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Abstract 

In a multi-user; information-sharing system, authoriza- 
tion policy provides the ability to limit and control access 
to system, applications and information. In the real world, 
an authorization policy has temporal properties. That is, it 
needs to be updated to capture the changing requirements 
of applications, systems and users. These updates are im- 
plemented via transformation of authorization policies. In 
this paper; we propose a logic based approach to speciJL 
and to reason about state transformations in authorization 
policies. The authorization policy is specijied using a pol- 
icy base which comprises a finite set of facts and access 
constraints. We define the structure of the policy transfor- 
mation and employ a model-based semantics to pelform the 
transformation under the principle of minimal change. Fur- 
thermore, we extend model-based semantics by introduc- 
ing preference ordering to resolve possible conflicts during 
transformation of policies. We also discuss the implementa- 
tion of the model based transformation approach and out- 
line the relevant algorithms. 

1. Introduction 

In a multi-user, information-sharing system, authoriza- 
tion policy provides the ability to limit and control access to 
system, applications and information, and to limit what en- 
tities can do with the information and the resources. In the 
real world, authorization policy has a temporal property, it 
needs to capture the changing requirements of applications, 
systems and users. This implies that situations can arise 
where some subjects (users or processes) can gain some ac- 
cess rights for some objects and at the same time can lose 
some access rights for the same or different objects. Rep- 
resentation, evaluation and analysis of such changes form 
an important part of the design of authorization policies. 
These changes are implemented via state transformation of 
authorization policies. In general such transformations can 
be nonmonotonic in that some users or subjects may lose 

certain rights. In this paper, we will discuss the design of 
authorization policies, their transformation, the mechanism 
for reasoning about nonmonotonic properties and their im- 
plementation. 

In our system, authorization policy is specified by a pol- 
icy base which is a finite set of facts and access constraints. 
The facts represent explicitly the access rights the subjects 
hold for the object. They are a Herbrand interpretation [ 1 I] 
of the language of our system. The access constraints, on 
the other hand, are rules which the authorization policy 
should satisfy. They are a set of closed first order formu- 
las of the language. 

We first define the structure of the policy transforma- 
tion. The structure describes the preconditions that need 
to be satisfied before the transformation can be executed 
and the postconditions that become valid after the transfor- 
mation. We employ a model-based semantics [ 113 in the 
computation of the transformation; with the model based 
approach, the transformation of a policy base is based on 
the Herbrand interpretation present in the policy base. The 
principle of minimal change [ 1 13 is used to guarantee that 
the change of the policy base after the transformation is as 
minimal as possible. We also introduce preference ordering 
in the model-based semantics to resolve possible conflicts. 
We discuss the implementation aspects of our system and 
analyze the complexity of the algorithms introduced. 

Let us first briefly mention relevant related work in this 
area. The work by Woo and Lam [12] used a logic ap- 
proach to represent and evaluate authorization policies; our 
work concentrates on the issue of representing and perform- 
ing nonmonotonic transformation of authorization policies. 
The work by Sandhu and Suri addressed the issue of trans- 
formation of access rights [9, 101. Their work was based 
on the access matrix, in which no constraint is presented 
explicitly. They used a procedure-based approach to repre- 
sent the transformation. Our work uses a logic based ap- 
proach and develops a model based semantics to formalize 
the transformation. This, as will be shown in this paper, is 
more powerful and feasible for implementation. 

To the best of our knowledge, the work presented in this 
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paper is the first one which uses a model-based semantics to 
formalize logic based transformation of authorization. We 
believe that our system provides a unified framework which 
can be used to model other methods. In fact, in the full ver- 
sion of this manuscript [ 13, we have shown that the scheme 
by Sandhu et a1 can be subsumed by our system. 

The paper is organized as follows. Section 2 introduces 
the formal definition of the policy base and its use in the 
specification of authorization policies. Section 3 defines 
the transformation description, discusses the computation 
of the transformation and its nonmonotonic property. Sec- 
tion 4 extends the model-based semantics by introducing a 
preference ordering mechanism to resolve conflicts in trans- 
formations. Section 5 discusses the implementation issues. 
Finally, section 6 concludes the paper with some remarks. 

2 A Formal Representation of Policy Base 

In this section, we introduce a formal model for repre- 
senting policy base based on a first order language. We give 
both syntactic and semantic descriptions of our policy base 
model. 

2.1 The Language 

Let L be a sorted first order language with equality, with 
four disjoint sorts for subject, group-subject, access-right, 
and object respectively. Assume L has the following vo- 
cabul ary : 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Sort subject: with subject constants S, S I ,  5’2, . ., and 
subject variables s, SI, sz , . . .. 

