
Using NFS to Implement Role-Based Access Control

Mats Gustafsson Benoit Deligny Nahid Shahmehri
Dept. of Computer and Information Science

Linkoping University
S-581 83 Linkoping, Sweden

Email: {matgu,e96bende,nsh}@ida.liu.se

Abstract

In this paper we present a design for a modijied NFS
server that through simple additions makes it possible to
place an exported file system under Role-Based Access
Control.

Role-Based Access Control (RBAC) is an efficient way
for managing access control information. Howevec most
access control systems today do not support RBAC. As a so-
lution to this problem, the modijied NFS server we present
here makes it possible to introduce RBAC into existing envi-
ronments in a transparent manner

We have implemented our design as an extension to
the Linux User Space NFS Server running on a Linux 2.0
system. Our implementation demonstrates the feasibility of
our main idea. However tests show that pe~ormance of
our server needs to be improved, something we believe can
be achieved through code optimizations.

Keywords: Role-based access control, NFS, distributed
systems, legacy systems

1. Introduction

Whenever new technologies or novel designs and ideas
emerge in some area there arises a problem of how to in-
troduce these new technologies without having to entirely
discard the old. In an area as rapidly evolving as computer
science, this problem is accentuated. Design compromises
must often be made in order to accommodate legacy sys-
tems, into which much money and competence are invested.

An interesting development in recent years is the inter-
est devoted to Role-Based Access Control (RBAC). RBAC
provides a conceptually simple model for organizing and
representing access control information. Several authors
have discussed various aspects of role-based access control
and its relation to other paradigms for access control, e.g.
[6, 11, 12, 16, 171

The main advantages of RBAC lie in facilitated adminis-
tration and better overview of security information. RBAC
achieves this by providing an abstract view that more easi-
ly can reflect security policies within an organization. This
abstraction uses organizational roles to structure the infor-
mation contained in the access control database. A role cor-
responds to some position or function within the organiza-
tion. This way of specifying access control information can
reduce the conceptual gap between security policies and ac-
cess control mechanisms.

However great the benefits of adapting a role-based view
for expressing access control information may be, the issue
of legacy systems remains. In this paper we present a design
that using the Network File System (NFS), specified by Sun
Microsystems Inc [21], makes it possible to introduce RBAC
into distributed systems.

NFS makes files on a server available to clients over a
network. In the design we present here, an NFS server
is modified to use access control information from a role-
based security information database. When clients access
files on the server, an access control check is performed and
information from the database is used to specify access at-
tributes for the file.

1.1. Scope and paper outline

To achieve a secure system and to successfully deploy
a system built to our design, several other components are
necessary. An important requirement is to have an infras-
tructure that provides users with access to security services.
Such an infrastructure allows information about roles and
other security related information to be communicated se-
curely over the network. Another issue to consider is that
NFS rests upon the RPC protocol. In its original form, RPC
and NFS are vulnerable to certain attacks. Examples of such
attacks are client impersonation and file handle guessing
(see for instance [3]). However, in this paper we focus on
our main ideas, rather than trying to address problems in
many areas.

We begin by introducing the NFS file system in section

0-8186-7967-0/97 $10.00 0 1997 IEEE 299

2. Section 3 presents the design for our augmented NFS
server. Moving from design onwards to implementation we
describe in section 4 how we have used andmodified an ex-
isting server to realize our ideas. In section 5 we report on
some of the results and experiences from our implementa-
tion. We conclude the paper by giving a summary and some
avenues for future work in section 6.

2. The Network File System

The Network File System, NFS, provides transparent ac-
cess to remote file systems and was introduced by Sun Mi-
crosystems Inc. in 1985. Sun chose to make NFS an “open”
protocol by publishing the specification. This has made NFS
widely used and ported, also to non-Unix platforms. The
first published version of NFS was called Version 2 [21].
In 1995, several vendors, including Sun, IBM, and Digital,
published an extended Version 3 of the NFS protocol [5 , 141.

NFS is a clientherver protocol. An NFS server makes
file systems available over the network in a transparent way.
Clients perceive the exported file system as being a part of
their own local file systems.

