
Implementing RBAC on a Type Enforced System

John Hoffman
Secure Computing Corporation

2675 Long Lake Road
Roseville, MN 55 1 13

hoffman@ securecomputing.com

Abstract In addition, many of the high level RBAC features are eas-
ily implemented through appropriate administration utilities
on a Type Enforced system. Finally, we will argue that in
order for an RBAC mechanism to support least privilege,
the extra layer abstraction supplied by Type Enforcement is
necessary.

Role Based Access Control (RBAC) has gathered much
attention in recent literature. Much of the discussion has fo-
cused on theoretical issues, potentialfeatures, or on web or
security database implementations. This paper describes an
implementation of RBAC mechanisms on LOCK6, a secure
operating system developed at Secure Computing Corpora-
tion. The implementation has the RBAC features necessary
to solve the usual problems in our application domain (that
of$rewall construction) while providing a path to many of
the more advanced RBAC features needed by other appli-
cation domains. Finally we argue RBAC alone is not a
sufJicient mechanism to produce secure systems, but that an
additional lower level mechanism such as Type Enforcement
is required.

1 Introduction

Role Based Access Control (RBAC) has recently gx-
nered a fair amount of attention in the literature [3, 9, 101.
These papers discuss a high level policy and the features
available in such a policy, without actually discussing how
one might implement an RBAC policy. While much work
has been done in RBAC as it applies to databases (most
current relational DBMS implementations have RBAC fea-
tures; Oracle and Sybase are two examples) and web servers
[l], little has been published on how to implement RBAC
on a general purpose operating system. This paper will de-
scribe the RBAC policy implemented on LOCK6, a Type
Enforced operating system developed at Secure Computing
Corporation as part of the Secure Network Server program.

We have found RBAC to be an effective method to aid
in the administration of a Type Enforced operating system.
Type Enforcement can be viewed as an extra layer of ab-
straction between the concept of a role and individual per-
mission bits in the operating system. As such, RBAC fa-
cilitates system administration and secure system creation.

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%
%
%
%

Throughout the paper we have
stated expressions formally
using the PVS specification
language. (See Owre in the
bibliography for a reference.)
All formalizations appear in
this font. We include these
formalizations as an aid to
those readers who understand
formal notations. Those
unfamiliar with these
notations can skip them and
not miss any of the important
contents of the paper.
However, if there is a
discrepancy between the
English text and the formalisms,
the formalisms take precedence.

The PVS is only used as a
specification tool in this paper;
we prove no theorems. Also, we
have made an effort to avoid
portions of the language that
would be confusing to those not
conversant with PVS. The one
term that may require explanation
is TYPE+. "foo : TYPE+"
describes a new data type called
foo.

0-8186-8274-4 $10.00 0 1997 IEEE
158

http://securecomputing.com

2 What is RBAC? Object : TYPE+
TEType : TYPE+

RBAC has been developed as a standard access control
policy to address the information security needs of civilian,
government, and commercial enterprises. In these orga-
nizations, disclosure of information is not as important as
integrity of information. A natural mechanism to determine
who has access to what information is the role of an individ-
ual in an organization. Thus, RBAC policies relate users to
roles, and roles to operations on a computer system [3, 81.
For example, a system administrator should have different
accesses than a system operator.

RBAC policies are generally stated, however, at a very
high level of abstraction. One point of this paper is to demon-
strate that the abstractions described in an RBAC policy map
in a natural way to the control mechanisms available in a
Type Enforced system. In addition to show the ease with
which such a mapping facilitates an implementation of an
RBAC policy.

There are many different flavors of policy that can be
supported with varying degrees of sophistication, as Sandhu
et.a1.[8] have pointedout. Throughout our document we will
be referring to Ferraiolo’s RBAC policy [3] as a canonical
high level RBAC policy. In his policy, there are users, roles,
subjects, and operations. How these entities are related is
discussed further in section 4.

Sandhu [9] provides a more complete overview of RBAC
and describes its advantages more completely. Before delv-
ing further into RBAC, we describe Type Enforcement.

