On the Formal Definition of Separation-of-Duty Policies and their Composition

Virgil D. Gligor
Electrical Engineering Department
University of Maryland
College Park, MD. 20742

Abstract

In this paper we define formally a wide variety of
separation-of-duty (SoD) properties, which include the
best known to date, and establish their relationships
within a formal model of role-based access control
(RBAC). The formalism helps remove all ambiguities of
informal definition, and offers a wide choice of
implementation strategies. We also explore the
composability of SoD properties and policies under a
simple criterion. We conclude that practical
implementation for SoD policies requires new methods
and tools for security administration even within
applications that already support RBAC, such as most
database management systems.

1 Introduction

As a security principle, separation of duty (SoD) has
had wide application in business, industry, and
government [3, 4, 7]. Its purpose is to ensure that failures
of omission or commission within an organization are
caused only by collusion among individuals and,
therefore, are riskier and less likely, and that chances of
collusion are minimized by assigning individuals of
different skills or divergent interests to separate tasks. For
example, SoD is enacted whenever conflict of interest
may otherwise arise in assignment of tasks within an
organization.

As an application-design principle, SoD requires the
following three well-understood design and
implementation steps:

Integrity Property Definition. Within an application
domain, the aim of SoD is defined by integrity properties.
These properties may require that each application include
independent, redundant functions whose results must
match to enable a sensitive task (e.g., the results of two
orthogonal single-entry accounting activities must match;
two persons must approve the execution of an action such

Serban 1. Gavrila
VDG Inc.
6009 Brookside Drive
Chevy Chase, MD. 20815

David Ferraiolo
NIST
U.S. Dept. of Commerce
Gaithersburg, MD. 20798

as signing a check, installing a crypto key, or launching a
missile). Or, they may require that an application enact
conflict-of-interest resolution by establishing balances and
checks among its tasks (e.g., different users are required to
perform asset accounting and control, or system security
administration and auditing).

Application Design. The objects and operations of an
application subject to SoD are partitioned to implement,
maintain, and verify the integrity properties. For example,
application partitioning may separate the operations that
perform accounts-payable, purchasing, and payroll tasks.
It may further separate check reading/writing from signing
operations within both accounts-payable and payroll tasks,
and purchase-order reading/writing from signing
operations within purchasing tasks.

User Assignment to Application Partitions. Users of
different skills or interests are assigned to operate in
different application partitions. These assignments may
last for limited periods of time, and may change
dynamically. By performing such assignments, application
administration ensures that user collusion is required to
breach integrity properties, and that chances of collusion
are minimized.

Despite its importance as a security principle and its
well-understood application in business, industry, and
government, few computer systems have supported SoD
as a security policy to date [10, 15]. We attribute the lack
of wide-spread support to three separate reasons. First,
SoD is an inherently application-oriented policy and,
thus, has been perceived to yield limited payoff for
operating systems and networks, since it cannot be used as
a global, system-wide security policy. Second, when the
SoD principle is interpreted within different applications,
it may yield many different SoD policies and, thus,
support of all policies is perceived to require both
substantial system flexibility [15] and recurrent
administrative costs -- an unmistakable recipe for both
system-vendor and market resistance in the absence of
advanced policy-administration tools. Third, most SoD
policies proposed to date have been only informally

defined and, therefore, subject to ambiguous or
incomplete specifications, and limited assurance. As a
consequence, both relationships among SoD properties
and policy composability -- an important requirement for
all application-oriented policies -- could not be easily
established.

The perceived disadvantages of SoD as a family of
application-oriented policies can be mitigated by two
factors. First, growing interest in internet applications and
their security may lead to the development of versatile
SoD policies and administrative tools at a cost made
reasonable by the economies of scale. Second, better
understanding of SoD policies for computer systems via
precise, possibly formal, definition may remove the aura
of complexity associated with these policies, thereby
facilitating their acceptance.

