
Separation of Duty in Role-Based Environments

183
0-8186-7990-5/97 $10.00 0 1997 IEEE

Richard T. Simon
The Open Group Research Institute

Eleven Cambridge Center
Cambridge, MA 02142
r.simon@opengroup.org

Abstract

Separation of Duty is a principle that has a long history
in computer security research. Many computing systems
provide rudimentary support fo r this principle, but often
the support is inconsistent with the way the principle is
applied in non-computing environments. Furthermore,
there appears to be no single accepted meaning of the
term. We examine the ways in which Separation of Duty
has been used, adding the notion of History-based Separa-
tion of Duty. We assess ways in which computing systems
may support Separation of Duty. We discuss the mecha-
nisms we are implementing to support Separation of Duty
and roles in Adage, a general-purpose authorization lan-
guage and toolkit.

1. Introduction

Separation of Duty is a security principle used to formu-
late multi-person control policies, requiring that two or
more different people be responsible for the completion of
a task or set of related tasks. The purpose of this principle
is to discourage fraud by spreading the responsibility and
authority for an action or task over multiple people,
thereby raising the risk involved in committing a fraudulent
act by requiring the involvement of more than one individ-
ual. A frequently used example is the process of creating
and approving purchase orders. If a single person creates
and approves purchase orders, it is easy and tempting for
them to create and approve a phony order and pocket the
money. If different people must create and approve orders,
then committing fraud requires a conspiracy of at least two,
which raises the risk of disclosure and capture signifi-
cantly.

Although Separation of Duty is easy to understand, it is
hard to express this principle in computer security systems.
Early work in computer-supported Separation of Duty
focused on mechanisms that were easy to implement and

Mary Ellen Zurko
The Open Group Research Institute

Eleven Cambridge Center
Cambridge, MA 02142

m.zurko @ opengroup.org

turned out to be rigid and unrealistic. Mechanisms that sup-
port flexible commercial policies embodying Separation of
Duty must incorporate the principle of user-centered secu-
rity [17], a principle that has only recently started to be
examined in depth. Our work on the Adage toolkit for
authorization in distributed applications [151 is grounded in
the user centered security philosophy. In supporting the
policies that users want, it provides support for a variety of
Separation of Duty variations.

In this paper, we will discuss prior work done on Sepa-
ration of Duty and similar concepts in computing systems,
starting with the earliest references and ending with current
research in the context of role-based access control. We
then characterize role-based environments with an empha-
sis on those concepts needed to define Separation of Duty
variations. Next we outline different kinds of Separation of
Duty variations, and discuss the mechanisms needed to
implement those policies. We describe the mechanisms in
Adage that support these variations at both the user inter-
face and the architectural level and tie together the varia-
tions and mechanisms with some examples of how
Separation of Duty variations are implemented in Adage.
We summarize the results of this paper in the final section.

2. Prior work in separation of duty

Separation of Duty is a foundational principle in com-
puter security. In 1975, Saltzer and Schroeder [9] defined
“separation of privilege” as one of the eight design princi-
ples for the protection of information in computer systems.
They credit R. Needham with making the following obser-
vation in 1973: a protection mechanism that requires two
keys to unlock it is more robust and flexible than one that
requires only a single key. No single accident, deception,
or breach of trust is sufficient to compromise the system.

Clark and Wilson’s commercial security policy for
integrity [4] identified Separation of Duty as one of the two
major mechanisms to counter fraud and error while ensur-
ing the correspondence between data objects within a sys-

mailto:r.simon@opengroup.org
http://opengroup.org

tem and the real world objects they represent. At the policy
level, processes were divided into steps, with each step
being performed by a different person. Thus Separation of
Duty is tightly tied to application semantics or commands.
Clark and Wilson suggested further safeguarding against
collusion by random selection of the sets of people to per-
form some operation, so that any proposed collusion is
only safe by chance.

At the formal model level, Clark and Wilson tasked the
security administrator with the job of maintaining Separa-
tion of Duty requirements while granting users the ability
to run Transformation Procedures against Constrained
Data Items. Since this difficult task was done by hand, it
was rarely repeated and encoded a static representation of
who may perform which actions. Moreover, the model
specified that an agent who can certify the use of a Trans-
formation Procedure (TP) may not execute that Tp - but
the identity of the certifier was not part of the model, so
this was another Separation of Duty constraint that the
security administrator had to remember and enforce.

Baldwin’s Named Protection Domains (NPDs) [l]
implemented many of the concepts used in role-based sys-
tems today. An NPD was a named, hierarchical grouping of
database privileges and users. To help enforce Separation
of Duty, a user could have only one of these NPDs acti-
vated at any time. The security administrator determined
which NPDs could be activated, but there were no further
restrictions on the graph of NPDs (other than it be acyclic).
Thus, one activatable NPD could contain multiple activat-
able and non-activatable NPDs. While the activation
restriction meant that a user could be in only one role
(NPD) at a time, the security administrator could set up
arbitrarily complex roles.

Sandhu’s work on Transaction Control Expressions
[lo][111 introduced notation for Dynamic Separation of
Duty. Roles were used to specify who can issue which
transaction steps (much like NPDs). However, in Sandhu’s
model each user executing a step in a transaction had to be
different. To enforce this, the history of the execution of
each transaction was maintained. The constraints specify-
ing the roles that could execute each step were associated
with an object. These constraints turned into the history
specifying which user executed each step on that object.
Hierarchical roles were specified either on an object or via
a global notation. A weighted voting syntax allowed the
specification of multiple person authorizations on a partic-
ular step on a particular object.

Nash and Poland’s study [8] of a portable security
device used in the commercial world raised a number of
new issues around Separation of Duty. The system defined
two disjoint groups of authorizing officers, and each day
one or two officers from each of those groups were chosen
as officers of the day. This was the first example of the util-

ity of specifying cardinality for a particular role and of
time-based roles. Each transaction had to be authorized by
one of those officers from each of the two groups. While
the device enforced Separation of Duty between the man-
ager who chooses officers and the officers themselves, the
documentation suggested these roles could be shared in
small companies.

