authorization is defined as (1 t b , - 1 , (s , 0 , p)) where
[tbr -1 is the time interval associated with the authorization,
s E U is the user to whom the authorization is granted, o E 0
is the object on which the authorization is spec@ed, and P is
the administrative privilege granted to S.

For instance, administrative authorization ([20, -1 , (John,
01,administer)) states that John has the administer privi-
lege on object ol, and therefore can grant other users access
authorizations on ol, starting from time 20.

For each authorization ([t b , tel , A ~) , we require g (A ~)

to have the own or administer privilege on o (A ~) . Moreover,
for each derivation rule R = ([t b , t,l , A ~ (OP) A ~) both the
following conditions must be satisfied:

* g (A,) has either the own or administer privilege on o (A ~) ,

* g (A 1) has either the own, administer, or refer privi-
lege on o (A ~) .

These conditions are checked at the time an authoriza-
tion/rule is specified and the insertion of the authoriza-
tion/mle is accepted only if the conditions are satisfied.‘

2.2.3 Parametric Derivation Rules
Derivation rules can also use variables in their specification.
We refer to these rules as parametric derivation rules. To
introduce parametric derivation rules, we first give the
definition of authorization pattern.
DEFDJ~TION 2.5 (Authorization pattern): An authorization

pattern AP is a tuple (s,o,m,pn,g) where s , g E U U {*},
o E 0 U {*}, m E M U {*}, and pn E (+, -}.

Symbol ’*’ is a special character denoting any user, object,
or access mode, depending on its position in the authoriza-
tion pattern.

DEFINITION 2.6 (Matching authorization): An authorization A

matches a pattern AP if each element of A is equal to the corre-
sponding e b m t of AP, if different from ’ * I .

Parametric derivation rules are defined as follows.
DEFINITION 2.7 (Parametric derivation rule): A parametric

derivation rule is defned as ([tb, t,] , A P ~ (OP) A P ~) , where
AP1 and A P ~ are authorization patterns, and all the other ele-
ments are as in Definition 2.3. Authorization patterns in the
rule must verzjij the following conditions:
0 ~ (A P ~) and at least one element among s (A p l) , o (A P ~) ,

m (APl) are diflwentfiom ’*‘
* ifsymbol‘*’is usedfor s (A P 1) , o (A P l) , O Y m (A P 1) it is also

usedfor the corresponding element s (A P ~) , o (A P ~) , m (A P ~)

in A P ~ .

A parametric derivation rule can be seen as a shorthand
for specifymg several ground derivation rules operating on
different subjects, objects, or access modes. Given a
parametric derivation rule, we refer to the ground rules to
which it corresponds as instances of the parametric rule.
This is expressed by the following definition.
DEFINITION 2.8 (Parametric rule instances): Let R = ([tb, t,] ,

AP1 (OP) AP2) be a parametric derivation rule. The set of in-
stances of R is the set composed of all possible ground deriva-

matches A P ~ , and such that the following conditions are satisfied:
fWn V U k S ([tb, tel ,Am (OP) An) such that Am matches APi, An

* = s (A,)

* i f 0 (AP1) = ‘*’ then o (Am) = o (A,)

i f s (A P i) = ’*’ then s (A,)

* ifm(AP1) =‘*‘thenm(A,,,) = m (A n)

Note that instances derived from parametric rules must
also satisfy the constraints on administrative privileges il-
lustrated in the previous section for rules.

1. We will elaborate on this in Section 5

BERTINO ET AL.: A TEMPORAL ACCESS CONTROL MECHANISM FOR DATABASE SYSTEMS 71

The following example ildustrates the use of parametric
derivation rules.
EXAMPLE 2.2. sam wishes to grant the authorization to exer-

cise a certain number of access modes on certain objects to
a group of friends, Chris, Matt, and Jim. Instead of speci-
fymg one authorization for every access mode and every
object for each of his friends, sam can proceed as follows. A
new user sam-friends, p1,iying the role of the group is de-
fined. For each user that sam wishes to include in the
group, a WHENEVER rule parametric over the object and the
access mode is defined where the authorization at the left
of the operator has as subject the user identifier and the
authorization at the right has as subject San-friends (see
Fig. 2). The time interval associated with the rule can be
interpreted as the time interval at which the user appear-
ing on the left is considered as a member of group sam-

friends. For example, rules R~, R ~ , and R~ in Fig. 2 allow
given a positive authorization specified for Sam-friends,
to derive the same authorization for for Chris, Matt, and
Jim, respectively. Rule R~ c!xpires at time 100 (intuitively af-
ter that time Matt will not be considered anymore a mem-
ber of the group); hence, the time interval associated with
the authorizations deriveld for Matt will have ending time
equal to 100.

(Al) ([lo, - 1 , (Sam-friends, 01, read, +, Sam))
(A2) ([2 0 , 2 0 0 1 , (sam-friends, 01, write, +, Sam))
(A3) ([Z O , - 1 , (sam-friends, 02, read, +, Sam))

(A4) ([lo, c o l , (Sam-friends, 0 2 , write, +, Sam))
(A5) ([SO, = I , (Jim, 0 2 , write, -, John))
(Rl) ([l, - 1 , (Chris, *, *, +, Sam) “ E V E R

(~ 2) ([I, 1001, (Matt, * , *, +, Sam) WHENEVER

(~ 3) ([I, - 1 , (Jim, *, * , +, Sam) WHENEVER

(Sam-friends, *, *, +, Sam))

(Sam-friends, * , *, +, Sam))

(Sam-friends, *, *, +, Sam))

Fig. 2. An example of parametric derivation rules.

In the example above, sam appears as grantor of the
authorization on the right of the operators in rules RI-&.
Hence, authorizations for Chris, Matt, and Jim will be de-
rived only from authorizations granted to Sam-friends by
Sam. Sam can require the rulies to fire regardless of the gran-
tor of the authorizations to Sam-friends by putting ‘*’ as
grantor in the right side of irules RI-&.

3 FORMAL SEMANTICS

III this section, we formalize the semantics of temporal authori-
zations and derivation rules. First of all, it is necessary to point
out that the possibility to eypress negative authorizations inbe
duces potential conflicts ammg authorizations. Suppose that a
negative authorization for a privilege on an object is granted to a
user who has previously obtained the same privilege on that
object. We then have, for a given time interval, the presence of
both negative and positive aiuthorizations. This is not to be in-
tended as an inconsistency since we consider negative authori-
zations as prevailing with respect to positive authorizations.

Considering the set of authorizations and rules in Fig. 2,
from rule R~ and authorization A~ we can derive ([i o , -1 ,
(Jim, 0 2 , write, +, Sam)) . By authorization A~ we have
(150 , -1, (Jim, 0 2 , write, -, John)). This is not an
inconsistency, since we apply the denials-take-precedence
principle. Hence, the negative authorization prevails, and
Jim will have the authorization to write object o2 only in the
interval [IO, 491. The formal semantics obeys to the deni-
als-take-precedence principle. We start the description of
the formal semantics by introducing the concept of a TAB.
DEFINITION 3.1 (Temporal Authorization Base): A Temporal

Authorization Base (TAB) is a set of temporal authorizations
and derivation rules.
In the rest of the paper, we denote with INST-TAB a TAB

where each parametric rule has been substituted by its set
of instances according to Definition 2.8. Obviously TAB and
INST-TAB are equivalent.