In this paper we define a set of SoD policies
(Sections 2 and 4), which includes the best-known ones
[15], and establish their relationships within a formal
model of role-based access control (RBAC) [8]. The
formalism (Sections 3 and 4) helps remove ambiguities of
informal definition and offers a wide choice of
implementation strategies. We also explore the
composability of these policies under a simple criterion,
and identify classes of policies that are, or are not,
composable (Section 5). We conclude (Section 6) that
practical implementation for SoD policies requires new
methods and tools for security administration, even within
applications that support RBAC, such as most database
management systems [12].

2 Specification of SoD Policies

In this section, we define the structure of a SoD
policy as a conjunction of constituent properties (or
predicates) of system states and state transitions, or of
command sequences (or traces) executed by systems. To
view security policies as conjunctions of properties is
appealing because it helps determine security-policy
effectiveness [11] -- by assigning each property a role in
countering a threat -- and relative strength -- by (partially)
ordering the threats countered by policy properties.
However, we adopt this view because we are interested in
defining security policies by property composition. This
allows us to use similar composition criteria for
incremental property addition to, removal from, or
modification of extant policies. For example, we define
SoD policies both by incremental addition of new
properties to conjunctions of RBAC properties and by
composing extant SoD policies.

2.1 Dependencies Among Policy Properties

Although viewing security policies as compositions
of security properties (i.e., by conjunction) is appealing,
care must be exercised because the composition of
independent security properties does not necessarily
define a policy. The reason for this is that the properties of
a policy are not independent; i.e., both individual and
groups of properties may depend on other properties of
the conjunction to counter a specific set of threats.
Ignoring dependencies among policy properties has
undesirable effects'. For example, the inadvertent
omission or incorrect modification of any property that is
depended upon by others may cause the policy to become
ineffective, undefined or incorrectly defined, or empty.
Furthermore, analysis of policy effectiveness, relative
strength, and composability may yield inconsistent or
incorrect results without analysis of property
dependencies. In Section 5, we show that property
omission can cause policies which are otherwise not
composable to appear to be composable. (For similar
reasons, the identification of dependencies among the
properties of cryptographic protocols is also considered
important [11].)

To illustrate the notion of dependency among policy
properties, consider the following three types of
properties: access-attribute (AT), access-authorization
(AA), and access-management (AM) properties. Access
attributes include subject and object attributes (e.g., user,
group, role, location identifiers, secrecy and integrity
levels, time-of-access intervals), and AT properties
typically establish invariant relationships among attributes
(e.g., lattices of secrecy and integrity levels, user-group
membership invariants, inheritance of role permissions).
AA properties determine whether a subject’s current
access attributes satisfy the conditions for accessing an
object given the current object attributes. In contrast, AM
properties include conditions under which subjects are
granted or revoked attributes for accessing objects,
subjects and objects are created or destroyed, objects are
encapsulated within protected subsystems. In general, AM
properties characterize commands and constraints that
bring the system to desired states, whereas AA properties
characterize constraints that ensure that the system
remains in desired states.

' The notion of dependency among the policy properties (ak.a.
dependencies among policy “functional” requirements) is neither new
nor novel. It has already received extensive coverage in the security-
standards literature [5, 6, 17] where templates for defining policy
properties are provided to enable policy analysis and evaluation.

A typical dependency arises between AA and AM
properties because the values of the attributes used by the
former for access decisions are determined by the latter
(i.e., AA properties have a “uses” dependency on AM
properties). Hence, whether an AA property holds in a
state depends not only on the property (predicate) itself
but also on the defined AM properties. Both AA and AM
properties have “uses” dependencies on AT properties.
Furthermore, AM properties also have “uses”
dependencies on AA properties whenever object attributes
themselves are treated as objects and, hence, become the
target of access authorization. Techniques to redefine
policy properties to avoid this cyclic dependency, and
other undesirable ones, are presented elsewhere [6].