Sort group-subject: 
G, GI, Gz, . ., and group subject variables g ,  91, g z .  

with group subject constants 

Sort access-right: with access right constants 
A ,  A I ,  Az ,  . . ., and access right variables a, a l ,  az, + e. 

Sort object: with object constants 0 , 0 1 , 0 2 ,  
object variables 0 , 0 1 , 0 2 ,  . . .. 

A ternary predicate symbol s-holds which takes argu- 
ments as subject, access-right and object respectively. 

A ternary predicate symbol g-holds which takes ar- 
guments as group-subject, access-right and object re- 
spectively. 

., and 

A binary predicate symbol E which takes arguments as 
subject and group-subject. 

A binary predicate symbol E. whose both arguments 
are group-subjects. 

9. Logical connectives and punctuations: as usual, in- 
cluding equality. 

For instance, a fact that a subject S has access right 
R for object 0 is represented using a ground atom s- 
holds(S, R, 0). The group membership is represented as 
follows: for example, “a subject S is a member of G” is 
represented using the formula S E G. We can also rep- 
resent inclusion relationships between subject groups such 
as G1 C Gz. Furthermore, we can represent constraints 
among subjects’ authorizations. For example, the rule stat- 
ing that for any subject and object, if the subject is the owner 
of this object, then the subject should have read and write 
rights for that object. This constraint can be represented as 
follows: 

Vs0.s-holds(s, Own, 0)  2 
s-holds(s, Read, 0)  A s-holds(s, Wri te ,  0). 

On the other hand, suppose we have a constraint stating that 
for any subject s and group subject g, i f s  is a member of 
g ,  then s should have all the access rights that g has. This 
is the so-called inheritance property of authorizations. This 
constraint can be captured using the following formula: 

Vsga0.s E g A g-holds(g, a, 0)  3 
s-holds(s, a, 0).  

The following example shows how the traditional access 
matrix can be represented by a set of ground atoms. 

Example 1 Consider the access matrix in Figure 1, where 

Figure 1. An access matrix. 

€2, W, E represent the rights of R e a d ,  Write and Execute 
respectively. This access matrix can be represented in our 
formalism as the following set of atoms. 

{s-holds(&, Read ,  OI), 
s-holds(S1, Wri te ,  Ol), 
s-holds(S1, Wri te ,  0 2 ) ,  

s-holds(S1, Execute, 0 2 ) ,  

s-hoEds(S2, Wri te ,  OZ), 
s-holds(&, Execute, OZ), 
s-holds(S2, Read, 0 3 ) ) .  
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2.2 The Policy Base 

Let us now consider a formal definition of the policy base 
using the language L. First we need to introduce some ad- 
ditional concepts that are relevant to this discussion. 

Given the language L and a problem domain, we assume 
that the objects of the domain arefied,  and each constant of 
language ,C is mapped onto a specific object of the domain 
(different constants correspond to different objects). As we 
only consider finite domains, L will only contain a finite 
number of constants. Following the above assumption, in 
this paper we will not explicitly consider the creation and 
deletion of objects in the domain. We will show later how 
this issue is handled implicitly by inserting and deleting ac- 
cess right transformations. 

The Herbrand base [4] of L is the set of all possi- 
ble ground atoms of L. A Herbrand interpretation of L 
is a subset of the Herbrand base of L. Given a closed 
first order formula F of L and a Herbrand interpretation 
M of L, we say that F is satisfied in M, denoted as 
M F, if F is true under the truth-value assignment 
defined by M. In this situation, we also say that M is 
a Herbrand model of F. For example, let M = {S E 
G ,  g-holds((;, Wri te ,  0) ,  s-holds(S, Wri te ,  0) )  and F 
be Vsga0.s E g A g-holds(g, a ,  0) 3 s-holds(s, a ,  o), then 
we have M F. If C is a set of closed first order formulas 
of L, we say that C is satisfied in a Herbrand interpreta- 
tion M of L,  denoted as M ,I= C, if each formula in C is 
satisfied in M. 

The formal definition of our policy base is now given as 
follows: 

Definition 1 A policy base P B  is a pair (C, M )  where C 
is ajni te  set of closedjrst order formulas of C and M is 
a Herbrand model of C. M is also called a state of policy 
base P B. 

Intuitively, in a policy base P B = (C, M ) ,  C represents 
the policy constraints about the domain of the system and 
M represents the agent’s knowledge of access rights. For 
any ground atom F in M, we also use notation P B  

Note that M only contains positive facts (ground atoms). 
Any fact not in M will be treated as negation of the 
fact. Therefore, if we have a policy base P B  = 
(0, {s-holds(S, Read, 0))) ,  and the domain further con- 
tains other objects s’ and O’, then P B  actually also im- 
plies -s-holds(S‘, Read, O’), ys-holds(S, Read ,  O’), and 
ys-holds(S’, Read ,  0). Therefore, we will use notation 
such as P B  

F .  