The semantics of a TAB is given as a set of clauses in a
general logic program corresponding to INST-TAB. We use a
logic with two sorts, the natural numbers (IN) as a temporal
sort and a generic domain (23) as the other sort. The lan-
guage includes constant symbols 1, 2, ... for natural num-
bers, a finite set of constant symbols (e.g., sl, ol, ml, gl, -,
+ , s 2 , .. .) for elements in D, and temporal variable sym-
bols t, t’, t”. Predicate symbols include the temporal predi-
cate symbols 2 and < with the fixed interpretation of the
corresponding order relation on natural numbers, the
predicate symbol F () with temporal arity 1 and domain ar-
ity 5, the predicate symbols FN() and FJ) with temporal ar-
ity 2 and domain arity 5, and the predicate symbol GO with
temporal arity 1 and domain arity 3. The resulting language
is very similar to the temporal deductive language pro-
posed in [2] with the main difference being the presence of
negation in our rules.

For each type of authorization/rule in INST-TAB, Table 1
reports its corresponding clause/set of clauses. Intuitively,
the predicate F () is used to represent the authorizations at
specific instants. The fact that F(t, A) is true in an interpreta-
tion corresponds to the validity of A at instant t according to
that interpretation. The predicates GO, FJ), and F,() are
auxiliary predicates, used to avoid quantification. Intui-
tively G(t, s, 0, m) is true in an interpretation if there is at
least one negative authorization, with the same s, 0, m, valid
at instant t according to that interpretation. FN(t”, t, A) is
true in an interpretation if there is at least an instant t’ with
t” 2 t’ < t at which authorization A is false according to that
interpretation. F,(t”, t, A) is true in an interpretation if there
is at least an instant t’ with t” 5 t’ < t at which authorization
A is true according to that interpretation.

We denote the logic program corresponding to a TAB
with PTAB. We consider stable model semantics of logic pro-
grams with negation [7] to identify the models2 of PTAB.
DEFINITION 3.2 (Valid Authorization): Given a model M of PTAB,

an authorization A is said to be valid at time t with respect to M
ifF(t, A) is contained in M. If PTA, has a unique model M and M
contains F(t, A), we simply say that A is valid at time t.

2. Due to the properties of the resulting program, in this case stable
models are identical to welllfounded models 1121.

72 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

TABLE 1
SEMANTICS OF TEMPORAL AUTHORIZATIONS AND RULES

t,, t,], (s, 0, m, -, 9) :

t,, t,], (s, 0, m, +, 9) :

k,, tJ, (s,, 0,, q, -, 4,) WHENEVER (s,, o,, q, pn, 9,) :
F(t, s,, o,, q, -, 9,) c t, I t 5 te , F(t, s,, o,, q,’pn, g2)

[t,, t,], (s,, o,, m,, +, 4,) WHENEVER (5,’ 0,’ 3, Pn, 9,) :
F(t , sl, o,, m,, +, 9,) t t, 5 t 5 ta, F(t, s,, 02, q, pn, 9,) ,-, G(t, s,, o,, q)
[t,, tJ, (s,, olr m,, -, 4,) ASLONGAS (s,, 0,’ %, pn, 9,) :
F(t, s,, o,, q, -, 9,) c t, 5 t I t8, F(t,s,, o,, m, pn, g,),

[t,, t,], (sl,olr m,, +, 9,) ASLONGAS (s2, 02, %, pn, 9,) :
F (t , s,, o,, m,, +, 9,) t t, 5 t 5 Le, F (f , s,, o,, q, pn, g,),

F(t, s, 0, m, -, g) t t, I t 5 t,

F(t, s, 0, m, +, g) t t, 5 t 5 t, G(t, s, 0, m)

7 FJt,, t, s2, 02, m, pn, 9,)

7 F,(t,, t, s,, o,, q, pn, g,), 7 G(t, s,, o,, rrq)
[t,, t,], (SI, o,, m,, -, 9,) WHENEVERNOT (s2, 0 2 , q r Pn, S2) :
F (t , s,, o,, m,, -, 9,) t t, I t S te , 7 F(t , s,, o,, q, pn, 9,)
[t,, t,], (s,, o,, m,, +, 4,) WHENEVERNOT (s2, 021 %, Pn, 9,)
F(t , s,, o,, m,, +, g,) t t, 5 t I te, 7 F(t, s,, 02, q, pn, g,), 43 t , s,, o,, nq)

[t,, tJ, (s,, ol, m,, -, 9,) UNLESS (s,, o,, %, pn, 9,) :
F (t , s,, o,, m,, -, 9,) t t, 5 t I tc, S (t , s2, o,, m, pn, g,),

[t,, t,], (s,,~,, 4, +, 9,) UNLESS (s,, 02/ %, Pn, 9,) :
SAt,, t, s,, O,,% Pn, 9,)

q,(t,, t, s2, 02, %, pn, g,), 4-34 s,, 0,’ rrq)
F(t, SI, 01, q r + r 9,) t tb 5 t 5 tc I q (f r szr 0 2 , %T Pnr g2)r

F,(t”, t, s, 0, m, pn, g) t t” 5 t’ i t, F(t’, s, 0, m, pn, g)
F,(t”, t, s, 0, m, pn, g) t t” 5 t’ < t, S(t ’ , s, D, m, pn, g)
G(t, s, 0, m) t W , s, 0, m, -, g)

3.1 Restrictions on Rules
An important property that we require for our set of tempo-
ral authorizations and rules is that we must always be able
to derive a unique set of valid authorizations. This means,
for example, that each set of rules together with a fixed set
of explicit authorizations should not derive different
authorizations depending on the evaluation order. We give
an example illustrating how different authorizations can be
derived depending on the evaluation order.
EXAMPLE 3.1. Consider the following rules:

(RI) ([tb, t,], A, WHENEVERNOT p’z)
(Rz) ([t,, td, p’z WHENEVERNOT AI)

Suppose that there are no explicit authorizations for pr or
~2 in the TAB and these are the only rules. If we consider
first R~ we derive authorization AI and we cannot derive
A ~ . If we consider first R ~ , we derive A2 and not A ~ . Hence,
we have two different sets of derived authorizations. In
this case there is no reason to give preference to one set
or the other.
From the point of view of the semantics that we have

given, the property of always having a unique set of valid
authorizations is guaranteed only if there exists a unique
model of the program corresponding to the TAB. Hence, we
limit derivation rules so that a unique model can be com-
puted. In the rest of this section we formally define sets of
rules that should be avoided in order to guarantee a unique
model for P,,, and we give an algorithm for their detection.