Groups of policy properties may also depend upon
individual properties used in the same conjunction. For
example, the property P =AT A A4 A AM, depends on an
AM property, denoted by Admin(P), which requires that
administrative commands have the ability to bring the
system from an arbitrary state to a state (or any state) that
satisfies P. Admin(P) is formally defined in Section 5.
Unless Admin(P) is satisfied, the policy defined by
property P is empty because the system operating under P
can neither start from, or recover to, a secure state [16]
nor reach a secure state from another secure state under
administrative control.

For application-oriented policies, such as SoD, the
composition of independent security properties does not
necessarily define a usable policy. To be useful, property
P = AT A A4 A AM must be compatible with the
application for which it was designed. Informally, this
means that P may not unjustifiably deny the execution of
the application; e.g., an AM property should not grant
users too few, or inconsistent, permissions for application
execution. This property, denoted by Compat(P, App),
where App is the application, is formally defined in
Section 5.

2.2 Structure of SoD Policies in RBAC Systems

A security policy 2 can be defined as:
2 =P A Admin(P),

where P = AT A AA A AM. The property P itself may have
other properties in addition to Admin(P); e.g., application-
oriented policies, such as SoD, also include property
Compat(P, App). We specity SoD policies as incremental
conjunctions of properties to RBAC policies. That is,
SeD-P = SoD-PnAdmin(SoD-P)ACompat(SoD-P, App)

N RBAC-P
where 284¢@-P = RBAC-P A Admin(RBAC-P), and both
SoD-P and RBAC-P are conjunctions of AT, AM, and AA

properties. Some, but not all, properties of SoD-P may be
empty.

The specification of SoD policies as incremental
additions of specific properties to RBAC policies is both
useful and justified in practice. It is useful because a large
number of properties that are common to all SoD policies
are part of RBAC models. For example, RBAC formal
models [8] include both flexible AA and AM properties
and, hence, AM and AA properties of SoD can be defined
as incremental properties (i.e., predicates on the types,
functions, states, and state transitions) of RBAC. In
practice, most SoD policies are implemented atop systems
that support RBAC policies. RBAC enables the
partitioning of application operations and objects, and
also the selective assignment of roles to application
operations and users (two of the key steps in SoD policy
design presented in Section 1).

3 Secure RBAC Systems and Applications

In this section we define the types, functions, and

properties of a RBAC system that are necessary to define
SoD properties. The formal RBAC model, which consists
of a conjunction of RBAC policy properties, is presented
elsewhere [8].
We consider a RBAC system to be defined by a state
machine model. We denote the set of system states by
STATES, the set of subjects by SUBJECTS, the set of
users by USERS, the set of operations by OPERATIONS,
and the set of objects by OBJECTS. A RBAC system is
characterized by the fact that a user’s rights to access
objects are defined by the user’s membership to a “role”
and by the roles’ permissions to perform operations on
those objects. Hence, a role is a collection of operations
on object sets. The class of roles, ROLES, is a subset of

OPERATIONS x2OVECTS .
2 . The function

auth : STATESxROLESxOBJECTS—20" 10N
defines the operations allowed to each role in each state of
the system:
Os OSTATES, Oop UOPERATIONS, Or O ROLES,

Oobj DOBJECTS, op Oauth(s,r, 0bj) «
objset 0 OBJECTS: 0bj Oobjset O(op, objset) Or.

The function role_members:ROLES—2"*** defines
the users assigned to a given role.

The function subject user: SUBJECTS—USERS
returns the user associated with the subject.

The function

subject_roles:STATESxSUBJECTS—2"H
returns the roles assumed by a user in a given state while
executing a given subject. These roles must have been
assigned to the subject’s user.

The function

current_role_set:STATESx USERS—2"*%
is defined as follows:
Os OSTATES, Ou OUSERS,

current _role_ set(s,u) = subject _roles(S).

g
STSUBJECT
subject _user(S)=u

If recurrent role set(s, u), then we say that the role r
is enabled or active for the user u in state s.