7s-holds(S‘, Read ,  0’). 

Example 2 Consider the following information and rules 
of access requirements from a mental health hospital [ 131. 

1. A1 is a patient. 

2. 

3. 

4. 

5. 

6. 

Ed is a primary physician and he may read patients’ 
records. 

Jane is a primary physician. 

Patients may not read their records. 

The consulting physician may neither modify nor copy 
patients’ records. 

The primary physician may modify or copy patients’ 
records. 

Let P, CP,  P P  be group constants that represent group 
patient, group consulting-physician and group primary- 
physician respectively. P-records represents the patients’ 
records object. The above information and rules can be rep- 
resented as follows: 

A1 E P 

Ed E PP,  s-holds(Ed, Read, P-records) 

Jane E P P  

Vs.s E P 3 Ts-holds(s, Read, P-records). 

Vs.s E C P  3 is-holds(s, Modify, P-records) A 

-s-holds(s, Copy, P-records). 

VS.S E P P  3 s-holds(s, Modify, P-records) V 

s-holds(s, Copy, P-records). 

In our system, this can be specified as P B  

the set of constraints and {(l), (2), (3)) is the set of facts. 
(((411 (5), (6)), {P), (21, (3)H, where ((41, (51, ( 6 ) )  is 

Here are some important features of our policy base de- 

1. Access constraints of the domain are explicitly repre- 
sented in a policy base. Intuitively, these constraints 
characterize the basic access control properties that 
should be satisfied by any specific access rights in- 
stance of the system at any time. Hence, for a given 
system, at different points in time, the policy bases dif- 
fer only due to a difference in the set of facts. For ex- 
ample, if PB1 = (Cl, M I )  and PB2 = (C2, M2) are 
the policy bases of a system at time tl and t 2  respec- 
tively, then the condition C1 = C2 should hold. 

fined above. 
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2. 

3 

3.1 

In this paper, denials of access rights are represented 
implicitly by their absence in the policy base. Since 
the agent usually only records the positive access rights 
facts in the system, anything s h e  does not record is as- 
sumed to be denied by default. This is the so called 
closed world assumption. This helps us to give a com- 
plete semantics about the agent’s knowledge of access 
rights in the system1. In fact, most real systems em- 
ploy default properties in one way or another, e.g. re- 
strictive or permissive access policies. 

Policy Base Transformations 

Definition of Transformation 

Transformations change the state of the policy base. 
For a policy base P B  = (C, M ) ,  we view M as a set 
of changeable facts while C as a set of non-changeable 
formulas. Therefore during transformation, C always re- 
mains unchanged. We consider two basic types of trans- 
formations that can be performed on the policy base: ad- 
dition of a new access right to the current policy base 
and deletion of a current access right from the policy 
base. Another type of transformation updating or mod- 
ification can be represented by these two basic types of 
transformations. For instance, the effect of updating s- 
holds(S1, Read ,  0) to s-holds(S2, R e a d ,  0) can be seen 
to be equivalent to deleting s-holds(S1, Read ,  0) and then 
adding s-holds(S2, Read,  0) in the policy base. 

Definition 2 A transformation description tran 

[Pre(tran) IPost(tran)], where 
Pre(tran) = {h l ,  . .., hm}, 
Post(tran) = ( 1 1 ,  . . . , ln}, and 

hi, l j  (1 5 i 5 m, 1 5 j 5 n)  are ground literals of L. 

Intuitively, Pre (tran) represents the precondition of 
tran in which every ground literal must be satisfied in 
the current policy base before tran is performed, while 
Post(tran) represents the postcondition of tran in which 
every ground literal must be satisfied in the new policy base 
after tran is performed. For instance, let P B  = (C, M )  
be apolicy base and tran = [{s-holds(S, R e a d ,  O ) } l { ~ s -  
holds(S, Read ,  O ) } ]  be a transformation description. The 
intuitive meaning of performing tran on P B  is that if 
P B  b s-hoEds(S, Read ,  0)  then after performing tran, 
in the resulting policy base PB‘, the condition PB’ 7s- 
holds(S, Read ,  0)  should hold. If Pre(tran) is an empty 
set, then this means that there is no precondition for tran 

‘There are some limitations of the closed world assumption in reason- 
ing about disjunctive information. This aspect is beyond the scope of this 
paper. 
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to execute (i.e. tran can always be executed). A transfor- 
mation tran is executable on a policy base P B  if for every 
ground literal h in Pre(tran),  P B  k h2. We also denote 
P B  b Pre(tran) (or P B  k Post(tran)) if P B  b h for 
each h in Pre(tran) (or P B  1 for each 1 in Post(tran)). 