In the following, we use the term negative operator
(NEGOP) to refer to WHENEVERNOT or UNLESS, and negative
rule to refer to a rule using a negative operator. Similarly,

positive operator (POSOP) is used to refer to WHENEVER or
ASLONGAS, present operator (PRESENTOP) is used to refer to
WHENEVER or WHENEVERNOT, and past operator (PASTOP) is
used to refer to UNLESS or ASLONGAS. Moreover, we use
symbols A, as a shortcut for the 5-tuple (st, od m, pn,, g,),

while A: forces pn, = + and A; forces pn, = -.
A binary relation % among the temporal authorizations

appearing in INST-TAB is defined as follows:
If there is a rule ([tb, te] , A, (OP) A,) in INST-TAB, where
(OP) is an arbitrary operator, then ~ , [t] 4A,[t] for each t
with tb 4 t 4 t,. The 4 relation represents a depend-
ency of A, at instant t from A, at the same instant.
When (OP) is a negative operator we say that Q repre-
sents a strict dependency.

e If there is a rule ([tb, t,], A% (PASTOP) A ~) in INST-TAB,

where 4 represents a strict dependency.
then A,[t] Q APn[t’] for each t, t’ with tb 5 t < t‘ 5 te,

Using this relation we can define the more complex no-
tion of priority among temporal authorizations.
DEFINEION 3.3 (Priority): An authorization A, at time t has

higher priority than an authorization A~ at time t’ (written
A, [t I > A, [t’l) i f one of the following conditions holds:
e asequmce~, [t l = ~ ~ [t l %, ..., ~ t ~ ~ . ~ [t ” l ~ t ~ ~ [t ’ l

= A, [t’] exists such that at least one of the 4 relationships
is a strict dependency,

* two sequences ~ , [t] = ~ ~ [t] C) ... C) ~ [[t ”] and

Akl[r] c--f ... c--f Ak[t’] = A,[f’] exist such that

= s(-&), o(A;) = O (A ~ + ~) , and m(~;) = ~(AL,),
* an authorization A~ and an instant t” exist such that A~ [t 1

Note that the second condition in the above definition
implies that each negative authorization has higher priority
than its positive counterpart at the same instant.

We are now ready to identify critical sets of deriva-
tion rules.
DEFINITION 3.4 (Critical set): A TAB contains a critical set of

rules ifand only ifan authorization A~ in INST-TAB and an
instant t exist such that A~ at instant t has priority over itself

> Ai[t”l and A1 [t ” l > A,[t ’] .

(Am[tl > Am[tl).

EXAMPLE 3.2. Consider the set of rules:
(RI) ([5,-1, (Ann,Ol,Write,-,Jim) WHENEVERNOT

(Bob,ol,write,+,*))

(Ann, *,write, -, *))

(John, 01, *, +, *) 1

(Rz) ([10,-1, (John,*,write,-,Jim) WHENEVER

(R3) ([40, -1 I (Bob,ol,*,+,Jim) UNLESS

These three rules form a critical set. It is easily checked
that Definition 3.4 applies to this set of rules. Indeed, by
the first condition in Definition 3.3 and rules R~ and R~ we
have that (Bob,ol,write,+,Jim)[41] > (John,ol,write,-
,Jim) [41]. But we have (John, 01, write, -,Jim) [41] >
(J O ~ , 01, write , + , Jim) [41] by the second condition, and,
again by the first condition and rule R~, we obtain
(John,ol,write,+,Jim)[41] > (Bob,ol,write,+, Jim) [41].
Applying twice the third condition (transitivity) we have

BERTINO ET AL.: A TEMPORAL ACiCESS CONTROL MECHANISM FOR DATABASE SYSTEMS 73

(Bob, 01, write, +, Jim) [431] > (Bob, 01, write, +, Jim) [41].
Hence, this set of rules is critical.

The CSD (Critical Set Detection) algorithm, described in
the next subsection, can be used to recognize and reject a
TAB containing a critical set.

3.2 An Algorithm for Cri1,ical Set Detection
We use a set of disjoint" intervals T = {[t,, tl], . . ., [tr, ts]} as a
compact notation for the set of natural numbers included in
these intervals. Hence, the operations of union (T, U TI),
intersection (T, f l TJ, and difference (Tl\T,) have the usual
semantics of set operations. However, we implement these
operations so that they can be performed using intervals
and giving the result as a set of disjoint intervals. We use
two kinds of set membership: t E T is true if t is one of the
natural numbers represented by T, [t,, tl] E T is true if the
interval [t, t,l is exactly one of the disjoint intervals of T.

Given a INST-TAB, the algorithm for critical set detection
returns FALSE if a critical set exists in TAB; otherwise it
returns a sequence of sets (levels) (Ll, . . ., L,) representing a
partition of the set of pairs (A, t) for each authorization A

appearing (either explicitly or in a rule) in INST-TAB and
for each instant t between 1 and tmax. We define tmax to be
the first instant greater th,an the maximum temporal con-
stant appearing in INST-TAB. In the following, we refer to
each set L, as level i. If pair (A, T) is in level i, we say that A

is in level i for each t E T. Intuitively, authorizations appear-
ing at lower levels for a certain set of instants have higher
priority for evaluation than authorizations appearing at
higher levels (for the same or different sets of instants). In
this and other algorithms in the paper, we use the functions
'Add()' and 'Delete()' to add/delete or modify the pairs (A, 7').
The result of the statement 'Add (A ~ , T') to L' is the addition of
that pair to L if there is no pair (P+,,, T) in L for any T, otherwise it is
the "placement of (A ~ , T) with (A,,,, T U T). Analogously, the
result of 'Delete (A ~ , 7") from L' is the deletion of that pair
from L if the pair (A ~ , T) is in L with 7" = T, otherwise it is the
replacement of (A,,,, 7') with (A,,,, T\T").

The algorithm is reported in Figs. 3, 4, and 5, and it
works as follows. In step 1, t,,, is substituted for each oc-
currence of symbol '00' in time intervals associated with
authorizations and rules in INST-TAB. There is no need to
consider all time instants up to 03. For instants greater than
tmax the authorizations that are valid remain unchanged. If a
critical set exists, it will be found at a time lower than or
equal to tmax. In step 2, max-level is determined as the
number of authorizations appearing in INST-TAB multi-
plied by tmax. max-level corresponds to the number of pairs
(A, t) to be partitioned. 'Then, the number of levels (top-
level) is initialized to 3 . Level 1 initially contains all
authorizations in INST-TAB for each instant between 1 and
tmax. Step 3 recursively calls function 'check-levels()' which
examines the authorizations at different levels and the de-
pendencies among authoxizations. It possibly changes level
to pairs (A, T) on the basis of the dependency. The loop at
step 3 ends when the last call of 'check-levels()' does not
change any level or the level number is greater than max-

level. In the first case, the levels constructed by the algo-
rithm are returned. In the second case, FALSE is returned.

Algorithp 3.1 Critical Set Deteetim (CSD) Algorithm

INPUT: INST-TAB.

OUTPUT: FALSE if a cdticd sd is detected;

other- a soquencc of eta (L, . . . , LL) representing a pulition of

the set of pdrs (A,#) snch that A appears b INST-TAB and 1 2 1 S'tnar

E d set L; is e d e d l e d i iIld L; = {(AI.Z,~), . . . , (A,,%,;)] whwc

q,. is a set of time intmah -dated with Aj at level i.

METHOD:

1. For each temporal authorhation or role having the h e limit t. = m substitute it with Bar.

a. mar-level:= n-au%h*t.-, where n-auth is the numbet of authodiations appearing in INST-TAB

bpkd := 1

Ll :=!Y

For each rathorisation I app-g in INST-TAB Do

LI := LI U {(A, U13 t d l) l
endfor

3. Repeat chkk-kvels ((Lz,, , . , LbPlwel))

Until there are no chsnges to any level or toplevel > --level.