Each state transition is defined by a command of the
form op(si, S, obj, s5,), where the subject S performs the
operation op on the object or objects denoted by obj,
thereby changing the system state from s; to s,. Access
authorization in RBAC requires that the state transition
op(s1, S, obj, s,) take place only if at least one of the roles
in subject_roles(sy, S) has the permission to perform the
operation op on the object, or objects, obj. Formally,
op(sy, S, obj, s5) =

dresubject roles(sy, S): opeauth(s,, r, obj).

A command sequence is opi(sy, S1, obj, s1)-0p(s1, Sz,
0bj,, $7)-... , where “-“ is the concatenation operator, and s
is the start state. We denote the set of start states of a
command sequence by STATES,. A finite command
sequence ¢ may be extended to an infinite one by adding
“no-op” commands, that do nothing and preserve the
system state. & denotes the extended command sequence.

If 50 is a start state, §, denotes the command sequence

starting in s, and consisting only of no-op commands. We
denote the set of command sequences of a system with the
start states in STATES, by €, Whenever STATES, =
STATES, we drop the subscript “,”.

A tranquil command is a command that does not alter
the security attributes/data of the system (e.g., creation,
deletion, or update of roles). A tranquil command
sequence is a command sequence consisting only of
tranquil commands. We denote the set of tranquil
command sequences of a system with the start states in
STATES, by Xy. Whenever STATES, = STATES, we drop
the subscript “y”.

A secure state is a state that satisfies some “state”
properties. A secure command is a command that satisfies
some “transition” properties. A reachable state is a state
appearing in a command sequence. A system is secure if
all its reachable states are secure and all commands used
in its command sequences are secure. In this paper, we
consider only secure RBAC systems.

The partial function:
access_history: STATESxSTATESxUSERSx2" %

xOBJECTS —»20M Ao
returns the operations performed by RBAC users in all
states between s, and s, where state s is reachable from
state so. It has the following properties:

1.Os OSTATES, Uu OUSERS, Or O ROLES,

Uobj UOBJECTS, access_ history(s, s, u,{r},obj) = .
2.0s,,s OSTATES, Ou OUSERS, Uroleset 1 ROLES,
Uobj DOBJECTS, access_ history(s,, s, u,roleset,0bj) =

U access_ history(s,,s,u,{r},obj).
rroleset

3.0sy,5,,5, OSTATES, Oop OOPERATIONS,

0S OSUBJECTS,Ou OUSERS,Or O ROLES,

op(s;,S,0bj,s,) Osubject _user(S)=ul

r Osubject _roles(S) O

access_ history(s,,s,,u,{r},obj) =
access_history(s,,s,,u,{r},obj) 1 {op}.

An application is a tuple App = [ObjSet, OpSet,
Plan], where ObjSet < OBJECTS and OpSet <
OPERATIONS. Plan is the execution plan of the
application and consists of a finite set of pairs {(obj,,
op)lie{l,...,n}}, where n is a natural number, obyj; is one
or more objects of ObjSet, and op; € OpSet.

Given two applications App=[ObjSet;, OpSet,, Plan,],
i=1, 2, we denote the new application [ObjSet;\WObjSet,,
OpSet wOpSet,, PlanyoPlan,| by AppUApp;.

A command sequence GeX, executes the application
App (App is executed by o, or ¢ is an execution of App),
if for any pair (0bj, op) in the App’s execution plan there
is a command op(sy, S, obj, s¢+1) in o. For simplicity, we
omit other types of application executions and execution
plans; e.g., executions and plans that include order, or that
exclude redundant operations and privileges to objects to
help satisfy the “least privilege” principle. We also use
App to denote the set of all executions ¢ of App.

A user needs permissions to execute the operations of
an application App, and since these permissions as given
by roles, the user must assume the necessary roles to
execute App. The AM properties of SoD policies specify
the assignments of roles to application operations and
users.