Now we are ready to describe the transformation proce- 
dure formally. Let P B  = (C, M ) .  The performance of 
a transformation tran on the policy base P B  is achieved 
based on the result of the transformation tran on the state 
M of P B  under the principle of minimal change. Infor- 
mally, the minimal change principle states that during a 
state transformation, the difference between the initial state 
and the resulting state should be as minimal as possible un- 
der the restriction of policy constraints. 

Let M I  and M2 be two Herbrand interpretations of lan- 
guage L. DiflM1, M2) denotes the set of ground atoms 
such that any ground atom in Difs(M1, M2) only occurs in 
one of M I  and M2. 

For instance, 
let M I  = {s-holds(S, Read ,  0) ,  s-holds(S, Read ,  0’)) 
and M2 = {s-holds(S, Read, 0)). Then Dif lMl ,  M2) = 
{ s-holds (S ,  Read,  0’)). 

Definition 3 Let P B  = (C, M )  be a policy base, tran a 
transformation description that is executable on P B  (i.e. 
P B  b Pre(tran)). A Herbrand interpretation M’ of L is 
called a possible resulting state after performing transfor- 
mation tran on M ifand only if M’ satisfies the following 
conditions: 

I .  M‘ b C and M‘ + 1 for every ground literal 1 in 
Post(tran). 

2. There does not exist other Herbrand interpretation 
M” of L such that MI’ satisfies Condition I and 
Di f lM,  M”) c Dif lM,  MI) .  

A possible resulting policy base PB’ after performing 
transformation tran on P B  is then defined as PB’ = 
(C, MI). 

Let us examine the above definition more closely. In 
order to perform the transformation on a policy base P B ,  
we need to compute the transformation on the state of P B .  
Condition 1 states that the resulting state 11.1’ should satisfy 
the constraint(s) and the postcondition of tran, while con- 
dition 2 forces the change from M to M’ to be as minimal 
as possible. Note that according to the above definition, the 
resulting policy base after performing a transformation may 
not be unique. Let us now consider a few examples. 

2RecallthatPB h if h E M a n d P B  ~h if h M .  



3.2 Examples 

We now give some examples to illustrate how transfor- 
mations are performed using the model-based approach de- 
scribed above. 

Example 3 Consider a policy base P B  = (C, M ) ,  where 

M = {SI E G ,  s-holds(&, Wri te ,  0) ,  
s-holds(&, Read, 0) ,  
g-holds(G, Reed, 0)},  and 

s-holds(s, Read,  0)). 
C = {VS.S E G Ag-holds(G, Read ,  0)  2 

where the constraint C says that if group G has the Read 
right for object 0, then every member of G also has Read 
right for 0. Now consider a transformation “if S1 is a mem- 
ber of group G,  then delete S1’s Read right for object 0 
from PB”. In our system, this transformation can be for- 
mally described as follows: 

tran = [Pre(tran) I Post(tran)], where 
Pre(tran) = { S I  E G ,  s-holds(&, Read,  0)) ,  
and 
Post(tran) = (ls-hoZds(S1, Read, 0)). 

Clearly, P B  + Pre(tran). So tran is executable on P B .  
According to Definition 3, we have 

M i  = {SI E G ,  s-holds(S1, Wri te ,  0)). 

M i  = {s-holds(S1, Wri te ,  0) ,  
g-  hol ds (G , Read,  0) } . 

So, we get two possible resulting policy bases: 

P B’ = (C, M!)  and P B” = (C, M i )  where 
M! = {SI E G ,  s-holds(S1, Wri te ,  0)). 
M i  = {s-holds(S1, Wri te ,  0) ,  

g - holds (G , Read, 0)  } . 

Example 4 Let P B  be the same as the previous example. 
Now consider the transformation “if S1 is a member of 
group G, then change SI’S Write right for object 0 to Exe- 
cute right”. We can specify this transformation as follows: 

tran = [Pre(tran) I Post(tran)], where 
Pre(tran) = {SI E G ,  

s-holds(&, Wri te ,  0)},  
Post(tran) = (ls-holds(S1, Wri te ,  0), 

s-holds(S1, Execute, 0)). 

Clearly, P B  + Pre(tran). So transformation tran is ex- 
ecutable on PB. It should be noted that since the term 
Execute occurs in the postcondition of tran (i.e. s- 
holds(S1, Execute, o)), it should also appear in the Her- 
brand base of our language L used in this example. 

Using Definition 3, we have the following result: 

M’ = { S I  E G ,  s-hoZds(S1, Execute, 0), 
s-holds(S1, Read,  0), 

g-holds(G, Read ,  0)). 