4. Return FALSE if toplevel > mu-level , the wuencc (.GI,. . . , LtoFkevel) otherwise

Fig. 3. An algorithm for critical set detection.

3. Two intervals are consideresd disjoint if they cannot be collapsed into a
single one (note that [1,2] and [3,4] are not disjoint).

74 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

Function npdate(leu,A,,T)

If leu > toplevel t h e n

toplevel := leu

Lie" := 0
endif
h := l ev- 1

WhileT# {[I} and h? 1 Do

If(A,,Tm,h)€LhwithTm.hnT# {[Ilkhen
T* := Tm,h nT
Delete (A,,!r) from Lh

Add (Am,T') to Lieu

T : = T \Tm,h

endif
h : = h - 1

endwhile

Fig. 5 . Function update.

Function 'check-levels()' is composed of three steps. In
step 1, all levels from top-level to 1 are examined. If a nega-
tive authorization A, is found at a given level 1 for a certain
set of time intervals T,,,, the level of all positive authoriza-
tions having same subject, object, and access mode as A,

and appearing at a level lower than 1 is increased to 1 + 1 for
all time instants in T,,. In step 2, all the rules R = ([t, tell A,

(PRESENTOP) A") are evaluated. Levels are examined in decreas-
ing order starting from top-level. Every time authorization
A, is found at level 1 for a time interval T,,, not disjoint from
[tb, t,], function 'update()' is called to increase the level of A,

for the time instants appearing in both T,,, and [t, tel. The
new level is I , if the operator in the rule is WHENEVER, and 1
+ 1, if it is WHENEVERNOT. In step 2, all the rules R = ([tw t,],
A, (PASTOP) A,) are evaluated. Again, levels are examined in
decreasing order starting from top-level. Every time
authorization A" is found at level 1 for a time interval T,, not
disjoint from [tbr te], function 'update()' is called to increase
the level of A~ for the time instants [t,, t,] greater than or
equal to the minimum instant t, in both [tw t,] and Tnr
The new level is 1, for instant tl, and I + 1, for instants in [t,
t,] greater than it.

Function 'update(),' given a level lev, an authorization
A,~, and a set of time intervals T, brings authorization A,,, at
level lev for each time instant for which A,,, appears at levels
lower than lev.
EXAMPLE 3.3. Consider a TAB containing the following

authorizations and rules:

([IO, 2 0 0 1 , A i)
([5 , 1001, A2 WHENEVER A i)

([40,60],A~IJohn WHENEVERNOT A3)

([lo, 801, A4 WHENEVERNOT As)

where A ; , ~ ~ ~ , , indicates a negative authorization with

same subject, object, and access mode as A, but with
John as grantor. The algorithm for critical set detection
returns the following levels:

{(AI, {Ut 201II)r (Ail john {D, 391,[61,20111), (A, {EL 2011}),

(A4r {[1,911 [81,2011)), (A5, {[I, 2011})}
& = {(Ailp,hn r {[4O, 601)), (%, {[I, 391, [61,2011})r (Ay ([lo, 8011))

L, = N% I[40, 6Oll)l

3.3 Correctness of the CSD Algorithm and Model

The following two theorems state some properties of the
levels returned by the CSD algorithm with respect to the
dependencies among authorizations.

THEOREM 3.1. Let A, and A,,, be two authorizations appearing in
INST-TAB and t, t' be two time instants lower than or equal
to t,, such that ~ , [t] 4 ~,[t '] . Then, either the algorithm re-
turns FALSE or, at the end ofthe execution, authorization A,
for instant t' appears at a level higher than or equal to that
of authorization A, for instant t. If 4 is a strict dependency
then A, for instant t' appeavs at a level higher than that of A,

for instant t.
THEOREM 3.2. Let A, and A, be two authorizations appearing in

INST-TAB with same subject, access mode, and object but
with diffhnt sign. Then, either the algorithm returns FALSE
or, at the end of the execution, the positive authorization ap-
pears at a level higher than that of the negative authorization
for each time instant between 1 and tmx.

The correctness of the CSD algorithm i s stated by the
following theorem.
THEOREM 3.3. Given a TAB, 1) the CSD algorithm terminates

and 2) it returns a FALSE value if and only if the TAB con-
tains a critical set.
As we have observed, for the purpose of determining the

authorization state of the system at a certain instant, the
uniqueness of the PTAB model at that instant is required. The
uniqueness of the model in absence of critical sets is guar-
anteed by the following theorem.
THEOREM 3.4. Given a TAB with no critical sets, the correspond-

/ Uniqueness /

ing logic program PTAB has a unique model.

4 MATERtALIZATlON OF AUTHORIZATIONS

In our model, the control of whether a request to access an
object for a given access mode can be authorized may re-
quire the evaluation of several rules. Two different strate-
gies can be used to enforce access control:
Run-time derivation: Every time a user requires an access,

the system verifies whether the access request can be
authorized on the basis of the authorizations and the
derivation rules in TAB and by computing, if necessary,
the derived authorizations.

Materialization: The system permanently maintains all
the valid authorizations, both explicit and derived.
Upon an access request, the system can immediately
check whether a valid corresponding positive authori-
zation exists.

Both these approaches have some pros and cons. The first
approach has the advantage that no actions are required
upon modification of the TAB; however access control be-
comes cumbersome since each access request may require
the computation of derived authorizations. In the second
approach, this run-time computation is avoided at the price
of explicitly maintaining the derived authorizations that
will have to be updated every time the TAB is modified.

BERTINO ET AL.: A TEMPORAL ACiCESS CONTROL MECHANISM FOR DATABASE SYSTEMS 75

Since, generally, access requests are considerably more
frequent than administrative requests modifying authori-
zations and/or rules, we argue that the second approach is
preferable. Moreover, the dirawback provided by the need
of recalculating the explicit authorizations upon modifica-
tions to the TAB can be overcome by the application of effi-
cient algorithms that update the materialized authoriza-
tions upon modifications without need of reconsidering all
rules and recomputing all the materialized authorizations.

For the reasons above, vve adopt the materialization ap-
proach. In the following we illustrate how to compute,
given a TAB, the corresponding valid authorizations. In
Section 6, we will provide algorithms for reflecting changes
to the TAB in the materialized authorizations without the
need of recomputing all authorizations from the beginning.
DEFINITION 4.1 (Temporal Authorization Base Extent): The

Temporal Authorization Base Extent (TAB,,) of TAB is the
set of valid authorizations derivedfvom TAB.
TAB,, contains all the valid authorizations of TAB com-

puted according to the semantics of explicit authorizations
and derivation rules.

Authorizations are maintained in TAB, using a compact
representation: each A~ is associated with a set Tk of disjoint
intervals, representing the instants at which A~ is valid.

At time t = 0, TAB,, does not contain any explicit or
derived authorizations. Upon the execution of each admin-
istrative operation (such as grant/revoke of authorizations
or rules) TABEXT is updated to reflect the effects of the op-
eration execution.