Important prerequisites for NFS are the Virtual File
System (VFS) and the Remote Procedure Call mechanism
(RPC). The VFS is an interface to an abstract file system and
provides the indirection necessary in order to present a sin-
gle file system to the client while there physically actually
may be several. RPC, together with the Extemal Data Rep-
resentation standard (XDR), provides the network transport
mechafiism used by NFS. The VFS, RPC and XDR are all
technologies introduced by Sun [8, 19,201.

The operation where a client incorporates a remote file
system into its own virtual file system is called mount. Once
a client has mounted an NFS file system, the NFS protocol
specifies a number of functions a client may use to access
the server. In NFS version 2 there are 18 functions (of which
one is obsolete and one is for use in later versions), whereas
in version 3 the number has been extended to 22. The base
server we use implements NFS version 2.

NEs services rather closely mirror file level operations
available in a Unix system. However, by using a subset of
the functions, or by providing suitable mappings, NFS has
also been implemented for other operating systems, such as
MS-DOS, Novel1 Netware and VMS (see for instance [2, 9,
101).

3. Design for the AC NFS server

The NFS specification ([21]) does not define the permis-
sion checking to be used by servers. However, the spec-
ification mentions that “ ... it is expected that a sewer
will do normal operating system permission checking us-
ing AUTH-UNIX style authentication as the basis of its pro-

tection mechanisms.” Using this style of authentication,
the server receives with each request the effective user and
group identities (UID and GID respectively) of the caller.
During normal operations, these identities are used when
the server makes file accesses. However, the main respon-
sibility for access control still rests with the kernel of the
client that will allow/disallow access based on the file at-
tributes of a file, as reported by the NFS server.

UserlRole
Database AolelPermissons M Database

fife system

Target file
system

Figure 1. Main server components

Figure 1 shows the main components of our proposed
NFS server implementing role-based access control. The
central idea of our design is to mount the remote file system
as usual but then to side-step the default permission check-
ing behavior. The numbers in the figure show a typical flow
of events as follows.

In (iJ a user starts out by using a special application to
activate one or more roles. This application communicates
with the role state monitor module adjacent the NFs server
itself. A user can only activate roles to which she has been
assigned in the User/Role database. Information about ac-
tive roles is kept in the role state module. As a rule, a user
must independently establish an active role before she can
access files through the RBAC NFS server. The exception to
this rule is when access to some directory or file has been
explicitly granted a user, for instance to a home directory.

After having activated a set of roles, a user application
can access a file on the remotely mounted file system. When
this happens, the client machine sends an NFs service re-
quest to the server @.

When the server receives a request, it uses the UID of the
calling client process as a key to acquire information about
what roles the user has active @).

Having retrieved the currently active roles for the us-
er making a request, the NFS server passes this informa-
tion to an access control decision function @. To make
a decision, this function uses information found in the
RolePermission database. This database assigns permis-
sions to roles authorizing them to access files, directories or

300

directory trees.
If the requested access is permitted given the set of ac-

tive roles, the corresponding operation is carried out on the
target file system @.

In our RBAC NFS server design, owner and permission
attributes stored for a file on the Target file system are
not used. Instead, in a filtering step, those NFS requests
that query permission attributes are intercepted and attribute
values based on the information in the RolePermissions
Database are substituted in the reply. The result is then
passed back to the client @.

Access mode

Create file

3.1. Considerations

Necessary permissions
To file I To parent dir

-wx

Our design implies a change in the conceptual model de-
scribing the remote file system. User identity (UID) and
group identity (GID) are no longer central concepts, except
for conveying information that can be used to tie the UID
to a role and for providing access to files that are indeed
personal in nature.

However, an important design goal is to achieve a solu-
tion that requires no, or small, changes in client systems and
applications. Since client programs should run unmodified,
it is obvious that whatever access rules and access modes
we define using the RolesPermissions Database, we must
ultimately map these permissions into file attributes used by
the client.

In the basic Unix file system model, three basic access
permissions are used, read, write, and execute. These per-
missions are used both for directories and files. Although
there are only three kinds of permissions, we can identi-
fy ten basic kinds of access modes, create/delete $le, cre-
atehemove directory, reaawrite o f f l e , execute $le, search
directory and create harasymbolic link .