So, the final policy base is 

P B’ = (C, MI), where 
M’ = { S I  E G ,  s-holds(&, Execute, 0), 

s-holds(&, Read ,  0), 
g-holds(G, Read, 0)). 

4 Conflict Resolution 

4.1 The Problem 

As the policy constraints are explicitly taken into account 
in our policy base, the transformations can be nonmonotonic 
in the sense that the addition of new access right(s) in the 
current policy base may also lead to a loss of some other ac- 
cess right(s). For instance, consider the following example. 

Example 5 Let P B  = (C, M )  be a policy base, where 

M = {s-holds(&, Read ,  OI), 
s-holds(&, Read ,  0 2 ) ) ,  and 

C = {Vao.s-holds(S1, U ,  0) 3 
ls-holds(S2, U ,  0)). 

Suppose we want to add the fact s-holds(&, Read ,  0 2 )  

into PB.  Consider the constraint, s-holds(&, Read ,  0 2 )  
implies 1s-holds(&, Read, 0 2 ) .  To maintain the con- 
sistency of P B ,  we need to either keep the policy 
base unchanged or remove s-holds(&, Read, 0 2 )  and 
get a new P B  where M’ = {s-holds(&, Read,Ol),s- 
holds(&, Read,  0 2 ) ) .  

iFrom the above example we can see that by introducing 
policy constraints in our policy base, a transformation may 
cause some indirect changes to the policy base. However, in 
some situations, these indirect changes may lead to conflicts 
which need to be resolved. The approach described so far 
does not provide a resolution for conflicts. Let us consider 
the following example, 

Example 6 Let P B  = (C, M )  be a policy base, where 

M = { S  E G } ,  and 
C = (Vsg0.s E g A g-holds(g, Read,  0) 2 

s-holds(s, Read, 0)). 

Now consider the addition of g-holds(G, Read ,  FILE) 
to the policy base. According to Definition 3, there are two 
possible resulting states after performing such a transfonna- 
tion on M. 
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M: = { S  E G,g-holds(G, Read, F I L E ) ,  
s-hoEds(S, Read ,  F I L E ) } .  

M i  = {g-holds(G, Read ,  F I L E ) } .  

Let us examine the two possible resulting states M i  and 
M i  more closely. In this situation, since our policy 
constraint is equivalent to g-holds(G, Read ,  F I L E )  2 
S 6 G V s-holds(S,Read,FILE),  both M i  and M i  
represent the minimal changes from M with respect to 
this particular transformation. M i  is obtained if the 
predicate s-holds takes precedence over the predicate E. 
This seems reasonable because after the addition of g-  
holds(G, Read ,  F I L E )  into the policy base, S obtains a 
read right for F I L E  because of the inheritance property. 
On the other hand, M i  is obtained if the predicate E takes 
precedence over the predicate s-holds. We have no reason 
to say that M i  is not reasonable according to our approach 
described in section 3.1. To resolve such issues, we need to 
specify preference ordering mechanisms on these predicates 
which reflect the security policies of the organizations. 

4.2 An Approach 

Several approaches to conflict resolution have been pro- 
posed. Strong and weak authorizations have been proposed 
in the Orion authorization model [2]. The basic idea be- 
hind this approach is that strong authorizations cannot be 
overridden, while weak authorizations can be overridden 
by strong or other weak authorizations, according to spec- 
ified rules. Lunt [5 ]  discussed the most-spec@c rule and 
denials take precedence approaches. Most-specific rule re- 
quires that if an individual subject is specifically granted 
or denied authorization for an object, this takes precedence 
over any other authorizations for the object that are granted 
or denied to groups to which the subject belongs. With de- 
nials take precedence approach, a subject or group’s denial 
of authorization for an object takes precedence over any au- 
thorizations that the subject or group may have been granted 
for the object. We will use the approach of weak and strong 
authorization together with a preference ordering mecha- 
nism to resolve conflicts. We assign the newly added autho- 
rization(s) to be strong and the previously existing autho- 
rization(s) to be weak. Therefor, in our transformation, the 
newly added authorization(s) always override the existing 
authorization(s). 