If the strategy of maintaining both explicit and derived
authorizations is not adopted from the beginning, it is nec-
essary to populate TAB,, from the explicit authorizations
and derivation rules already present in TAB. If there is no
critical set, the CSD algorithm returns a sequence of levels
(Ll, . . ., LJ such that, for each authorization, the correspond-
ing set of instants 1, . . ., t,,, is partitioned among the k lev-
els. This sequence is essential to establish an evaluation
order that guarantees that the computed TAB,, contains all
and only valid authorizations.

Algorithm 4.1, reported in Fig. 6, computes the TAB,, of a
TAB. The algorithm receives as input the TABS instantiated
version INST-TAB and the sequence (Ll, . . ., LJ given by the
CSD algorithm. The algorithm is based on the technique used
to compute the model of (locally) stratified logic programs.
Intuitively, rule instances and authorizations are partitioned
among a finite number of levels according to a priority relation
and inferences at a certain level are performed only when all
possible inferences at lower levels have been performed.

The main step of the algorithm (step 2) is an iteration on
the k levels returned by thLe CSD algorithm. For each level i,
starting from i = 1, the algorithm:

Constructs the set xi of authorizations and rules
available at level i. More precisely, contains pairs
(x, T') where x is an element of INST-TAB. x can be an
explicit authorization ([t,, t,], AJ or a rule ([t,, te],

A, (OP) A,). T' is the set of intervals representing all in-
stants t E [tV t,] such that A,,, is in level i for instant t.
Derives new authorizations drawing all possible in-

ferences at level i by using the elements in % and the
authorizations previously derived.

Algwithm 4.1

INPUT
OUTPUT

The output (h.. . . , Lk) 01 the CSD Algorithm and INST-TAB.
1) TABixr=((A., Tl) I A i L 2 d i d a.uthorization foz each intend in Ti)
2)Asequence (X,. ..., IT1),nhel-e)T.=((2,P) IzEINST-TAB

wi th z=([t,t$,Am) 01 l(=([tb,ta],Am(OP) L), md P=[ts,telnTmr $ 01.
METBOD

1) TABZXT md each X, are inilirli.cd to be empty

2) For i:=l to k D o
a) #Construction O I l Z i #

For each elememt z in INST-TAB, where z=([t~.tJ,A~) or s=([ts.t,].A,(o~)l.) Do

If (lm, Tm,s) E Li with Tm.; n [t.,t.]# B then
fzi := f z l U(z,Tm,i n [ts, t.])

endfor

b) #Construction d TAB.xr#

mwt
For each element (z,T') E jt., wherr ==([thtJ,A,) or s=([tb,t&.(a~)A~) Do

T := D&cath((z, T'),TABsxr)
IfT # 0 then Add (Am,T) to TABsxr

endfot
Until no new antharization c m be derived

endfor
3) For each (A,?') in TABrxr with tmax ET, subtitute tu- with m.

Ebnction Ueriveauth((z, T'),TABsxr)
T := T'
Er = ([tb , t&, (o~)A~) then

Case OP of
WHENEVER: T := T n T.

WHBNEVERNM: T := l" \ T,
I f t s E I for
else T :E 0
IT. n [tb,t.] # I then

ASWNOAS:

UNLESS:

I ET. then T := r n (I)

tli := nrin({tlt€T, and t b <tSt.))
If t k > th then T := [ta,tk-l] n T
else T := 0

endif

endease

Ifpn(&,) = '+'then

T := T \ U {Tt 1 p d l d = '-', s(Ad=a(A,,J, o(Ai)-o(Am), m(A'.)-m(L)]
mt..m T

Fig. 6. An algorithm for TAB, generation.

The last step of the algorithm (step 3) extends the inter-
vals of derived authorizations on the basis of the following
observation:

If we have derived an authorization for the instant t-,
we are guaranteed that the authorization can be derived
for any instant greater than tmx.

This fact is due to the particular form of our rules and it is
formally proved as part of the proof of Theorem 4.1.

The following example illustrates an application of the
algorithm for TAB,, generation.
EXAMPLE 4.1. Consider the TAB illustrated in Example 3.3.

The levels computed by the CSD algorithm are illus-
trated in the same example. We now apply the algorithm
for TAB,, generation. Let TAB!;, be the TAB,, result-
ing from the ith iteration.

For i = 1 we obtain:

2.b) TAB:;, = ((A ~ , {[10,200]})] since (([10,200], Al),

{[10,200])} is the only element of XI and there are no

authorizations in TAB!;, blocking A,.

2.a)X1 = ((([lo, 2001, AJ, {DO, ~ O O I) }

76 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

0 For i = 2 we obtain: In the following we discuss the administrative opera-
2.a) tions considered in our model. The syntax of the operations

in BNF form is given in Table 2. With reference to the figure, z2 = 1(([40,601, WHENEVERNOTA3), {[40,60]]), nonterminal symbols (subject), (object), (a c c e s s - m o d e } ,

(([5,100], A2 WHENEVER AI), {[5,391, [6L loo])),
(([lo, 801, A4 WHENEVERNOTA5), [[lo, SO]})}.

(auth-t), and &at-number) represent elements of the do-
mains U, 0, M , [+, -}, and IN, respectively Nonterminal
symbols (aid) and (rid) represent system labels. Symbol #

and authorizations in we istrative request is submitted to the system.

(A;l~~~~t{[40,60]}). From ((155, 1001, w " + m R AI),

{[5, 391, [61, loo]}) we obtain: (AzF {[lo, 391, [61, loo]}).
From (([lo, 801, A$ WHENEVERNOT ~,),{[10, 801)) we obtain:
(A,, {[lo, 8011). Hence,

T A B (E ~ ~ = {(A~, WO, 200$ (A~, {[lo, 391, [~ L ~ o o I })

(A;,,~!~~, W O , 6011), (A ~ , [[10,801})}.

0 Fori = 3 we obtain:
2.a)X3 = {(([5,100],A2 WHENEVERA,), {[40,60]})}.
2.b) Function
Derive - auth((([5,100], WHENEVER A~) , {[40,60]}),

 TAB^',)
returns T = 0, since authorization ([40,60], Ai,John)

blocks % for the time interval [40,60].

TABfi, = {(Alr {[lo, 2001}), (Az, ~~10,391,[61,1001}),

(A Z I J ~ ~ ~ , 1[40,601}), (A,p 1[10,801})}

0 There are no more levels, t,,, = 201 in this example
and it does not appear in TABFAT. Hence, the algo-

rithm terminates returning TAB!;, .
The correctness of the algorithm is stated by the follow-

ing theorem:
THEOREM 4.1. Given TAB,, as returned by Algorithm 4.2, an

authorization A is valid at time 5 i f and only i f there exists
(A, 7') in TAB,, with t E T .

Once we have an updated TAB,,, each access request
can be checked against TAB,,. An access request from user
s1 to exercise access mode m, on object o1 at time t will be
allowed only if a pair (A, T) exists in TAB,,, such that s (A)
= s l , o (A) = o l , m (A) = m l , p n (A) ='+',andtE T.

5 DMlNlSTRATlON

Administrative operations allow the users to add, remove,
or modify temporal authorizations and derivation rules and
to give or revoke other users the right to administer their
objects or to refer to them in derivation rules. Each tempo-
ral authorization, and each derivation rule in the TAB is
identified by a unique label assigned by the system at the
time of its insertion. The label allows the user to refer to a
specific temporal authorization or derivation rule upon
execution of administrative operations.