In their general discussion of Separation of Duty, Nash
and Poland stated that neither TCSEC [5] mechanisms nor
Clark and Wilson’s original proposal allowed implementa-
tion of common commercial schemes for Separation of
Duty. Nash and Poland proposed the notion of “object
based Separation of Duty,” which forced every transaction
against an object to be by a different user. They suggested
using Sandhu’s Transaction Control Expressions [101 to
maintain the history of an object’s transactions.

Work by Sandhu and others on defining role-based
access controls (RBAC) with more precision [131 [141
acknowledged that there might be a need for users to hold
multiple roles (that are not connected hierarchically) at the
same time. They recognized a need for a way to place lim-
its on how more powerful roles are combined with less
powerful ones. They also suggested mechanisms such as
time constraints on roles to limit the amount of damage
that might be done with misuse or intrusion.

Ferraiolo, Cugini, and Kuhn’s paper on RBAC [7] pre-
sented the beginnings of a formal model of RBAC. They
defined three kinds of Separation of Duty. The first two
were Static Separation of Duty and Dynamic Separation of
Duty. These variants were presented in previous work. The
third kind was Operational Separation of Duty which intro-
duced the notion of a “business function” and the set of
operations required for that function; a business function
resembles the notion of task and task unit in [16]. The for-
mal definition of Operational Separation of Duty stated
that no role can contain the permissions to execute all of
the operations necessary to a single business function. This
forces all business functions to require at least two roles to
be used for their completion. The informal description of
Operational Separation of Duty assumes the roles involved
have disjoint memberships (Static Separation of Duty), so
that no single person has access to all the operations in a
business function.

3. Role-based environments

In a role-based environment [7] [131 [141, a security
administrator controls access by assigning users (or their
authenticated counterparts principals) to security policy
constructs called roles. Defining a role includes defining
three groups:

184

a group of users or principals who may act in
the role
a group of operations or actions comprising
what may be done in the role

a group of objects or targets that may be
acted upon

The first level of access control is the definition of these
groups. Defining the group of actions and the group of tar-
gets is a first approximation to an on-line representation of
a job. Placing a user in the group of users designates that
user as one who does that job and, in the absence of other
constraints, may perform all the designated actions on all
the designated targets. It is these additional constraints that
capture the full flavor of human organizations and their
security policies. Three kinds of constraints may be identi-
fied:

Constraints on role membership: overlap in
membership is constrained (usually to be
null)

Constraints on role activation: legitimate
users of a role may be prevented from assum-
ing the role (e.g., a cardinality constraint may
prohibit more than 2 users from being in the
role at once)

Constraints on role use: users, who have
assumed a role may be restricted in how it is
used (e.g., history constraints Inay restrict
which objects may be operated on, or what
may be done to the objects)

Constraints on role membership concern rules about
how the group definitions of different roles may overlap.
Constraints on memberships are used to define the simplest
Separation of Duty policy, Static Separation of Duty.

Constraints on role activation concern when a user may
actually begin acting in the role (assuming the role), and
when a user leaves a role (role deactivation). Often some
form of explicit authentication or role-assumption dialogue
is required, though explicit switching can be burdensome
in many cases [131. A user who is a member of the group
permitted to assume a role may still be denied entry to the
role if some constraint is not satisfied. Control over activa-
tion is used in some more flexible Separation of Duty poli-
cies.

Constraints on role use concern what a user may do in a
role once the role has been assumed, beyond the coarser
control provided by defining the action and target groups.
The finer controls involve the specific history of a given
user with a given target. Constraints on role use are used in
the most flexible (and generally realistic) Separation of
Duty policies.

In summary, role-based environments group users,
actions, and targets into policy constructs called roles.
These environments control access by controlling member-
ship in, activation of, and use of roles. In the next section,
we categorize different kinds of Separation of Duty poli-
cies based on their use of these kinds of controls.

4. Separation of duty: theme and variations

Many authors have discussed and categorized different
forms of Separation of Duty [7][8][10][11], but no single
source has yet enumerated all the various forms. In this
section we describe all the variations of Separation of Duty
that have been called out in one source or another.

The two broadest categories of Separation of Duty vari-
ations are strong exclusion or Static Separation of Duty and
weak exclusion or Dynamic Separation of Duty. Strong
exclusion represents a single variation whereas the more
realistic and useful weak exclusion contains several varia-
tions.

4.1. Strong exclusion (Static Separation of Duty)

Strong exclusion is also called Static Separation of
Duty and is the simplest variation of Separation of Duty.
Two roles are strongly exclusive if no one person is ever
allowed to perform both of these roles. In other words, the
two roles have no shared principals. If Order Creator and
Order Approver are strongly exclusive roles, then no one
who may assume the Creator role would be allowed to
assume the Approver role, and no one who may assume the
Approver role would be allowed to assume the Creator
role. Strong exclusion can be implemented using only con-
trols over the membership of roles.

Though it has the advantage of simplicity, Static Separa-
tion of Duty is not a practical or realistic variation of Sepa-
ration of Duty, because it does not reflect the actual
functioning of human organizations [8]. Users often have
legitimate reasons for wanting or needing to act in two
strongly exclusive roles, and careful construction of a secu-
rity policy can ensure that these “violations” are secure.

Because Static Separation of Duty is too rigid to be a
satisfactory control, a number of other variations have been
defined that more closely mimic the functioning of human
organizations.