As described in section 2.1, there are four predicates E, 
C,  s-holds and g-holds in our language L.  We introduce 
the following preference ordering among the predicates in 
L. We assign g-holds to have a higher precedence than E 
and s, E and s to have a higher precedence than s-holds. 
Formally, a strict partial ordering -i (i.e. antireflexive, anti- 
symmetric and transitive) among predicates E, c, s-holds 
and g-holds is defined as s-holds +E+ g-holds and s- 
holds +&+ g-holds. We can now extend our model-based 

transformation given in Definition 3 as follows. First we 
need to introduce some additional notations. Let M ,  MI 
be two Herbrand interpretations of L. M[g-holds], M[s -  
holds], M [ E ]  and M [ E ]  denote the set of all interpretations 
of predicates g-holds, s-holds, E and C in M respectively. 
For example, if a Herbrand interpretation is 

M {s-holds(S1,A1,01), 
s-holds(S2, A2, Oz) ,  
g-holds(G1, A3,03) ,  
Si E G I ,  Sz E Gz, G I  G Gz},  

then we have 

M[g-hoEds] = (g-holds(G1, A3, os)}, 
M[s-holds] = (s-holds(S1, A I ,  Ol), 

s-hoEds(Sz, A2 ,02) ) ,  
M[E] = { S I  E G I ,  SZ E G z } ,  and 
M[CI = {GI  E Gz}.  

On the other hand, Dgg-holds ( M ,  MI ) ,  
DifSs-holds ( M ,  MI) ,  D i f E ( M ,  M I )  and DifSc(M, MI)  de- 
note the set of different interpretations onpredicates g -  
holds, s-holds, E and C - in M and MI respectively. For 
instance, if 

M i  = (s-holds(S2, A2,02) ,  SZ E G z ,  
G I  E Gz) ,  

then 

Diffg-holds ( M ,  M I )  = (g-holds(G1, AB ,  0 3 ) } ,  

Diffs-holds (My M I )  = {s-holds(Si, A I ,  OI)}, 
Dif fe (M,  MI )  = {SI  E G I } ,  and 
DiffG(M, Mi) = 0. 

The following is the formal definition of the extended 
model-based transformation based on the preference order- 
ing +. 
Definition 4 Let P B  = (C, M )  be a policy base, tran a 
transformation description that is executable on P B  (i.e. 
P B  Pre(tran)), and M apossible state of PB. A Her- 
brand interpretation MI of L is called a possible resulting 
state after transformation tran on M based on the prefer- 
ence ordering < ( called +transformation tran on M ) ,  if 
and only if MI satisfies the following conditions: 

1. MI C and MI 1 for every ground literal 1 in 
Post (tran). 

2. There does not exist other Herbrand interpretation MI1 
of L such that 
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(c) M’k-holds] = M“[g-holds] and 
Di& ( M ,  MI’) C D i f ~  ( M ,  M’) 
Diflc(M, - MI’) C DifSc(M, - M’); or 

M‘[E] = M”[E] and 
M’[C] = M”[G] and 

(d) M’[g-holds] = M”[g-holds] and 

D g s - h o l d s  ( M ,  MI’) c DlfSJ-holds ( M ,  

The following example shows how a transformation is 
performed using the extended model-based transformation 
based on the preference ordering 4 .  

Example 7 A policy base P B  = (C, M ) ,  where 

M = {Si E G ,  S E G ,  S2 E G I ,  S E G I ,  
g-holds(G, Read ,  0) ,  
s-holds(S, Read,  0) ,  
s-holds(S1, Read ,  0) ,  
g-holds(G1, Execute, 0) ,  
s-holds(S, Execute, 0) ,  
s-holds(&, Execute, 0)) ,  and 

C = (Vsga0.s E g A g-holds(g, a,  0) 3 
s-holds(s, U ,  0)). 

Consider the transformation “the members of group G can- 
not have execute right for 0’. That is, the addition of 1s-  
holds(S, Execute, 0) and ls-holds(S1, Execute, 0) to 
P B .  Formally, the transformation can be represented as 
follows: 

tran = [Pre(tran) I Post(tran)], where 
Pre(tran) = {}, and 
Post(tran) = {ls-holds(S,  Execute, 0) ,  

Ts-holds(S1, Execute, 0)) .  

Since S belongs to both groups G and G I  and using the 
above constraint, S inherits the access rights from both 
groups. That is, S holds Read and Execute rights for 0. 
The transformation will change the access rights of S and 
S I .  The result of the transformation is that S and S1 cannot 
have Execute right for 0, which conflicts with the access 

s-holds(S, Read ,  0), 
s-holds(S1, Read ,  0) ,  
s-holds(&, Execute, 0)).  

Our transformation is based on the model of P B .  For 
a subject, its access rights, inherited from all of the groups 
that it belongs to, are within the same model(s). When per- 
forming transformations, the consistency of the model will 
guarantee the consistency of every related group. So we do 
not need to check the individual group for maintaining the 
consistency of PB. 

So, the resulting policy base is: 

PB‘ = (C, M‘) where 
M‘ = {Si E G ,  S E G ,  S2 E G I  , 

g-holds(G, Read ,  0) ,  
g-holds(G1, Execute, 0) ,  
s-holds(S, Read,  0))  
s-holds(S1, Read,  0) ,  
s-holds(S2, Execute, 0)). 