TABLE 2
SYNTAX OF ADMINISTRATIVE OPERATIONS

k . 4 GXANT (access-mode) ON (object) TO (subject)

FROMTIME (s t s t - t i m e) TOTIME (end-time)

(d-d DENY (access-mode) ON (object) TO (subject)

FROMTIME (start-time) TOTIME (end-time)
(revoke) ..- . - REVOKE (aid) I

REVOKE (access-mode) ON (object) FROM (subject)

FROMTIME (start-tlme) TOTIME (end-tms)

&WOKE NEGATION (access-mode) ON (object)

FROM (subject)

FROMTIME (s t a t - t i m e) TOTIME (end-tine)

(add-nile) ::= ADDRULE (subj) (obj) (acc-mod) (auth-t)

(t emp-operator)

(aubj) (obj) (acc-nod) (autb-t) (subj)

FROMTIME (Start-time) TOTIME (end-time)

{--de) DRaPRULE (rid)

(grant-ad.)
(revoke-&)

(Wsrant-4
(reroke-rd)

GRANTADM ON (object) TO (subject)

REVOKEADM ON (object) FROM (subject)
GRANTREF ON (object) To (subject)

REVOKEREF ON (object) FROM (subject)

WHENEVER I ASLONGAS I WHENEYERNOT I UNLESS (t w o p e a t or)

(snbj) (subject) I *
(ob]) _.- (object) I
(acc-mod} (access-made) I *
(s t a r t - t k e) ::= $f I (nat-number)

(end- the) ::= 03 I @at-number) I +(nat-number)

Administrative requests can affect access authorizations,
derivation rules, or administrative authorizations, as follows

Requests affecting the authorizations on an object
These are requests for granting or revoking authori-
zations on an object. The user requesting them must
have either the own or the a d m i n i s t e r privilege on
the object.
GRANT. To grant an access mode on an object to a
subject for a specified time interval. The grant opera-
tion results in the addition of a new temporal authori-
zation. The starting time of the authorization must be
greater than or equal to the time at which the authori-
zation is inserted (it is not possible to specify retroac-
tive authorizations).
DENY. To deny an access mode on an object to a sub-
ject for a given time interval. The deny operation re-
sults in the addition of a new temporal negative
authorization.
REVOKE. To revoke an access mode on an object from a
subject. The revoke operation can be required with

BERTINO ET AL.: A TEMPORAL ACCESS CONTROL MECHANISM FOR DATABASE SYSTEMS 77

reference to a single authorization by specifying its
label (i.e., the deletion of a specific authorization is
requested) or with reference to an access mode on an
object with respect to a given time interval. The re-
voke operation result,s in the deletion or modification
of all the temporal aiuthorizations of the revokee for
the access mode on the object granted by the user
who revokes the privilege. If the time interval for
which the revocation is requested spans from the time
of the request to 00 all authorizations for the access
mode on the object granted by the revokee to the re-
voker will be deleted. If the revocation is required for
a specific time interval, all the authorizations for the
access mode on the object granted to the revokee by
the revoker will be deleted or modified to exclude the
interval (and possibly split in more authorizations).
Note that a user can revoke only the authorizations he
granted and then the revoke request by a user affects
only the authorizatioins granted by that specific user.
REVOKE NEGATION. Ti) revoke the negation for an ac-
cess mode on an object from a subject. It is analogous
to the Revoke operation with the only exception that
it applies to negative authorizations.

These are requests lor specifying or deleting rules.
The user requesting ihem must have either the own or
the administer priviilege on the object appearing at
the left of the operator and either the own, administer,
or refer privilege on, the object appearing at the right
of the operator.
ADDRULE. To add a new derivation rule. The grantor
of the authorization appearing at the left of the tem-
poral operator identifies the user inserting the rule.
Like for authorizations, the starting time of the inter-
val associated with ihe rule must be greater than the
time at which the recluest is specified.
DROPRULE. To drop a derivation rule previously
specified. The operaiion requires, as argument, the la-
bel of the rule to be deleted. Like for the revocation of
authorizations, a user can drop only the rules that he
has specified.

These are requests for granting or revoking adminis-
trative privileges on an object. They can be executed
only by the owner of the object.
GRANTADM. To grant the administer privilege on
an object to a subject. It results in a new adminis-
trative authorization spanning from the time of the
request to W.

REVOKEADM. To revoke the administer privilege on
an object to a subject. It results in: 1) the deletion of
the authorization for the administer privilege on the
object previously granted to the revokee, and 2) the
deletion of the authorizations on the object and of the
derivation rules where the object appears in the
authorization at the left of the operator specified by
the revokee. If the revokee does not have the reference
privilege on the object, also the derivation rules where

Requests affecting niles

Requests affecting administrative authorizations

the object appears in the authorization at the right of
the operator are deleted.
GRANTREF. To grant the refer privilege on an object to
a subject.
REVOKEREF. To revoke the refer privilege on an object
to a subject. It results in the deletion of the authoriza-
tion for the refer privilege on the object previously
granted to the subject and in the deletion of all the
rules granted by the revokee where the object appears
in the authorization at the right of the operator.

6 TAB,MAINTENANCE

Execution of administrative operations illustrated in the
previous section can change the set of valid authorizations.
The TAB,, has to be modified accordingly. For instance, the
insertion of an explicit authorization can cause the deletion
of authorizations from TAB,,,. This happens if the authori-
zation appears in the right side of a negative rule, or if it is
a negative authorization. A similar problem arises for
authorization deletion.

We have devised a set of algorithms that update TAB,,
upon each administrative request, without the need of re-
computing all the materialized authorizations. These algo-
rithms use methods similar to those employed for the main-
tenance of materialized recursive views with negation [8].

The maintenance algorithms make use of sequences
(L , ..., L,.) and (zl ,..., zk), defined in Section 4, that are
permanently stored and updated by them to reflect the
changes in TAB. The approach exploits the fact that,
authorizations in TABgk, are derived using only authori-

zations in TAB&? and rules in xi. Thus, a change for an
authorization/rule of level i does not affect authorization in
TAB(&. with j < i. Only authorizations in TAB(&, with j 2 i
need to be reconsidered.

In the following, we illustrate an algorithm for updating
TAB,, upon insertion of new positive authorizations, based
on the Dred algorithm [8]. The methods to maintain TAB,,
after the insertion/deletion of a negative authorization and
the deletion of a positive one are very similar to that for
positive authorizations insertion. We refer the reader to [3]
for the description of these algorithms and for the ones for
insertion/deletion of derivation rules.