4.2. Weak exclusion (Dynamic Separation of Duty)

Weak exclusion, or Dynamic Separation of Duty, pro-
vides a richer set of possible policies by controlling the
activation and use of roles. Weak exclusion allows users to
act in roles that would be strongly exclusive in static sys-

185

tems, as long as constraints are satisfied that eliminate or
reduce the possibility of fraud. Because of its usefulness
and because it reflects the functioning of human organiza-
tions (which tend to be more fluid than strong exclusion
permits), weak exclusion has several variations.

In describing the variations of weak exclusion we will
use the term restricted roles to refer to roles that have con-
straints on their membership, activation, or use. The actual
constraints used or allowed depends on the variation of
weak exclusion being discussed.

Simple Dynamic Separation of Duty. In the simplest
variation of Dynamic Separation of Duty, restricted roles
may have common members, but users may not assume
both roles at the same time. This variation by itself is
sometimes called Dynamic Separation of Duty [7].

Object-based Separation of Duty. Restricted roles may
have common members, and those members may assume
both roles at the same time, but no user may act upon a tar-
get that that user has previously acted upon. This is called
Object-based Separation of Duty [8].

Operational Separation of Duty. Restricted roles may
have common members as long as the union of all the
groups of actions in the roles does not contain all the
actions in a complete business task (like the processing of
an order). This prevents any one person from performing
all of the actions in the business task. This is called Opera-
tional Separation of Duty [7].

History-based Separation of Duty. While both Object-
based and Operational Separation of Duty respond to defi-
ciencies in the simpler variations, they still do not allow the
expression of some desirable Separation of Duty policies.
Object-based Separation of Duty does not allow a user to
perform a second action on an object when this makes
sense and is allowed by (human) policy, and Operational
Separation of Duty does not allow one user to perform all
the actions in a task to different objects when this makes
sense and is allowed by (human) policy. To permit the most
complete flexibility in describing a Separation of Duty pol-
icy, these two variations should be combined.

Two or more restricted roles may have common mem-
bers and the union of the actions granted by those roles
may span the actions in a business task, but no role mem-
ber is allowed to perform all the actions in a business task
on the same target or collection of targets. We call this His-
tory-based Separation of Duty to emphasize the central
part played by the individual histories of users in determin-
ing access. Sandhu [101 emphasizes the importance of his-
tory in defining Separation of Duty policies and provides
some examples of policies that use the full generality of
History-based Separation of Duty (though he does not use
that term).

To make our definition of History-based Separation of
Duty as general as possible, we note that such policies
define sequences of allowed or required steps and that each
step may consist of order-dependent or order-independent
actions:

Order-dependent. In some situations, the fraud preventive
nature of Separation of Duty controls is not implemented
simply by splitting duties between roles; the roles also
must perform their actions in a particular order. For exam-
ple, a purchase should be approved only if it has been pre-
viously created properly (all the blanks are filled in). These
are order-dependent actions.

Order-independent. Sometimes order is not important.
For example, suppose the policy states that two different
approvals are required to make a purchase transaction
valid. The order of approvals is not important (so long as
both happen after the purchase has been created), but they
must both happen. These are order-independent actions.

A single Separation of Duty policy may include both
order-dependent and order-independent parts, as in the
example just given in which the order-independent approv-
als must both be given after an order creation. Sandhu [101
also gives examples of policies that mix order-dependence
and independence.

5. Required mechanisms for separation of
duty

The survey of published literature on Separation of
Duty and the categorization of the variations of Separation
of Duty reveal a number of mechanisms essential to the
formulation of a general-purpose policy builder in a role-
based environment.

5.1. Groupings

Defining roles for Separation of Duty requires that prin-
cipals, actions, and targets be grouped in meaningful ways.
Groupings should be hierarchical so that levels of meaning
can be captured. For instance, it should be possible to
group all the principals belonging to a single user and then
to use that group as part of the definition of a role’s mem-
bership. This grouping embodies the notion that duties or
tasks must be separated between users, not just principals.
The ability to group things meaningfully is the first level of
control in role-based environments.

186

5.2. Membership controls

Membership controls limit how the groups (in particu-
lar, principal groups) in different roles may overlap. These
are the first of the finer grained controls in role-based envi-
ronments. A common requirement is that the principal
groups of two roles contain no common members.

5.3. Activation controls

Activation controls limit when a principal may assume a
role. These controls generally concern how many princi-
pals may simultaneously be in the role, or which roles may
be active simultaneously. We categorize an activation con-
trol as either a mutual exclusion control or a cardinality
control.

A mutual exclusion activation control prevents a princi-
pal from activating two roles simultaneously. The distinc-
tion between this kind of activation control and the
membership control that prohibits overlap is that the mem-
bership control prevents a user from even being placed in
two excluded roles while the activation control permits a
user to be in the two roles but not at the same time. The
membership controls are static and are applied only during
role definition; the activation controls are dynamic and
applied during system operation.

A cardinality activation control prevents more than N
different principals from being active in a role simulta-
neously or requires that at least N principals be active in
the role.

5.4. History controls

History controls limit how activated roles may be used
based on the history of the principal. The specific history a
principal has with a target may limit the actions that princi-
pal may perform on that target or some other target.

History is a three-dimensional bit matrix (conceptually).
The dimensions of the matrix are principals, actions, and
targets; an entry in the matrix indicates whether that princi-
pal performed that action on that target. This three dimen-
sional matrix is a generalization of the matrix used in
defining the Chinese Wall policy [3].

5.5. Labels

Labels are used to mark entities with the information
required to perform an access decision. In role-based envi-
ronments, labels can be used to hold the names of roles that
are pertinent. For actions and targets, these are the roles in
whose groups they have been placed. For principals, two

kinds of labels seem appropriate: one containing all the
roles in which the corresponding user may act and one con-
taining all the roles that are currently activated.