3 What is Type Enforcement?

Type Enforcement is a low level mandatory access control
mechanism that restricts the accesses a subject can have to
objects through the use of domain labels on subjects and
type labels on objects. It is important to note a distinction
between Type Enforcement and RBAC. RBAC ties users to
roles and describes how a role limits the operations available
to a user. Type Enforcement ties subjects to domains and
describes how a domain limits the operations available to a
subject. Type Enforcement and its applications have been
described in many papers [2,4,5,6].

3.1 Basic definitions

In Type Enforcement each subject on the system is as-
signed a domain

Subject : TYPE+
Domain : TYPE+

subj ec t-domain :

FUNCTION[Subject -> Domain]

and every object on the system is assigned a type.

object-type
FUNCTION[Object -> TEType]

The accesses permitted to a subject for an object will de-
pend on the subject’s domain and the object’s type. Before
formalizing this concept we provide some more background.

3.2 Example

Secure Computing Corporation’s current Type Enforced
operating system is known as LOCK6, which has an ob-
ject oriented design. Objects have an interface; the only
means by which a subject can access an object is through
the interface. The methods of objects are implemented by
an “animator” subject that generally resides in an address
space separate from the client subjects. Objects on LOCK6
include, but are not limited to, standard operating system
entities such as directories, files, pipes, sockets, devices,
and anonymous memory objects.

A running example throughout this paper will be the de-
velopment of a message guard (see figure l). A message
guard is a firewall application that filters mail passing be-
tween two networks (for example, a corporate intranet and
the Internet). A message guard consists of:

0 two message transfer agents (MTAs) (e.g. X.400
MTA’s, or sendmail), each of which can communi-
cate with exactly one network

0 two filter pipelines, one for internal to external mail
flow, the other for the external to internal mail flow.
Each filter pipeline consists of various filter subjects
that filter mail.

Type Enforcement is a means to categorize objects and
subjects on the system as well as their interrelationships.
As an example, all files on a system containing mail mes-
sages originating from the internal network would be of
type Maili, and the message transfer agent for the internal
network would have a domain of MTA-I.

3.3 Complete definition

The Type Enforcement policy can now be stated pre-
cisely. There is a collection of accesses possible on the
system.

Access : TYPE+

For every possible (Domain, Type) pair, there is a set of
permitted accesses that subjects operating in that domain
can perform on objects of the type. This table of permissions
is called the Type Enforcement database.

159

- represents a domain, or a set of domains

- represents a type or a set of types

0
(3

R - Read
W - Write

Filter-Pipeline-IE

R W

MTA-I RW Msg-i Msg-e RW MTA-E

W R

Filter-Pipeline-E1

Figure 1. Example domaidtype structure with associated permissions

TE-da tabas e :
FUNCTION[[Domain, TETypel

-> setof [Access 1 I

There is a subject associated with every change (or opera-
tion) on the system.

Operation : TYPE+
operation-client :

FUNCTION[Operation -> Subject]

During every operation of the system, some objects are ac-
cessed.

operation-objects-accessed :
FUNCTION[Operation

-> setof[[Object,Access]]l

% For an operation op,
% operation-objects-accessed(op)
% is a set of ordered pairs (o,a)
% such that access "a" occurred
% to object " 0 " .

The Type Enforcement policy says that any object accesses
that occur during an operation are consistent with the Type
Enforcement database. As an example, if a message transfer
agent deletes a file, then the message transfer agent had
permission to delete the file.

TEgolicy : THEOREM
forall (op : Operation),

(obj : Object),
(acc : Access) :

member ((obj , acc) ,
operation-objects-accessed(op))

IMPLIES
member (acc ,

TE-database(
sub j ec t-domain (

obj ect-type (obj)))
operation-client(op)) ,

For this policy to work on a real system, it requires some
connection to users. Roles provide this connection.

4 Implementing RBAC using Type Enforce-
ment

In a typical RBAC systedpolicy [3] there are collections
of roles and users.

Role : TYPE+
User : TYPE+

Each subject on the system has a role and a user associated
with the subject.

subject-role : [Subject -> Role]
subject-user : [Subject -> User1

The NIST policy [3] (which we are using as a basis for a
standard RBAC policy) assigns a collection of roles to each
subject, which is different from this approach of a single

160

role for each subject. We will discuss this difference in
more detail in section 6.