6.1 Insertion of Explicit Positive Authorizations
The algorithm in Fig. 7 implements the maintenance of
TAB,, for the insertion of an explicit positive authorization.
It receives as input TAB,, INST-TAB, its corresponding
sequences (L,, ..., Lk) and (yl ,..., Xk) and a positive

authorization and returns TAB:, , the set of valid authori-
zations resulting from the insertion of the positive authori-
zation, and the updated sequences (q ,...,%) and

(Ti,. . . , Xi) . The algorithm works as follows: Suppose that

a positive authorization ([t,, t,], A,> has been inserted. If the

-

78 IEEE TRANSACTIONS'ON

inserted authorization does not appear in INST-TAB or its
time interval exceeds t,,, it is necessary to recompute the
sequence (L, ..., Lk) into which authorizations have been
partitioned by the CSD algorithm, because the partition of
the authorizations among the levels changes and the n m -
ber of levels could increase (step 1). In step 2 the positive
authorization is inserted in INST-TAB. Step 3 iteratively
considers all the elements (A, T) in TAB,, and replaces each
symbol 'm' in T with t,,,. Step 4 initializes S,, S,,, and
TAB:,, . SINS and S,,, are two data structures containing the

authorizations inserted and deleted from TAB&, till the
current point of the computation. The authorizations are
kept in S,Ns and S,,, using the same representation as for
TAB,,. Then (step 5), the algorithm computes l,,n, the least
level in which authorization Ak appears in an instant t of
the time interval [tb, t,]. All the operations for TAB,, main-
tenance will be executed starting from level l,,,. Step 6 com-
putes the sets xi, for i < l,nL,. In this case = q, since the
insertion of the new authorization does not change the lev-
els of the authorizations in INST-TAB. Step 7 is an iteration
on the levels returned by the CSD algorithm, starting from
level I,,,,. For each level i, the algorithm performs the follow-
ing operations:

the
element (A~, Tk,l n [tb, t,]), where Tk,r n [tb, t,] is the
set of time intervals representing all the time in-
stants t E [tb, tJ in which the inserted authorization
is in level i;
compute T, the set of time intervals representing all
the time instants t E [tb, te] in which the inserted
authorization is in level i and it is not blocked by a
negative authorization;

* compute the set Ti, for i > l,nin, by adding to

insert the element (A~, T) in SINS and in TAB:& ;

0 call function 'Dred-Exto' that computes all the
authorizations of level i which have to be inserted or
removed from TAB:,, because of the insertion of

([tb. t J r A J .

Finally, the last step of the algorithm iteratively considers
all the elements (A, T> in the updated TAB,, and substitutes
each value t,,, in T with symbol '-'.

Function 'Dred-Exto,' reported in Fig. 8, given a level I
and the authorizations inserted and deleted from TAB;,,
till the current point in the computation, updqtes the
TAB:,, according to the rules that can be fired in level 2.
The function consists of three main steps: step a) adds to
S,, and removes from TAB&, an overestimate of the
authorizations that need to be deleted because of the inser-
tion of ([tb, t,], A~). An authorization is added to S,,, by step
a) if the insertion of ([tb, t,], AJ invalidates any derivation of
the authorization from the elements of yi. Step b) reinserts

in TAB:,, the authorizations deleted in the previous step
that have an alternative derivation. The reinserted authori-
zations are obviously removed from S,,,. Finally step c)

KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

adds to S, and to TABU,, all the new authorizations that

can be derived from the derivation rules in xi because of
the insertion of ([t, t,], AJ.

Qmlthm 6.1 I n s w O h of an srpbi t p r i f i v e oGtkilhorimfion

INPUT: 1) A ?%&?e anthorimtion ([ta,t,],Ab).

2) INST-TAB, TABsxr (ezh dement denoted with @;,'E)).

4) The seqoence (rt,. . .,TA) (see Algorithm 4.1).

OUTPUT: 1) TABEX= (the updated TABsxz).

3) The seqoenee {x,.. . ,&),

3)Theseqoence (L . . . ,L*) .

2) n e wqoence (Li,, . . , +).

METHOD:
I) HAL gfwST-TAbu. - % ~ t - thenjl;, . . . , ~) :=CSD(INST-TABU([ts,t.],Ii))

else z:= k, L;=L; V j = 1, ... , k
2) I& ([tst&) in INST-TAB
3) hr e& (49 in TABEXT suhditate e d symbol 'm' in 7? with fnax

4) S I ~ E and SDXL m initidked to be empty, TAB;,, := TABZXT
5) I d . = -{il (Ak,Z,*) E LI and E,; n lta,t.l# 01
6) x;.:= x<, w = 1, ..., l& - 1
T) Fnr i:=L-= to Do

(a)~3X. thenf i : :=~~u(~~,~~,~n[t~ , t . l)

(b) T:= (Tkn [ts,tJ) \ U(TL I m(A,) = '-',s(A,)=a(Ak), o(A,)=o(Ak), ~(A,,,)=~(AA)J

(c) Add (a\,T) to S I N S and TAB&?
(a) (TE,TD) .= D d - E x t (S m s , S m , G)
(4 For 4 (4T) E TI A d d (A. T) to S I N S
(0 For =d (49 8 TD Add (A , 9 to S ~ e n
d e r

else t :=(A*, n . 6 n [ts,tc])

8) Fm e ~ & (&a E TAB;,,, mbtihte each d o e tmax E T, with symbol 'cd

Fig. 7. An algorithm for positive authorization insertion.

Fig. 8. Function Dred-Ext.

BERTINO ET AL.: A TEMPORAL ACCESS CONTROL MECHANISM FOR DATABASE SYSTEMS 79

Fig. 9. Function Derive.

THEOREM 6.1. Given a TAB and’ a positive authorization ([t, tJ, Aj3,l)
Algorithm 6.1 terminal es. Moreover 2) the sequence
(z;, . . . , Ei) , computed by the algorithm is correct. Finally,

3) the TABU,,, , computed by the algorithm contains all and
only the valid authorizations wvt TAB U ([t,, tJ, AJ}.

The following example illustrates how Algorithm 6.1
works.
EXAMPLE 6.1. Consider the TAB illustrated in Example 3.3.

The set of materialized authorizations and sets Ti for
this TAB are illustrated in Example 4.1. Suppose that at
time t = 7 authorization ([40, 501, ps) is inserted in the
TAB. It is not necessary to run the CSD algorithm since
the upper bound of the time interval of the inserted
authorization does not exceed t,,, = 201, and ~3 already
appears in INST-TAB. Since linin = 1, then all the E;, with
1 5 i 5 3 will be considered.
After the first iteration of step (7) of Algorithm 6.1,

F; = xl U (A,,{[40,5oIt), SI,, = {(ps,{[40, 501))1, and
S, = 0. Thus, function ‘Dred-Exto’ inserts ([40, 501, ~3)
in TAB:,*.

In the second iteration, each element of I?; = Z2is con-
sidered. Step (a) of function ‘Dred-Ext()’ searches for
elements (R, T‘) in T?; such that R = ([tb, tJ, A,,, (NEGOP) A~),

(A~,T;~S> is in S, with TiNs fl T’ # 0. The only ele-

ment that satisfies the condition is (IS, {[40, 50]}). Then
(~; ,~~~~,{[40,50])) is added to SDEL and removed from

TAB:!, . In the third iteration, step (c) of function ‘Dred-
Exto’ is executed and {(%, {[40, 501))) is added to SINS. No
other changes will be made by this iteration. Hence, the
algorithm terminates. The resulting TAB!,, is:

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an authorization model
with temporal capabilities. The model introduces the con-
cept of temporal authorization which is an authorization
together with a start and an expiration time. Both negative
as well as positive authorizations can be specified. Deriva-
tion rules can be expressed which allow new temporal
authorizations to be derived on the basis of the presence or
the absence of other temporal authorizations. Four different
temporal operators can be used in the derivation rules.
Administrative authorizations regulate the insertion and
removal of authorizations and rules by users.