Sandhu [12] points out the importance of keeping dis-
tinct the notions of user, principal, and process (called a
subject in [121) to avoid unnecessarily restrictive restraints
on information flow. In his model principals and processes
have fixed labels, while user labels may float “up” a lattice.
Our description above generally follows this suggestion,
though we suggest allowing principal labels to float, plac-
ing the onus of containing information flow on the process
level. We will elaborate on these points later when we
describe the Adage architecture.

5.6. Other mechanisms

Two other mechanisms, auditing and authentication, are
required to support separation of duty in role-based envi-
ronments, but they are ancillary to the main topic of this
paper and will not be discussed further.

6. Adage mechanisms

Adage [15] is a project at the Open Group Research
Institute exploring authorization support for distributed
applications. Its primary goal is to make the design and
implementation of computer-based authorization policy
easier and richer for both distributed applications and the
security administrators that manage them. It provides a
visual authorization language for security administrators
and a textual authorization language for more advanced
administrators and application writers. The authorization
languages are designed to make it easy to implement a
wide variety of policies found in both the security literature
and real life. Adage interoperates with external authentica-
tion services (such as DCE, Kerberos, or public key certifi-
cates), and can use identity, delegation, and user attribute
information from these authorities in its policy definitions
and authorization decisions. In this section, we discuss
those features of Adage at the policy (user interface) level
and at the architectural level that are designed to support a
variety of Separation of Duty policies.

The descriptions of Adage mechanisms that follow are
high-level platform-independent descriptions. They con-
form to the top two tiers of the three-tier model suggested
by [131. The policy level mechanisms are the external or
user view of Separation of Duty policies, expressed in
terms of security policy. The architecture level mechanisms
are the common or composite view of Separation of Duty
policies. We do not discuss the third tier, implementation
view, in this paper.

187

6.1. Policy level

Adage provides a Visual Policy Builder (VPB) and tex-
tual Authorization Language (AL) designed to support
security administrators’ implementation of their site secu-
rity policy [151. The VPB and AL are designed to be flexi-
ble enough to specify a wide variety of real and useful
authorization policies. Using the principle of user-centered
security [171, they present administrators with familiar
building blocks and a context that allows them to build up
and query their policy definitions incrementally. Adage is
policy-neutral and allows many kinds of policies including
Role-Based Access Control (RBAC) to be specified. In this
section, we discuss the user interface primitives that secu-
rity administrators may use to implement Separation of
Duty and role-based policies in Adage.

Groupings. Users, who may be associated with more than
one principal, are represented at the policy level by actors.
Actors are necessary for capturing Separation of Duty poli-
cies that rely on more than one user participating in an
action or task. There is no way within the system to be cer-
tain that all recognized principals belonging to a single
user are associated with that user’s actor. Security adminis-
trators must assure themselves of this out-of-band. How-
ever, the notion of actor gives administrators a simple
primitive for applying consistent policies to multi-principal
users.

Adage extends the notion of groups in other ways.
Groups traditionally contain users (and other groups of
users). We apply the power of meaningful groupings to the
three fundamental building blocks of high-level policy def-
inition: actors, actions, and targets. Groups may be either
homogeneous or heterogeneous at the policy level.

Role-based policies in Adage. A role-based policy can
easily be built on top of Adage groups. The core of role-
based policies defines a role as a means of associating a
group of users with a group of permissions that they are
granted. Separation of Duty semantics are then applied to
the defined roles, as described in Section 3. A role is a het-
erogeneous group in the Adage high level policy language.
It has two groups associated with it; a homogeneous group
for the actors who are granted the role (called a team), and
a heterogeneous group for the permissions that the role
grants. Separation of Duty constraints are applied to the
homogeneous group of actors.

The permissions granted by the role may be specified at
any granularity by grouping actions and targets in that per-
mission grouping. There may be a group containing a sin-
gle action and one or more specific targets that action can
be applied to, as in the Clark and Wilson model. Or the per-
mission may be an application action that can be applied to
all targets (for which that action is legal). These general

permissions may be grouped to form even more general
permissions. For example, a generic READ permission can
be constructed by grouping all the permissions for applica-
tion actions that only read their targets.

Separation of Duty features in Adage. Figure 1 outlines
the features at the user interface level of Adage that support
various kinds of Separation of Duty policies.

Adaee Mechanism
Nooverlap

CantHoldSimultaineously
Athlost
HasDone
NeverDid
NeverUsed
DifferentOneFromEach
SomeoneFromEach

Cateeorv of SeDaration of Dutv
Static

Dynamic
Dynamic
Order dependent history-based
History-based
History-based
Object-based
Order-independent history-based

Fig. 1 Adage Mechanisms for Separation of Duty

Teams may have constraints applied to them. Any set of
teams can be marked as mutually exclusive (using the
Nooverlap constraint), so that no actor can be a member
of more than one team in that set (either directly, or indi-
rectly through the hierarchy of team memberships). This
constraint supports Static Separation of Duty. Alterna-
tively, a set of teams can be defined such that no actor may
be active in more than one team of the set (using the Can-
tHoldSimultaineously constraint). This constraint sup-
ports Simple Dynamic Separation of Duty. The maximum
number of members of a team may also be constrained
(AtMost) to support cardinality constraints for Separation
of Duty policies.

To support a variety of history-based policies, Adage
supports constraints on groups of actions that gate the use
of those actions based on previous authorizations. Validity
times can be attached to action groups, so that they may
only be exercised at certain times of the day, month, or
year, or their use may expire after a certain interval.
Adage’s HasDone constraint allows an authorization if the
other action specified in the constraint has been executed
by the specified user on the specified target (some initial
authorization must be allowed regardless of history to start
the process). The user specified may be a particular user (a
system administrator, the same user requesting the authori-
zation) or it may be any user with a particular relationship
to the requesting user. The target may be specified in the
same way. The NeverDid constraint is similar to the Has-
Done constraint, only it allows the authorization if the
specified event has never occurred. The NeverUsed con-
straint is the same as the NeverDid constraint, but it checks
that some actor never executed any action on some target.