Each user is assigned a set of roles. These are the roles
in which the user is authorized to operate. A system admin-
istrator determines this mapping on the system.

user-roles : [User -> setof[Role]]

Since every subject has a role and a user, and every user
has a set of roles, these relationships should be consistent.
That is, for every subject, the role of the subject must be an
authorized role for the subject’s user.

subject-user-role-consistent
: THEOREM

forall (sbj : Subject) :

member(subject-role(sbj),
user-roles(subject-user(sbj)))

At this point a typical RBAC policy connects operations
and roles, it requires each operation on the system performed
by a subject is an operation appropriate for the role of the
subject. However our TE policy connects operations and
domains. Essentially we have introduced a new layer of ab-
straction between that of operations and roles. Thus, in our
policy, and implementation, we connect roles to domains.

To connect roles to domains, we associate a set of do-
mains with each role. This association of a set of domains to
a role is stored on the system in the security databases. The
contents of these databases are determined by the system
security policy.

role-domains : [Role -> setof[Domain]]

Again, we are confronted with a consistency issue. Every
subject has a role and a domain, and all roles have a set of
domains. Thus, the domain of a subject should be in the set
of domains authorized for the role.

subject-domain-role-consistent

forall (sbj : Subject) :

member (

: THEOREM

sub j ec t-domain (sbj) ,
role-domains(subject-role(sbj)))

Given this approach, all access to objects by subjects is
determined by the Type Enforcement policy. This is im-
portant because Type Enforcement permissions are easily
determined by what duties a subject performs.

To summarize this RBAC implementation, a subject has
an associated user, role, and domain. A subject’s domain
determines the accesses it has to an object. The subject’s
user, role and domain must all be consistent with the security
databases which specify what roles are allowed to a user and
what domains a role is allowed to operate.

5 Differences between this MAC implemen-
tation and some of the more general RBAC
policies

Allowing a subject to operate in only one role at a time
is a bit different from the approach described in the NIST
policy [3], where a subject can operate in multiple roles si-
multaneously. We believe a subject operating in a single role
at a time is more desirable than allowing a subject to operate
in all its roles, because the semantics of the operations of
a subject can depend on the role. As behavior of a subject
can depend on its set of current roles, there is extra respon-
sibility placed on the user of the system, because the user
must know what roles he is operating in and he must under-
stand the behavior of a subject given the current set of roles.
This is an unnecessary burden. We develop our systems to
be easily administered by people with limited training, thus
everything must be kept as conceptually simple as possible.

To clarify this point, consider a subject status utility on
a message guard. A utility that allows the user to examine
subjects executing on the system and to modify their be-
havior; either by destroying them or sending them signals.
This subject should operate differently for different roles.
The system administrator should be allowed to examine and
manipulate all subjects. However, the message administra-
tor needs only to access mail subjects. Thus, although the
same executable is being used, its behavior should depend
on the role in which it is operating. Moreover it is desired to
limit the functionality available to a user who can operate in
both roles but who is interested only in the message guard.
This could be described as user least privilege. It is useful
in reducing mistakes made by a user. A mistake made in
the system administrator version of the utility could crash
the system, while a mistake in the message administrator
version would merely shutdown the message guard.

6 Problems solved by this approach to RBAC

Generally the literature states that the accesses a subject
has to an object should depend only on the roles of the sub-
ject. (Note the set of roles for a subject is considered to be
an appropriate subset of the set of allowable roles for the
user of the subject.) This is not sufficient for most appli-
cations. For any system that is running untrusted software,
the accesses an untrusted subject has to an object should de-
pend on more than a role. (In this context trusted software is
software that is trusted to not abuse or otherwise misuse any
of the privileges or permissions it is given.) It is necessary
that untrusted software be limited to access only the objects
that are required for it to do its task (i.e., to satisfy least
privilege). The accesses associated for a given subject are
likely a small subset of all the accesses necessary for the
role to perform its duty.