Table 1 shows what permissions are necessary in order
to access a file or directory in different ways. In addition to
the permissions shown in the table, it is necessary to have at
least execute permission to all directories in the path leading
to the accessed file or directory.

It is the kernel of the client machine that enforces access
control using the permissions assigned to a file. This is also
the case when a file system is mounted over NFS, it is still
the client machine that is the access control enforcer, using
the permission attributes reported by the NFS server.

The granularity of Unix permissions and access modes
is limited. From table 1 it can be seen that there are some
access modes that only can be granted together with others.
For instance, it is not possible to allow file creation without
at the same time allowing creation of directories.

An access mode that often is desirable is append $le.
However, this mode is not present in the Unix model. There
is also no way to express that a permission should apply to
an entire directory (sub-)tree.

Create dir
Remove file
Delete dir

-wx
-W- -wx
-W- -wx

Make symbolic link I

I Read file

-wx

I r-- I --x I
I write file I -w- I - -X 1
I Executefile I --x 1 r-x I
I Searchdir I I r-x I

Table 1. Correspondence between access
modes and necessary UNlX permissions

In the design of the RBAC NFS server, we have tried to
address these shortcomings by introducing a different set
of permissions. In our design, the basic permissions read,
write, and execute, remain the same but we distinguish be-
tween access to files and access to directories. We also in-
troduce an appendjile permission and allow permissions to
apply generally for a directory subtree.

An important file access mode is the operation of chang-
ing file permissions. In our system, we use a permission
database that in an independent manner assigns file access
permissions to roles. Permission to modify this database is
not given out by default. However, in order for it to be pos-
sible for a user to write a usable shell script or program, she
should be able to set the executable permission for that file.
For this reason, we include a special permission that allows
this specific operation.

In our server, we implement explicitly permissions for
eleven different access modes. These permissions are sum-
marized in table 2.

Some special issues were considered when designing the
RBAC NFS server. None, however, constitute any serious
problem and we therefore discuss them here only briefly.
The special cases we identified were

Symbolic links. No special steps need be taken in order
to properly handle symbolic links. The permission
attributes of a symbolic link are never used, instead
access control is performed when the target the link
points to is referenced. By convention, the permissions
for a symbolic link is listed as “lrwxrwxrwx”, we
too adhere to this convention when returning attributes
for symbolic links.

Hard links. Hard links in fact constitute an alias mecha-
nism that allows a file to have more than one name.
This can often lead to confusion. For this reason we

301

I Operation 1 Mnemonic J
Read file
Create file
Write file
Append to file
Delete file m
Execute file Fx
Create directory

Remove directory 1 DR
Toggle execute bit 1 XT

DC

II I Create symbolic link I LC

List directorv

Table 2. Permissions in the RBAC NFS server

DL

do not allow hard links to be created, although existing
links in the server file system will work correctly, as
hard links per definition are indistinguishable from the
file itself. We do not believe that this is a significant
limitation as symbolic links can be used instead.

Device files. Device files are always created directly on the
server file system using the mknod command, never
using NFS. The handling of access to device files is no
different from that of access to other files.

Se$ UID/GID attribute. Unix file systems offer a special
set user/group id upon execution attribute for exe-
cutable files. This is an important tool for security ad-
ministration. As our server does not take into account
owner or group ID of a file, the concept of set uiagid
becomes undefined and we do not support this attribute
at present. In effect, file systems behave as if they have
been mounted using the nosuid option.

Presenting file information. As user and group access
attributes are not used, a natural approach is to only use the
others file access attributes to convey access control infor-
mation from the server to the client. This is also the default
behavior in our system. An exception is made for symbolic
links, by convention permission for such links are shown as
“lrwxrwxrwx”. In order for the others attributes to ap-
ply, it is necessary that none of the user or g r m p attributes
apply. We achieve this by presenting all files and directo-
ries as belonging to user nobody, group nobody (having
UID/GID 65534).