188

These historical constraints allow the administrator to
build up a simple notion of a task sequence by specifying
that the authorization for each action within a task depends
on the previous action occurring. For instance, for a task
consisting of preparing a check, approving the check, and
issuing a check, the authorization of the approval will not
be allowed unless the check has been prepared, and the
issuing will not be authorized unless the approval of the
same check has occurred, both using the HasDone con-
straint.

This simple form of task sequence does not capture the
richer if/then/else and looping structure of task-based
authorization [16]. This is because Adage is designed to
present a fully general, policy neutral, high level authoriza-
tion language. The richer task-based authorization requires
the notion of task to be shared between the authorization
system and the application, and is currently tied to a partic-
ular workflow product [6][161. The Adage authorization
language may be used with any distributed application,
with a minimal amount of application-specific work.

Some forms of Separation of Duty require approvals or
authorizations from more than one person (as in Nash and
Poland’s commercial security device example). Actions
that require multiple actors to authorize them can be
formed in Adage with the constraints DifferentOne-
FromEach and SomeoneFromEach. The DifferentOne-
FromEach constraint will require a different actor from
each team specified. The most straightforward policy
formed from this constraint would require a different actor
from each of two teams (team A and team B) to approve a
transaction. The SomeoneFromEach constraint relaxes
the requirement that the actor representing each of the
teams must be different allowing, for instance, the manager
who selects the officers of the day to come from the group
of all candidate officers, as discussed in Nash and Poland.

Enabling and disabling privileges. Separation of Duty
policies need the ability to enable and disable privileges.
For example, if a user can act in a number of roles, the sys-
tem needs to determine under which the user is acting.
While it is most convenient for users to have all of their
groups and roles enabled at all times, this can increase the
damage a trojan horse can do. In addition, some roles (such
as security administrator, manager, and personnel represen-
tative) are more powerful than others.

The trade-off between usability and security is a diffi-
cult one for dynamic groups and roles. Adage allows secu-
rity administrators to mark the roles that are powerful with
an activation constraint. Adage will automatically activate
roles as they are needed by the user. However, activating
constrained roles must be verified by the user via a trusted
path interaction with Adage. Roles that must be explicitly
activated cannot unknowingly be enabled or used by a user

because of a trojan horse. Security administrators should
apply this activation to particularly powerful roles. Adage
allows three kinds of acknowledgment requirement:

Acknowledge always - the user must
acknowledge every time an action in the role
is performed

Acknowledge on activation - the user must
acknowledge the first time an action in the
role is performed

Acknowledge never - this is the default situ-
ation in which a user assumes the role auto-
matically upon performing any action in the
role’s action set

For example, Nash and Poland [8] documented a policy
where clerks entered transaction data, but transactions
were not final until authorizing officers accepted them.
Clerks were not even authenticated (although the necessity
of entering data on a hand held device may have provided
some physical security). The damage a clerk running a tro-
jan horse could do was considered negligible, so assuming
a Clerk role would not require any explicit acknowledg-
ment from the user. On the other hand, the damage an
authorizing officer running a trojan horse could do would
be great, since it could easily submit the two authorizations
required by the policy. In Adage terms, the Authorizing
Officer role might require acknowledgment whenever it
was used for an authorization.

In addition, Adage provides a tool that allows users to
monitor which teams are enabled, in a compact visual for-
mat. Users are not expected to track exactly which teams
are being used so much as notice when something surpris-
ing happens (a change in the pattern or a whole new pat-
tern). This enlists users in monitoring their own security,
which provides greater assurance of trojan horses being
noticed. Adage also audits all actions on the authorization
policy state and authorization requests from applications,
allowing traditional centralized monitoring of audit infor-
mation as well.

6.2. Architecture level

The user-visible policy building mechanisms in the
VPB and AL are implemented using platform-independent
architectural mechanisms. The architectural constructs dis-
cussed in this section support the VPB and the AL and are
also platform-independent.

Basic entities. The basic entities at the implementation
level are the principal (authenticated entity), the action
(operation), and the target (object). Actors are not explic-

189

itly supported at the architectural level because the archi-
tectural level deals only with authenticated entities in
making access decisions.

Groups. Each of the three basic entities may be placed in
groups of like entities. A group of principals is called a
team, a group of actions is called an action set, and a group
of targets is called a collection. Groups may contain other
groups of the same kind; cycles are not allowed.

A role has one group of each kind: a team, an action set,
and a collection.

Labels. Labels are used to mark principals, targets, and
actions with the roles that are relevant to access decisions.
In most cases, the roles in the label are just those to which
the entity belongs. The roles form a non-hierarchical set of
names like those used in labels for policies like Bell and
LaPadula [2]. (A complete Adage label also contains hier-
archical confidentiality and integrity levels. We do not con-
sider those parts of the label in this paper.)

Target and action labels are straightforward, while prin-
cipal labels are more involved. We discuss each in turn.

I) Target labels
Targets are labeled with the names of the roles in whose

collections the target resides. These labels are static and
change only when an administrator changes role defini-
tions. New targets receive the label of the action that cre-
ates them.

2) Action labels
Action labels are like target labels; they have the names

of the roles in whose action sets the action resides, and they
change only when an administrator changes role defini-
tions. New actions may be added by changing the existing
policy to place them in appropriate roles.

3) Principal labels
Principals have two kinds of labels: a label closure and

a current label. The label closure is exactly like the target
and action labels; it contains all the roles to which the prin-
cipal belongs. The current label contains the roles that the
user has active; this is a subset of the roles in the label clo-
sure. Allowing the principal’s current label to contain more
than a single role is an important usability feature since it
mirrors how people use roles in actual job situations
181[121.