161

Of course these kinds of restrictions could be accom-
plished through roles. One could define many different
roles, one role for each kind of subject. But doing this
violates the intuitive concept of a role, something that cor-
responds to a role in an organization. In addition, the user
now must be aware of all of these micro roles, and must
know why they are there. It makes using the system more
complicated, something that should be avoided.

Returning to the guard model, a message administrator
needs to be able to run several diagnostic programs for the
MTA. These diagnostic programs as well as the MTAs are
large bodies of ported, complicated code that should not
have to be “trusted.” Another duty of the message admin-
istrator is to modify the filter pipeline configuration files.
It is imperative that the large bodies of untrusted code not
be able to modify these configuration files. This is easily
accomplished by having the MTA diagnostic subjects run in
MTADIAGNOSTIC domain (note this is not part of the fig-
ure l), and make sure that this domain has no modify access
to files of type FILTER-CONFIGURATION. Thus the lower
level abstraction of domain facilitates a finer layer of control,
necessary to separate trusted and untrusted software.

In this example we have argued that it is desirable for a
subject’s accesses to objects to depend upon more than just
its role. Thus, we feel the added refinement of domains (or
something similar) is necessary for implementing an RBAC
policy on a general purpose operating system,

Another advantage of our approach to RBAC is the clarity
it brings to our top down development process. Once roles
are identified, along with their associated duties, a collection
of subjects and domains necessary to perform those duties
is easily derived.

In the message guard example, the message administrator
configures message transfer agents (MTA), configures the
filter pipeline configuration, and starts/stops the MTA’s and
filter pipeline. These duties suggest several domains: a MTA
configuration domain, a filter pipeline configuration domain,
and an MTNfilter status domain. Once these domains have
been decided upon, it is again straightforward to determine
the appropriate separate types for the files that these domains
must access. A type is needed for filter configuration files,
for MTA configuration files, and a type for filter and MTA
status files. The point being that the accesses a domain need
to a type are not so much determined by the role they operate
in, but by the specific sub duties of the role the subject is to
perform.

7 Higher level RBAC properties

Many papers on RBAC discuss other features of RBAC
that users would like or need. Not every RBAC feature is
implemented in LOCK6, the missing features include, role
hierarchies, separation of duty, membership limits. The

mechanisms of LOCK6 support most of these features, all
that is needed is the addition of appropriate interfaces or ad-
ministrative applications. We discuss the interfaces needed
to fully implement these features. We demonstrate in this
section that LOCK6’s approach is robust enough to easily
support many of the additional features needed by other ap-
plication domains. The difficult task of getting the low level
semantics of RBAC and Type Enforcement into the oper-
ating system is finished. Readers interested in more detail
about these features are directed to [3, 81.

7.1 Role hierarchies

A role hierarchy is a partial order on roles. Generally, if a
user is permitted in a role f oo, she gains all the privileges to
all the roles that are dominated by f oo in the hierarchy. In a
Type Enforcement implementation of RBAC, the dominates
relation of the partial order is determined by set containment.
A role f oo dominates a role bar if the set of domains for
f oo is a superset of the domains for bar.

7.2 Separation of duty

Separation of duty ensures that different individuals carry
out certain collections of duties. There are two commonly
discussed means by which this separation can be assured;
static and dynamic separation of duty.

7.2.1 Static separation of duty

Static separation of duty ensures that different individuals
carry out certain collections of duties by assigning these
duties to different roles, and then limiting the roles any one
user can belong to. As an example, consider a user who can
make a purchase order and write a check. This should not
be allowed. Thus, the role that creates purchase orders and
the role that writes checks are mutually exclusive.

This is a restriction on the collection of roles as-
sociated with a user. On LOCK6 the correspon-
dence between users and roles is stored in files of type
USERROLE-TABLE-TYPE. Static separation of duty re-
strictions must then be enforced by any subjects that modify
these files. The determination of what subjects modify files
of this type is easily made by examining the Type Enforce-
ment databases. Any subject that has modify access to files
of this type must be assured to maintain this restriction.