However, upon closer examination, it turns out that only
the owner of a file can toggle the execute bit. If the owner
is set to nobody, the request is blocked by the kernel of the
client machine and not even forwarded to the NFS server. If
the effective permissions to the file include the execute bit
toggle permission (X T) , we must set the owner of a file to be

the current user. We must also use the user position when
specifying access attributes. A positive side effect of this is
that there is a visible distinction between files to which XT
permission is granted and files to which it is not. Figure 2
shows a typical directory listing.

nobody nobody 259709 Feb 27 20 15 FILES
nobody nobody 8 Feb 11 16 00 INSTALL -> Ivarladml
)Smith nobody 27954 Feb 27 20 14 READMF
nobody nobody 24541 Feb 27 20 16 RELNOTES
nobody nobody 14 Feb 11 16 00 linux -> /usr/srcllinux/
jsmich nobody 1024 Feb 11 16 45 maill
nobody nobody 2265 Feb 15 17 17 test txt
nobody nobody 375 Feb 16 16 47 fixit

Figure 2. Typical directory list appearance

Specifying RBAC permissions. Permissions are as-
signed to roles in order to express an access policy for some
system resource. In the case of the RBAC NFS server, the
system resources in question are directories, directory trees,
and files

For simplicity, the current implementation uses a text file
for specifying permissions to access files and directories as-
signed to roles. Figure 3 shows a simple permissions file
using the mnemonics specified in table 2. *everyone* is a
pseudo role that is always active. When determining the ac-
tual permissions for a role to a path, the most specific prefix
of the path found in the file for that role is used.

n
t The ‘ X character introduces a comment stretching to the
X end of llne
x
X General syntax IS path role permissions (, role permlsrlanslt X
/ sysadm FR FC FN FD FX DC DL DR XT LC U GlVe all rights to rysadm
I *everyone* DL It Let everyone browse FS
Isbin *everyone* U Deny rights
/usr/rbrn ‘everyone* U Deny rights
lusr/apps/dbms/audit log manager F=RCAD clerk F=CA
lusr/appsldbmr manager F=RX clerk F=RX
Ihm”3smlLh USER ,smith F=CRWDX D-CLR XT LC

4.

Figure 3. Sample RBAC permission database

Implementation

The implementation was made using a publicly available
NFS server as a starting point. The server software is in
common use on Linux systems [181. Our augmented server
currently runs on a Pentium PC running Linux 2.0.29 and
is accessed over a standard 10 MBit/s Ethernet network (for
an introduction to Linux, see for instance [l, 4,221).

As can be seen from figure 1, two main additions have
been made to the original NFS server. One deals with the
assignment of users to roles and the management involved
when users activate and deactivate roles. The other addition
is responsible for implementing the new, role-based, access
control semantics as described in section 3.

302

4.1. Implementing roles
Command Sewer

Original Is - l R
Modified Is - l R

In order to use the concept of role, there must be a way to
define roles, it must be possible to assign roles to individu-
als, and there has to be a mechanism whereby roles may be
activated. As stated initially, these tasks would normally be
handled by an underlying security infrastructure. However,
for the purpose of demonstration, we have implemented a
client program that allows a user to communicate with a role
state server adjacent to the NFS server. Using the client pro-
gram, the user can activate and deactivate roles according
to the assignments made in the User/Role database. This
database is a simple text file that for each role lists which
users may activate it.

-

Pentium PC 486 PC _________
22.33 46.0
24.98 1 :49.0

4.2. Introducing RBAC semantics

Increase

By definition, any NFS server is built around the func-
tions implementing the services defined in the protocol.
What we have done is to introduce a two tier enforcement
of RBAC in the server. The first tier delegates access control
to the client machine by assigning suitable file attributes to
referenced files. In many cases this is sufficient in order for
the client machine itself to enforce access control. In the
second tier, a check is made upon each service request to
determine whether performing the request is allowed or not
given the set of active roles for the current user.

In the original server, the first step taken when a service
function is called is to authenticate the file handle, the call-
ing machine, and the calling user. To this sequence we have
inserted code that establishes a set of active roles for the
duration of the call.