The Adage label design is similar to that suggested in
[12] which points out the importance of keeping distinct
the notions of user, principal, and process (called a subject
in the cited paper). The problem is avoiding unnecessary
constraints on how people use their roles while still pre-
venting insecure information flow. In the cited paper, user’s
labels are allowed to float “up” the label hierarchy, gather-
ing greater privilege, while principal and process labels
remain fixed.

At the VPB level, actors are the surrogates of users and
each user has one or more principals, each principal being
associated with one user. An administrator defines the set
of labels over which a user may range by assigning the
user’s actor or individual principals to roles. While the
actor may range over all permissible values (since it repre-
sents all the user’s principals), principals may be more con-
strained by assigning them to only a few or one role.
Assigning a principal to one and only one role would be
equivalent to a policy in which principals have fixed labels.
In such a policy, a user would have to authenticate as a dif-
ferent principal for each role. The ability to allow princi-
pals to have more than one permissible label opens up
more flexible and easier to use policies.

At the architectural level, the set of principals is the user
surrogate; actors are not supported at this level. A princi-
pal’s label floats up as more roles are activated, within the
permissible range defined by the policy for each principal.
The containment of information flows using fixed labels is
achieved at the implementation level where processes
(which are the entities that actually contain information)
inherit the current label of the principal and use that as a
fixed label. We do not describe the implementation level
details further in this paper.

One problem with allowing principal labels to float is
that targets created by the principals would have labels that
contain too many role names if they inherited their labels
from the creating principal. Adage applies the label of the
action that creates the target to the new target. This means
that any role having access to that action has (potentially)
access to the new target, and this set of roles will be some
subset of the roles in the principal’s current label.

Rules. Rules contain the expression of policy at the archi-
tectural level. Rules compare the principal, target, and
action labels to determine if access is allowed.

Rules have five parts:

The target scope determines the targets to
which the rule applies. The scope is an
expression involving role names and any tar-
get whose label satisfies the expression is
within the scope of the rule.

The principal scope determines the principals
who may access the targets, if the constraints
specified in the relation (below) are satisfied.

The action scope determines what actions the
principals are allowed to perform on the tar-
gets.

190

The relation expresses any additional con-
straints that must be met to be granted access,
beyond being included within the principal
scope. These include activation and history
controls.

The date determines when a rule is in force

Role creation. Creating a role creates three groups (team,
action set, collection), and a default rule that allows any
member of the team to assume the role at any time and per-
form any action in the role’s action set on any target in the
role’s collection. Finer grained control i s applied by creat-
ing rules that modify activation and use of the roles.

Role activation and deactivation. In the simplest case, a
user activates a role by performing an action in the role’s
action set. In more complex cases, the activation may
require other constraints to be satisfied. These constraints
would be expressed in rules about the mutual exclusion or
cardinality of the roles, or the history of the principal with
the given target.

Adage does not deactivate roles until a user logs out,
authenticates as a new principal, or explicitly requests
deactivation. This means that roles are allowed to accumu-
late as a user does more and more things. This is reflected
in the current label of the user (actually, the user’s current
principal); the label floats “up” the label hierarchy as more
roles are activated. This approach does not lead to the usual
problems associated with accumulating power because the
history-based rules allow the individual access of each user
to be constrained based on what they have done. So, a user
who has all their roles active will be no more powerful than
they would be if we required them to (laboriously) activate
and deactivate roles. They are permitted to perform the
same actions on the same targets in either case.

However, the issue of least privilege does pertain to
risks of user error or trojan horses. The possibility of a tro-
jan horse (one that, say, approves an order created by the
trojan horse’s creator, without the knowledge of the sup-
posed approver) can be contained by requiring acknowl-
edgment of role activation or role actions. For instance, one
may require that all Approver actions be acknowledged.
This is an instance where the user-centered principle must
be balanced against other security principles. Automati-
cally activating roles increases the potential damage of user
error or trojan horses, but forcing explicit activation and
deactivation of every role increases the likelihood that
users will seek out and use methods and tools to turn off or
circumvent onerous security procedures. No one answer
will satisfy the needs of all sites. Any given policy maker
must choose a level of (in)convenience that is appropriate
for their environment and its risks and level of user disci-
pline.

Deactivating roles under the same principal must be
done properly to avoid a flow- violation. In Adage this is
handled at the implementation level by restricting pro-
cesses to a fixed label. When a principal goes “down” the
label hierarchy, the processes it has spawned do not follow
it; their labels remain where they were and new processes
will be used to do work at the new, lower level.

How access is computed. In this section we give a brief
overview of how Adage makes an access decision.

Adage first determines the roles involved in the deci-
sion. An access decision involves a principal, a target, and
an action. Each of these has a label containing the names of
roles to which each of the entities belongs. Adage can
determine the roles involved by examining the labels of
each entity. We will call the role names in a label the role
set.

If the requested action can never be performed on the
target, then the target’s label will not contain the name of
any role in which the action resides. So, if the intersection
of the role sets for the target and action labels is null, then
the access is not allowed.

Similarly, if the intersection of the role sets of the prin-
cipal’s label closure and the action’s label is null, then the
principal is not a member of any team that can perform the
action and the access is not allowed.

At this point, Adage knows that in some cases the prin-
cipal may perform the desired action, and in some cases the
desired action may be performed on the target. However, it
must now check rules to determine if the detailed policy of
the system permits the specific access attempted.

Adage determines which rules affect the access decision
by using the target scope to select rules that apply to the
target in question, and in turn using the principal scope to
determine if any of these rules apply to the principal. In
addition, the date portion of the rules are examined to elim-
inate any that are inactive at the time of the request. If no
rules are found, access is denied.

Once the applicable set of rules is known, the relation in
each of them is checked. A rule fails if the principal fails to
meet the constraints in the rule’s relation. If all rules suc-
ceed, then access is granted. If the access is permitted, then
the principal’s current label is augmented with the role
name if that name is not already present in the label.