7.2.2 Dynamic separation of duty

Dynamic separation of duty restricts the set of roles in which
a user can actively be operating. For example a user cannot
simultaneously operate as a cashier and as a supervisor.
The implementation of LOCK6 is such that the files of type

162

USER-ROLE-TABLE-TYPE define the set of roles in which
a user is currently acting. Currently this is all of a user’s
ROLES. To change this situation, a new application would
need to be written that would allow users to specify the set
of roles in which they would like to operate. Adding this
feature would require no change to the operating system.

7.3 Membership limits

7.3.1 Static membership limits

Static membership limits restrict the number of users that
can be authorized for a particular role. These limits need
to be enforced any time the USER-ROLE-TABLE is mod-
ified. Thus, all subjects with modify permission to the
USER-ROLE-TABLE type must be trusted to perform these
modifications correctly. This is very much like static sepa-
ration of duty.

7.3.2 Dynamic membership limits

Dynamic membership limits require the system to keep track
of the roles in which a user is actively participating. This is a
simple computation based on the state of the system. Imple-
menting this requires changes as described in the sections on
dynamic separation of duty and in static membership limits.

7.4 Other areas for investigation

Currently the LOCK6 system is configured with a fixed
set of roles. This is from a desire to ship systems that
will never get into an insecure state due to configuration
errors by users. However, as our application bases expand,
tools to allow an administrator to modify and/or create roles
will become necessary. Again, this would require just an
application with an appropriate user interface that runs in a
special domain allowed to modify the object containing the
role-domain correspondence. It requires no modifications
to the underlying operating system.

8 Conclusion

We have found RBAC to be an effective method to aid the
administration of Type Enforced operating systems. It can
be viewed as an extra layer of abstraction from the concept
of a domain, and as such it facilitates system administra-
tion and system creation. In addition, Type Enforcement
is a straight forward method of dealing with some of the
problems of implementing an effective RBAC policy. It
provides a lower level of abstraction that facilitates secure
system design and encourages well formed transactions of
data. Finally, many of the higher level RBAC concepts
are easily implemented through appropriate administration
utilities on a Type Enforced system.

References

[I] J. F. Barkley, A. V. Cincotta, D. F. Ferraiolo, S. Gavrilla, and
D. R. Kuhn. Role based access control for the world wide
web. http://hissa.ncsl.nist.gov/rbac/rbacweb/paper.ps, April
1997.

[2] W. Boebert and R. Kain. “A Practical Altemative to Hierar-
chical Integrity Policies”. In Proceedings of the 8th National
Computer Security Conference, pages 18-27, October 1985.

[3] D. Ferraiolo, J. Cugini, and R. Kuhn. Role-
based access control (RBAC): Features and motivations.
In Computer Security Applications Conference, 1995.
http:/lhissa.ncsl.nist.gov/rbac/newpaper/rbac.html.

[4] P. Greve, J. Hoffman, and R. Smith. Using type enforcement
to assure a configurable guard. In Proceedings of 13th An-
nual Computer Security Applications Conference, December
1997.

[SI J. Haigh. “Modeling Database Security Requirements”.
In C. Landwehr, editor, Database Security: Status and
Prospects. North-Holland, 1988.
R. O’Brien and C. Rogers. Developing applications on
LOCK. In Proceedings of 14th National Computer Secu-
rity Conference, pages 96-106, October 1991.
S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas.
PVS: Combining specification, proof checking, and model
checking. In R. Alur and T. A. Henzinger, editors, Computer-
Aided Ver@cation, CAV ’96, number 1102 in Lecture Notes
in Computer Science, pages 41 1-414, New Brunswick, NJ,
July/August 1996. Springer-Verlag.
R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control: A multi-dimensional view. In Tenth
Annual Computer Security Applications Conference. IEEE
Computer Society Press, December 1994.
R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. IEEE Computer, 29(2):38-47,
February 1996.
C. Smith, E. Coyne, C. Youman, and S. Ganta. A marketing
survey of civil federal govemment organizations to determine
the need for a role-based access control (RBAC) security
product. Technical report, NIST and Seta Corporation, July
1996.

163

http://hissa.ncsl.nist.gov/rbac/rbacweb/paper.ps
http:/lhissa.ncsl.nist.gov/rbac/newpaper/rbac.html