5 Implementation Issues 

In this section, we discuss the implementation of our ex- 
tended model-based transformation approach. Our method 
is similar to that of Winslett’s update theory [3, 111 in the 
sense of model-based semantics of change, but differs from 
it due to different ontologies. 

5.1 The Basic Idea 

Let P B  = (C, M )  be a policy base. A transformation 
tranaddsasetofliteralsN = {Zl,Zz, ..., 1,)toPB. LFrom 
Definition 4, the resulting policy base is PB‘ = (C, M‘) 
where M’ + C and M’ + N. So M’ is one of the Her- 
brand models of N U C which has minimal difference from 
M with respect to the preference ordering + defined in Con- 
dition 2 of Definition 4. Therefore, we have the following 

M‘ = MZn(M, Models(N U C ) ,  +) right S has inherited from group GI. To resolve this con- 
flict, we use the preference ordering. LFrom the policy con- 

must be satisfied in the resulting policy base PB’, this 
leads to S being removed from GI’s membership or g-  
holds(G1, Execute, 0)  being removed from the policy 
base. Since we defined the preference ordering to be €4 g-  
holds, S E G1 will be removed from the policy base. 

Step 1: Generate the set of models of N U C : 
Models ( N  U C )  . 

Step 2: For each MI E Models( N U C) ,  compute 
D i f l M ,  M’). Then M’ = Min(M,  M’, 4). 

Formally from Definition 4, we have 

M’= {Si E G , S  E G,S2 E G I ,  
g-holds(G, Read ,  0) ,  
g-holds(G1, Execute, O ) ,  

Step 1 involves a procedure for model generation. In 
step 2, to obtain the resulting model, we need to compute 
DiflM, M’) for each M’ in Models(N U C) and then find 
Mzn(M,  M’, 4). 
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5.2 The Algorithms -a v -d v c a 

5.2.1 The Model Generator 

For a policy base P B  = (C, M ) ,  generally the constraints 
in C may include universally quantified variables3. From 
the implementation point of view, we need to ground each 
constraint containing variables in C to all of its proposi- 
tional instances4. For instance, in Example 3, C contains 
one constraint: 

Vs.s E G Ag-ho lds (G ,  Read ,  0)  ZI 
s- hol d s  (s , R e  ad ,  0)  } . 

During implementation, this constraint needs to be replaced 
by its ground instance: 

SI  E G Ag-ho lds (G ,  Read ,  0)  3 
s-holds(S1,  Read ,  0). 

Therefore, in the rest of this section, when we refer to a 
policy base P B = (C, M ) ,  we assume that C only contains 
constraints without variable occurrence. 

We need to define some additional concepts that will be 
used in our algorithms. For a policy base P B  = (C, M ) ,  an 
inconsistency is a set of literals whose conjunction is incon- 
sistent with C. A minimal inconsistency is an inconsistency 
which has no subset that is also an inconsistency. 

Let L be the set of all ground literals of the language 
defined in section 2.1. To get the set of models of N U C,  
first we need to find out the set Z of minimal inconsistencies 
between L and C. This can be achieved using an inference 
engine. Given L and C ,  we can use the resolution proof to 
find out all the minimum-length proofs which lead to empty 
clauses; the required inconsistencies can then be directly 
read off from these proofs. 

For instance, let us consider Example 3 and see how 
one can obtain the set Z of minimal inconsistencies. To 
simplify the problem, let a stand for SI E G ,  b for s- 
holds(&,  Wri te ,  o), c for s-holds(S1,  Read ,  0) and d 
for g-holds(G,  R e a d , O ) .  Then N = {lc} and C = 
{ a  A d 2 c}. Furthermore, a A d 2 c is equivalent to 
l a  V i d  V c. Here L = { a , l a ,  b , - d , c , l c , d , - . d } .  The 
resolution proof of Figure 2 shows the procedures needed 
to obtain the set Z = { a ,  d ,  -.e} of minimal inconsistencies. 

Once the set Z of minimal inconsistencies between L and 
C is obtained, a model M' of N U C can be achieved using a 
maximal subset of L which contains N but does not contain 
any minimal inconsistency. 

For the above example, considering the inconsis- 
tency {a ,d , - .c} ,  we get models { a , b }  and { b , d } .  
They are: {SI E G , s - h o Z d s ( S ~ ,  W r i t e , O ) }  and {s-  
holds(S1 ,  Write, O) ,g -ho lds (G ,  R e a d ,  o)}. 

Technically, an existential quantifier in a formula can be eliminated by 

4This technique is often used in the implementation of first order dy- 
introducing Skolem function [4]. 

namic systems, eg.[ll]. 

C 

V-c I 
Figure 2. Resolution Proof. 