7. Examples

In this section, we present some Separation of Duty
examples encoded in our rule format. W e present our rules
in the following way:

Users in Team <Team-name>
may perform Action <Action-name>

191

on Targets in Scope <Scope-name>
if <Relationship> (1)

This format was chosen for readability. In all the exam-
ple rules, the date component is omitted and assumed to be
void (indicating the rule is always applied).

7.1. Strong exclusion

Strong exclusion may be implemented using the
Nooverlap constraint in the authorization language (see
Figure 1) to prevent actors and their corresponding princi-
pals from being placed in more than one of a set of strongly
excluded roles. This constraint is checked at the time the
policy is constructed in the VPB (or the AL), so it is not
checked later during the decision process.

7.2. Weak exclusion

Strong exclusion is usually too rigid to reflect real-
world security policies. Weak exclusion is more realistic.
Weak exclusion permits the same person to act in two
restricted roles, as long as certain constraints are met.

Simple Dynamic Separation of Duty. In Simple Dynamic
Separation of Duty the same person may act in restricted
roles but only at different times.

Simple Dynamic Separation of Duty may be imple-
mented by a rule that permits a principal to enter a role if
the principal is not already in the restricted role.

Users in Team <Tellen
may perform Action <TellerActions>
on Targets in Scope <TellerTargets>

if <Auditor NOT IN CurrentLabe]> (2)

Users in Team <Auditon
may perform Action <AuditorActions>
on Targets in Scope <AuditorTargets>
if <Teller NOT IN CurrentLabel> (3)

Rule 2 simply states that a user who is authorized to per-
form Teller actions (contained in the action set TellerAc-
tions) may do so if they do not already have the Auditor
role active (indicated by the presence of “Auditor” in the
user’s current label). Rule 3 says the same thing about the
Auditor role.

Operational Separation of Duty. In Operational Separa-
tion of Duty the same person may act in restricted roles as
long as the complete set of actions permitted by the roles
does not span an entire business task.

Adage supports the notion of business task by allowing
the administrator to make the authorizations for each
sequential action in a task depend on the previous action
having been authorized and executed. Example 7 shows a
rule for sequencing one task action after another one.

Administrators can encode Operational Separation of Duty
by dividing the actions in a task among different mutually
exclusive roles.

Object-based Separation of Duty. In Object-based Sepa-
ration of Duty the same person may act in restricted roles
as long as that person does not act on the same object in
each role.

Object-based Separation of Duty may be implemented
by modifying the rules for Simple Dynamic Separation of
Duty.

Users in Team <Teller>
may perform Action <TellerActions>
on Targets in Scope <TellerTargets>

if <THIS USER NEVERDID <AuditorActions> TO
THIS TARGET> (4)

Users in Team <Auditon
may perform Action <AuditorActions>
on Targets in Scope <AuditorTargets>

if <THIS USER NEVERDID <TellerActions> TO THIS

History-based Separation of Duty. In History-based Sep-
aration of Duty the same person may act in restricted roles
as long as that person does not perform all the actions in an
entire business task on the same target or collection.

History-based Separation of Duty may be order-depen-
dent or order-independent. If the exclusion is order-depen-
dent, then mutually excluded actions will have to be
performed in a particular order. If the exclusion is order-
independent, then the actions may be performed in any
order.

Order-dependent history-based Separation of Duty.An
example of order-dependent History-based Separation of
Duty occurs often in the creation and approval of purchase
orders. These two duties are often separated so that two
people are required to create and approve a purchase order.
Strong exclusion could be used to accomplish this, forcing
order creators and order approvers to be disjoint sets of
principles, but this is too restrictive and does not reflect
real-world operation. Usually the same people may both
create and approve orders, but may not approve an order
that they themselves created. Both Simple Dynamic Sepa-
ration of Duty and Operational Separation of Duty fail to
provide the desired policy. Simple Dynamic Separation of
Duty does not prevent the same person from creating an
order and approving the same order at a different time.
Operational Separation of Duty does not allow the same
person to perform all the actions of an order creator and
order approver since it does not allow these roles to share
members because they span a business task. Only History-
based Separation of Duty allows the full flexibility desired
while preventing the creation of fraudulent orders by a sin-
gle person.

TARGET> (5)

192

If C is a team of order creators and A is a team of order
approvers, then order-dependent exclusion can be
expressed using history relations:

Users in Team <C>
may perform Action <Createorden

on Targets in Scope <hrchaseOrders>
if <void> (6)

Users in Team <A>
may perform Action <Approveorden
on Targets in Scope <PurchaseOrders>

if <OTHER(C)HASDONE Createorder TO
TARGET> (7)

These rules have three effects:

1. They allow anyone in the authorized team of
creators C to create a purchase order.

2. They require that someone other than the cre-
ator of the purchase order approve the order

3. (order-dependence) They require that a pur-
chase order be created by an authorized cre-
ator before it can be approved (eliminating
the possibility that an authorized approver
could circumvent policy by constructing
bogus order and approving it).

Order-independent history-based Separation of Duty.
Order-independent exclusion is a form of multi-person
control in which the order of operations is not important,
merely that more than one person has participated in the
completion of the task. For example, the security policy
presented in the last section could be augmented by requir-
ing that two different order approvers approve each order.
In this case, the order of the two approvals is not important,
only that they both occur after the creation of the order.