In the function that reads file attributes we have inserted
a filter that clears out the access mode bits and substitutes
a mode derived from combining together (asing bitwise or)
the necessary access modes (see table 2) corresponding to
each permission granted for the file to each active role. We
also preserve the original value of the execute bit.

In general, for calls to the NFS server that entails reading
or modification of a file or directory, access is only permit-
ted after a check for necessary permissions. A few calls (to
read file attributes, read directory contents and read symbol-
ic links) are permitted without check.

Overall, the changes made to the original server are
small. About 500, out of a total of circa 13000, lines of
code were added or modified.

12% I ??fl% I

5. Results

Mokfied 1 t a r
Increase

We have tested our implementation on two Linux ma-
chines communicating with each other. One of the ma-
chines is a 200MHz Pentium processor workstation while

37.87 3:30.0
52% 335%

I I Sewerrunningon I

Table 3. Execution times for IS - 1 ~ and tar
commands

the other is an older laptop machine with a 66MHz 486DX2
processor.

Some simple experiments were carried out to assess the
impact of our modifications on performance. Two identical
directory trees were created on each of the machines. The
trees contain a total of 2876 files and 115 directories. The
builtin time command of tcsh was used to time two differ-
ent commands performed on the directory tree. The first
command was a full recursive listing of all files using the
Unix command “1s -1R”. To execute this command, the
attributes for every file must be fetched from the server. The
second command read circa 6 Mbyte of data from the di-
rectory tree using the GNU tar command. In both cases
the output was discarded by directing it to /dev/null.
The operations were carried out using both the unmodified
and the modified server, and in both possible directions. To
make sure the servers did not use any information cashed
from previous calls, the servers were restarted and remount-
ed before running each command.

Table 3 shows the results from both experiments. The
values shown are computed means from three test runs and
show measured total execution time.

From the results we see that our modifications incur a
rather heavy performance penalty, especially when the serv-
er is running on the machine with a slower processor. Even
though the values shown for the faster machine seem to be
acceptable, it is obvious that our rather straight forward ap-
proach to implementation needs further refinement. As our
modifications to the original server were not written primar-
ily with performance in mind, we believe performance can
be improved through code optimizations and use of caching
and in-memory databases.

6. Conclusion and future work

In this paper we have shown how NFS, an existing tech-
nology, can be used to introduce an interesting access con-
trol paradigm, role-based access control, in existing sys-

303

tems. By introducing the proposed design, both administra-
tive and practical problems can be solved. Administrative-
ly, RBAC has important merits as it contributes to narrow
the conceptual gap between security policies and security
measures. A more down to earth benefit of our design is
that it solves the dilemma that often occurs when there are
two user groups that both should have access to the same
resource. Using traditional group access semantics this sit-
uation cannot be directly modelled, whereas it i s very easy
to d o so using RBAC by assigning the same permission to
two different roles.

A s we have seen in section 5, the implementation needs
to be improved with respect to performance. Use of caching
and in-memory databases are obvious enhancements not
present in our demonstration implementation. A closer in-
tegration between our modifications and the original server
is also likely to lead to further performance gains.

However, a t this stage, performance has not been the
main issue. Instead, w e have demonstrated by example our
main idea, that RBAC can be implemented using NFS. If fur-
ther developed, w e believe strongly that the ideas presented
here can be used to enhance security in many existing sys-
tems. As mentioned initially, a first step in this direction
would be to integrate the demonstration system we have
presented here with an infrastructure for distributed secu-
rity. This would for instance include structured storage for
roles and access control data (see for instance [7, 151). One
framework upon which an infrastructure can be built that
we are looking into is provided by SESAME [131.

Before deploying our server it is also necessary to ad-
dress vulnerabilities found in the transport used by NFS. For
instance, strong authentication should be used at the RPC or
I P level.

7. Acknowledgments

This work has been supported by the ECSEL graduate
school at Linkoping University and by the Swedish Foun-
dation for Strategic Research.