The algorithm of model generator for N U C is as fol- 
lows: 

Algorithm 1. 
Input: Ajnite set N of ground literals, ajnite set C of 

ground formulas and a jnite set L of ground 
literals over M U C. 

Output: ABnite set of models of N U C. 

1.  Use resolution proof to find the set Z of minimal 
inconsistencies between L and C. 

2. Find the maximal subset of L which contains N 
but does not contain any inconsistency of Z. 

3. From the set of all such maximal subsets of L form 
the set of models of N U C, i.e., Models( N U C ) .  

In the above algorithm, we achieve step 1 using a theo- 
rem prover5. In fact, step 1 can be pre-computed as a sepa- 
rate procedure for finding the set of minimal inconsistencies 
between L and C. 

5.2.2 Resulting Model Finder 

Given model M and the set of models of N U C ,  the resulting 
model finder obtains a corresponding M' E Models ( N U C )  
for M under the measure of minimal change from M to M'.  
The model obtained is the resulting model. The algorithm 
is as follows: 

Algorithm 2. 
Input: Ajnite set of model M and ajnite sets of models: 

Output: A resulting model. 
Models(N U C). 

5Refer to [SI for detailed information on the theorem prover. 
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For every M’ E Models(N U C ) ,  compute one extension, and even worse, it may not have any exten- 
DifSgg-holds (M, M ’ ) ,  D i f S , ( M ,  M’), DifSc(M, M’) sion at all. Finally, since not much work has been done 
and DifSs-holds ( M ,  M’). on the issue of update on default theory, we believe that it 

would be difficult to consider the authorization transforma- 

this M‘ is closest to M under the condition 2 of Defi- our logic based approach for authorization 
has the following major advantages: (i) our policy base has nition 4. 

The M’ obtained is the resulting model. a clear and complete semantics; (ii) model-based transfor- 
mation is easy to understand while at the same time being 

Find the which has set Of M ’ ) 9  tion based on Woo and Lam’s specification. In comparison, 

6 Related Work and l%ussion powerful, for instance, the nonmonotonic property of autho- 
rization transformation can be captured in our framework; 
(iii) our approach is feasible for implementation. 

However there are several areas where further research 
work is required; we are addressing the following at present. 

tion transformation in which the constraints on the 
rights of the system remained fixed. we are ex- 
tending this approach to include updating the constraints 
on the rights of the system; we refer to this as the 
rule-based authorization transformation. That is, from a 
policy base PB1 = (C,, M I ) ,  after a rule-based authoriza- 
tion transformation, we obtain a new policy base PB2 = 
(CZ, M2), where Cl may differ from CZ. We are also in- 
vestigating a way of a minimal change principle 
to capture this kind of transformation. 

In this paper, we have developed a logic based approach 
to formalize authorization policies and to describe non- 

been used to represent the basic properties of authoriza- 
tions in a system. A model based semantics has been em- 
ployed to formalize the transformations. we have shown 
that our model allows the transformation of both explicit 
and implicit authorizations. Furthermore by introducing 
preference ordering on predicates of the language, we have 
extended our model-based semantics to resolve conflicts 
during transformation of authorizations. We have also 
discussed the implementation aspects of our model. At 
present, we are implementing the approach described in this 
paper. 

monotonic transformation procedures* Constraints have In this paper, we only considered the fact-based authoriza- 

The property of nonmonotonic transformation of autho- 
rization policies was also addressed by Sandhu and Suri [9]. 
However, as we mentioned earlier, their method is proce- 
dure based; we have shown in our full version technical 
report that their system is a special case within our frame- 
work. It corresponds to the case where the set of constraints 
is empty. 

Let us now return to Woo and Lam’s previous work 
[12] on a logic based specification of policy bases. Woo 
and Lam use Reiter’s default logic [7], where a pol- 
icy base is represented by a default theory. Hence the 
basic unit of access right in their formalism is a rule 
of the form f : f’/g. For instance, a rule such as 
Read(S, 01) : Read(S, Oz ) /Read(S ,  0 3 )  has the follow- 
ing intuitive meaning: if subject S can read object 01 and 
it is consistent to assume that S can also read 0 2 ,  then the 
agent will conclude that S can read 0 3 .  Therefore, a fact 
s-hoZds(S, Read, 0) in our formalism becomes a special 
case of the rule of the form T : /s-holds(S, Read, 0). So 
Woo and Lam’s policy base has more expressiveness in rep- 
resenting the system’s access rights. However, there are 
some unignorable limitations in their formulation. First, 
they do not consider the constraints in the access control 
of a system. Hence it is not clear how to judge whether a 
policy base is legal or illegal with respect to the system re- 
strictions. Second, using default theory to represent policy 
base also inherits the critical semantics problem of default 
logic. That is, given a policy base, it may have more than 
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