We have given the formal semantics of temporal
authorizations and derivation rules in terms of a general
logic program. The problem of ensuring the uniqueness of
the derived authorizations corresponds to the theoretical
issue of the existence of a unique model for the logic pro-
gram. We have presented an approach to solve this problem
based on the stratification of authorizations and derivation
rules. We have provided an algorithm that determines
whether an authorization base has a stratification and
proved that, if the authorization base is stratified, a unique
set of derived authorizations is always computed.

Performance issues have been addressed and a materi-
alization approach in which derived authorizations are
explicitly stored has been proposed. Algorithms for build-
ing the materialized set of derived authorizations and for
maintaining them upon execution of administrative opera-
tions have been proposed.

The proposed model is currently under implementation
to investigate the system’s performance for various charac-
teristics of the authorization base.

We are currently extending this work in several direc-
tions. First, decentralized authorization administration fa-
cilities are being added to the model. Second, the model is
being extended with periodic authorizations. Such capabil-
ity allows to specify, for example, that a given subject may
access a data item every Thursday. Also, access control
based on past access histories will be included into the
model. Finally, we plan to investigate different temporal
logic formalisms and constraint logic programming as pos-
sible foundations for temporal authorization models.

ACKNOWLEDGMENT

The authors wish to thank Prof. Michael Gelfond for useful
discussions on problems related to the semantics of negation.

REFERENCES
M. Abadi, M. Burrows, B.W. Lampson, and G. Plotkin, “A calcu-
lus for access control in distributed systems,” ACM Trans. Pro-
gramming Languages and Systems, vol. 15, no. 4, pp. 706-734, Sept.
1993.
M. Baudinet, M. Nikette, and E Wolper, ”On the representation
of infinite temporal data and queries (extended abstract),” Proc.
ACM Symp. Principles of Database Systems, pp. 280-290, Denver,
May 1991.
E. Bertino, C. Bettini, E. Ferrari, and l? Samarati, “A temporal
access control model for database systems,” Technical Report 137-
95, DSI-Univ. of Milano, 1995.

80 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

[4] E. Bertino, C. Bettini, and I? Samarati, "A temporal authorization
model," Proc. Second ACM Conf. Computer and Communications Se-
curity, pp. 126-135, Fairfax,Va., Nov. 1994.
E. Bertino, I? Samarati, and S. Jajodia, "Authorizations in rela-
tional database management systems," Proc. First ACM Con$
Computer and Comm. Security, Fairfax, Va., Nov. 1993.

[61 S. Ceri and J. Widom, "Deriving production rules for incre-
mental view maintenance," Proc. 17th VLDB, pp. 735-749, Bar-
celona, 1991.

[7] M. Gelfond and V. Lifschitz, "The stable model semantics for
logic programming," Proc. Fifth lnt'l Conf. Logic Programming, R.
Kowalski and K. Bowen, eds., pp. 1,070-1,080, Cambridge, Mass.:
MIT Press, 1988.
I.S. Gupta, A. Mumick, and V.S. Subrahmanian, "Maintaining
views incrementally," Proc. ACM SIGMOD Int'l Con5 Management
of Datu, pp. 157-166, Portland, Ore., May 1993.
W.T. Maimone and I.B. Greenberg, "Single-level multiversion
schedulers for multilevel secure database systems," Proc. Sixth
Ann. Computer Security Applications Con$, pp. 137-147, Tucson,
Ariz., Dec. 1990.

[lo] J.G. Steiner, C. Neuman, and J.I. Schiller, "Kerberos: An authenti-
cation service for open network systems," USENIX Conf Proc.,
pp. 191-202, Dallas, Winter 1988.

[l l] R.K. Thomas and R.S. Sandhu, "Discretionary access control
in object-oriented databases: Issues and research directions,"
Proc. 16th Nut'l Computer Security Conf., pp. 63-74, Baltimore,
Sept. 1993.

[12] A. van Gelder, K. Ross, and J.S. Schlipf, "The well-founded se-
mantics for general logic programs,"]. ACM, vol. 38, no. 3,
pp. 620-650, July 1991.

[13] T.Y.C. Woo and S.S. Lam, "Authorizations in distributed systems:
A new approach," 1, Computer Security, vol. 2, nos. 2-3, pp. 107-
136,1993.

[5]

[SI

[9]

Elisa Bertino is a professor of computer sci-
ence at the Department of Computer Science of
the University of Milan, Italy. She has also been
a professor in the Department of Computer and
Information Science of the University of Genova,
Italy. Until 1990, she was a researcher for the
Italian National Research Council in Pisa, Italy,
where she headed the Object-Oriented Systems
Group. She has been a visiting researcher at the
IBM Research Laboratory (now Almaden) in San
Jose, California, at the Microelectronics and

Computer Technology Corporation in Austin, Texas, and at George
Mason University in Fairfax, Virginia.

Her main research interests include object-oriented databases,
deductive databases, multimedia databases, interoperability of het-
erogeneous systems, integration of artificial intelligence and data-
base techniques, and database security. Prof. Bertino is a coauthor
of the book Object-Oriented Database Systems-Concepts and
Architectures (Addison-Wesley International, 1993), and a coauthor
of the forthcoming books Principles of Database Security
(Benjamin/Cummings) and intelligent Database Systems (Addison-
Wesley International). She has participated in several research proj-
ects sponsored by the Italian National Research Council and the
European Economic Communities. She is currently serving as program
chair of the 1996 European Symposium on Research in Computer
Security (ESORICS'96). She is a member of the editorial boards of
IEEE Transactions on Knowledge and Data Engineering, the Interna-
tional Journal of Theory and Practice of Object Systems, and the
Journal of(2"uterSecurity. She is member of ACM and the IEEE.

Claudio Bettini received an MS degree in in-
formation sciences in 1987 and a PhD in com-
puter science in 1993, from the University of
Milan, Italy. He has been an assistant professor
in the Computer Science Department of the
University of Milan since 1993. His main re-
search interests include temporal logics, de-
scription logics, temporal reasoning in knowl-
edge and data bases, and temporal aspects of
database security. On these topics he has pub-
lished several papers. He has been a visiting

researcher at IBM Kingston, New York, and at George Mason Uni-
versity, Virginia.

Elena Ferrari received an MS degree in com-
puter science from the University of Milan, Italy,
in 1992. Since December 1993, she has been a
PhD candidate in the Department of Computer
Science of the University of Milan. Her research
interests include authorization models and tem-
poral databases. Her current research activity
concerns extensions of authorization models
with temporal capabilities. She is also investigat-
ing formal temporal object-oriented data models
able to represent temporal evolution of objects.

Pierangela Samarati is an assistant professor
of computer science at the University of Milan.
Her main research interests are information
systems security, database security, authoriza-
tion models, and databases. On these topics,
she has published several papers. She has been
a visiting researcher at Stanford University,
California, and at George Mason University,
Virginia. She is currently serving as the the Ital-
ian representative on the IFlP TC-11 (Technical
Committee 11 on Security and Protection in

Information Processing Systems). She is a coauthor of the book Dafa-
base Security (Addison-Wesley, 1995).