References

The Linux Home Page. World Wide Web page. URL:
http://www.linux.org/.
Attachmate. Pathway Server NFS for OpenVMS.
Product information, World Wide Web document.
http://www.attachmate.com/products/ServerNFS-
VMS.htm1.
J. Barkley, editor. Security in Open Systems, volume SP-
800-7 of NIST Special Publications. United States National
Institute of Standards and Technology (NIST), Dec 1994.
URL: http://csrc.ncsl.nist.gov/nistpubs/.
S. N. Bokhari. The Linux operating system. Computer,
28(8):77-9, Aug 1995.

[5] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version
3 Protocol Specification. RFC 1813, June 1995.

[6] D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn. Role-Based
Access Control (RBAC): Features and Motivations. In 11th
Annual Computer Security Applications, Proceedings, 1995.

A Role Description
Framework and its Applications to Role-Based Access Con-
trol. In NORDSEC '96 - Nordic Workshop on Secure Com-
puter Systems, Gothenburg, Sweden, Nov 1996. SIG Securi-
ty/Dept. of Computer Engineering, Chalmers University of
Technology.

[8] S. R. Kleiman. Vnodes: An Architecture for Multiple File
Systems Types in Sun UNIX. In Proceedings ofthe Summer
1986 USENIX Conference, pages 238-247, Jun 1986.

[9] S. Microsystmes. Solstice Network Client - PC-NFSTM
5.1. Product information, World Wide Web docu-
ment. http:/lwww.sun.com/sunsoft/solstice/Networking-
productslPC-NFS5 1 .html.

[lo] Novell, Inc. IntranetWare NFS Servicesln-
tranetware and NetWare 4 Edition: Execu-
tive Summary. World Wide Web document.
http://www.novell.com/catalog/qr/sne3421O.html.

[I l l M. Nyanchama and S. Osborn. Role-Based Security, Ob-
ject Oriented Databases & Separation of Duty. SZGMOD
RECORD, 22(4):45-51, Dec 1993.

1121 M. Nyanchama and S . Osbom. Access Rights Administra-
tion in Role-Based Security Systems. In J. Biskup, M. Mor-
genstem, and C. E. Landwehr, editors, Database security,
VIII, pages 37-56. IFIP, North-Holland, 1994.

SESAME V4 - OVERVIEW.
World Wide Web document, Dec 1995. URL:
http://www.esat.kuleuven.ac.be/cosic/sesame/doc-ps.html.

[I41 B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz. NFS Version 3 Design and Implementation.
In Proceedings Summer 1994 USENIC Conference, pages
137-151, Boston, 1994.

[15] K. Rappe. Roles and Role Management in Role-Based Ac-
cess Control -Model, design and implementation. Master's
thesis, Linkoping University, Dept. of Computer and Infor-
mation Science, Linkoping University, S-581 83 Linkoping,
Sweden, December 1996.

[16] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control: A Multi-Dimensional
View. In Proceedings of the 10th Annual Computer Security
Applications Conference, Orlando, Florida, Dec 5-9 1994.

[17] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. Computer,
29(2):38-47, Feb 1996.

1181 M. Shand, D. Becker, R. Sladkey, 0. Zborowski, E van
Kempen, and 0. Kirch. The LINUX User-Space NFS
Server(l), Version 2.2. ftp://ftp.mathematik.th-darmstadt.de
/pub/linux/okir/nfs-server-2.2.tar.gz, December 1995.

[19] Sun Microsystems, Inc. XDR: Extemal Data Representation
Standard. RFC 1014, June 1987.

1201 Sun Microsystems, Inc. RPC: Remote Procedure Call Pro-
tocol Specification Version 2. RFC 1057, June 1988.

[ZI] Sun Microsystems, Inc. NFS: Network File System Protocol
Specification. RFC 1094, March 1989.

[22] T. Yager. Linux matters. BYTE, 21(2):1234126-8, Feb
1996.

171 M. Gustafsson and N. Shahmehri.

[13] T. Parker and D. Pinkas.

304

http://www.linux.org
http://www.attachmate.com/products/ServerNFS
http://csrc.ncsl.nist.gov/nistpubs
http:/lwww.sun.com/sunsoft/solstice/Networking
http://www.novell.com/catalog/qr/sne3421O.html
http://www.esat.kuleuven.ac.be/cosic/sesame/doc-ps.html
ftp://ftp.mathematik.th-darmstadt.de