Since an order now requires two approvals before it is
valid, we must introduce some way to ensure that orders
with a single approval are not treated as valid. To do this
we introduce another action called Shiporder. In the order-
dependent example, Shiporder was an implicit part of
Approveorder; once an order was created and approved
according to policy, it could be shipped. In this example,
we distinguish this separate step so that orders with only
partial approval will not be shipped. The rules for the new
policy are:

Users in Team <C>
may perform Action <Createorden

on Targets in Scope <PurchaseOrders>

Users in Team <A>
may perform Action <Approveorden
on Targets in Scope <PurchaseOrders>

if <[OTHER(C) HASDONE Createorder] AND

if <void> (8)

[THIS USER NEVERDID Approveorder TO THIS
TARGET]> (9)

Users in Team <A OR C>
may perform Action <Shiporder>

on Targets in Scope <PurchaseOrders>
if <[ANY(C) HASDONE Createorder] AND

[2FROM(A) HASDONE ApproveOrder]> (lo)

The first rule is the same as for the order-dependent
case. The second rule now prevents the same approver
from approving an order twice. The third rule ensures that
a shipped order was validly created and approved by two
different approvers. Note that any member of A or C may
ship a valid order, including the creator or the approvers.
This is allowed since the order has already passed through
the required three person control policy.

8. Conclusions

Separation of Duty is a well-known principle with a
long history in the computer security literature. As the
sophistication of security mechanisms (both modeled and
implemented) has increased, the number of variations on
the theme of Separation of Duty has increased. No work
that we are aware of has tried to bring these variations
together and categorize them until now. The increasing
flexibility embodied in the more recently defined types of
Separation of Duty attempts to eliminate some of the unre-
alistic constraints implicit in the earlier, simpler defini-
tions. These more flexible variations also get closer to
supporting actual operating procedures. A notion of history
is necessary for this more general approach. History must
contain information about which user took what action on
what target.

We have outlined the authorization mechanisms neces-
sary to support the variety of Separation of Duty policies.
These are groupings of principals, actions, and targets,
controls limiting how the membership of different group-
ings may overlap, controls limiting what roles may be acti-
vated, history-based controls on how activated roles can be
used, and labels marking the relationships between princi-
pals, actions, and targets. We then introduced Adage, a
general purpose, rules-based authorization system for dis-
tributed applications. We have shown how Adage supports
Separation of Duty, at both the user interface and architec-
tural level, by implementing the mechanisms necessary for
the variety of identified Separation of Duty policies.

We have discovered that supporting Separation of Duty
policies demands a balancing of user-centeredness (usabil-
ity) with security (particularly risk management). Achiev-
ing the right trade-off in this area requires clear goals and
careful thought. Properly balancing user-centeredness and

193

security is necessary to achieving the goal of a secure sys-
tem that is actually deployed and correctly used to provide
needed protection.

Acknowledgments

The Adage work is funded by DARPA under contract
F30602-95-C-0293 (This paper is Approved for Public
Release Distribution Unlimited). This paper has benefited
from comments by Marty Hurley and Greg Carpenter.

References

[11 Baldwin, R. W. “Naming and Grouping Privileges to Simplify
Security Management in Large Database” Proc. 1990 IEEE
Symposium on Security and Privacy, 116-132, May 1990.

[2] Bell, D.E., LaF’adula, L.J. “Secure Computer Systems: Uni-
fied Exposition and Multics Interpretation” MTR-2997 Rev.
1, MITRE Corp., Bedford, MA, March 1976.

[3] Brewer, D. F. C., Nash, M. J. “The Chinese Wall Security Pol-
icy” Proc. 1989 IEEE Symposium on Security and Privacy,
206-214, May 1989.

[4] Clark, D.D., Wilson, D.R. “A Comparison of Commercial
and Military Computer Security Policies” Proc. 1987 IEEE
Symposium on Security and Privacy, 184-194, April 1987.

[5] Department of Defense National Computer Security Center,
Department of Defense Trusted Computer Systems Evalua-
tion Criteria, DoD 5200.28-STD, 1985.

[6] Edwards, K. E. “Policies and Roles in Collaborative Applica-
tions” Proc. CSCW 96, November 1996.

[7] Ferraiolo, D., Cugini, J., Kuhn, D. R. “Role-Based Access
Control (RBAC): Features and Motivations” Proc. 1995
Computer Security Applications Conference, 241-248,
December 1995.

[8] Nash, M. J., Poland, K. R. “Some Conundrums Concerning
Separation of Duty” Proc. 1990 IEEE Symposium on Security
and Privacy, 201-207, May 1990.

[9] Saltzer, J.H., and Schroeder, M.D. “The Protection of Infor-
mation in Computer Systems,” Proceedings of IEEE, 63(9),

[10]Sandhu, R. “Transaction Control Expressions for Separation
of Duties” Proc. 4th Aerospace Computer Security Confer-
ence, 282-286, Dec. 1988.

[l l]Sandhu, R. “Separation of Duties in Computerized Informa-
tion Systems” Proc. IFIP WG11.3 Workshop on Database
Security, September 1990.

[12]Sandhu, R. “A Lattice Interpretation of the Chinese Wall Pol-
icy” Proc. of the 15th NIST-NCSC National Computer Secu-
rity Conference, 221-235, October 1992.

[13]Sandhu, R., Feinstein, H. “A Three Tier Architecture for
Role-Based Access Control” Proc. of the 17th NIST-NCSC
National Computer Security Conference, 138-149, October
1994.

[14]Sandhu, R., Coyne, E., Feinstein, H., Youman, C. “Role-
Based Access Control: A Multi-Dimensional View” Proc.
10th Annual Computer Security Applications Conference, 54-

1278- 1308, 1975.

62, December 1994.
[15]Simon, R., Zurko, M. E. “Adage: An Architecture for Distrib-

uted Authorization” http:/lwww.osf.orglwww/adageladage-
arch-drafvadage-arch-draft.ps.

[16]Thomas, R. K., Sandhu, R. S. “Conceptual Foundations for a
Model of Task-based Authorizations” Proc. of The Computer
Security Foundations Workshop VU, June 1994.

[17]Zurko, M. E., Simon, R. T. “User Centered Security” Proc.
New Security Paradigms Workshop, September 1996.

194

http:/lwww.osf.orglwww/adageladage