4 SoD Properties in Secure RBAC Systems

In this section, we define a variety of SoD properties,
their relationships in secure RBAC systems, and their
composition based on property conjunctions. As usual
[15], we distinguish between “static”” and “dynamic” SoD
properties.

Clark and Wilson defined the static SoD by the rule
that: “each user must be permitted to use only certain ...
transactions” [4]. In a RBAC environment, their definition
is expressed as follows:

Static Separation of Duty (SSoD). Let App be an
application and RoleSet its assigned roles in a secure

RBAC system. oceZX, satisfies the SSoD property with
respect to App if any two distinct roles in RoleSet do not
have common members. Such roles are said to be
restricted. Formally,

ceSSoD(RoleSet, App) <

Yry, rne€RoleSet, ri#r, =

role_members(r))role_members(r,)=2.

We obtain a stronger version of this property by
adding the requirement that the target object sets of two
restricted roles be disjoint:

Strict Static Separation of Duty (SSSoD). Let
App=[0bjSet, OpSet, Plan] be an application and RoleSet
its assigned roles in a secure RBAC system. ceX
satisfies the SSSoD property with respect to App if any
two distinct roles in RoleSet: a) do no have common
members, and b) are not authorized to perform operations
in OpSet on the same object of the application. Formally:
ceSSSoD(RoleSet, App) <

(Vs state of o, Vry, r,eRoleSet, ri#r, =

role_members(r) N role_members(ry)=3 A
{o€ObjSet | auth(s, ri, 0)NOpSet=J} N
{o€ObjSet | auth(s, r,, 0)NOpSet=D}= D).

We obtain a still stronger version by adding the
requirement that each role execute only omne step
(operation) of the application [14]:

1-step Strict Static Separation of Duty (1sSSSeD).
Let App=[0bjSet, OpSet, Plan] be an application and
RoleSet its assigned roles in a secure RBAC system. g€,
satisfies the 75SSSoD property with respect to App if a)
any two distinct roles in RoleSet do no have common
members; b) any role in RoleSet is authorized to perform
at most one operation of OpSet on application’s objects;
and c) any two distinct roles in RoleSet are not authorized
to perform operations in OpSet on the same object of the
application. Formally:
ce 1sSSSoD(RoleSet, App) <

(Vs state of o, Vr, r1, e RoleSet, ¥ obje ObjSet,

|auth(s, r, 0bj) NOpSet|<1 A

(r#r, =
role_members(r) N role_members(ry)=3 A
{o€ObjSet | auth(s, ri, 0)NOpSet=} N
{o€ObjSet | auth(s, r,, 0)NOpSet=D}= O).

Clark and Wilson [4], and then others, defined
several “dynamic separation of duty” properties. In an
RBAC system, a dynamic SoD property with respect to
the roles assumed by the users (“active” roles) can be
defined as follows [7]:

Dynamic Separation of Duty (DSoD). Let
App=[0bjSet, OpSet, Plan] be an application and RoleSet
its assigned roles in a secure RBAC system. ceX
satisfies the DSoD property with respect to App if, in any

state of o, there is no user with two distinct roles in
RoleSet enabled (active). Formally,
ceDSoD(RoleSet, App) <
(Vs state of o, Vry, rne RoleSet, Vue USERS,
r#ry A riecurrent role sef(s, u) =
ry gcurrent_role sel(s, u)).

Nash and Poland [13] introduced the object-based,
dynamic SoD, as a more flexible and realistic alternative
to the static SoD. However, their informal definition [13,
15] does not specify precisely which objects, operations,
roles are subjected to the object-based SoD condition. Our
definition removes these ambiguities.

Object-based Dynamic Separation of Duty
(ObjDSoD). Let App=[ObjSet, OpSet, Plan] be an
application and RoleSet its assigned roles in a secure
RBAC system. ceX satisfies the ObjDSoD property with
respect to App if, any user which performs an operation in
OpSet on an object of ObjSer in a role of RoleSet as a
command of o has not already performed another
operation of OpSet on the same object in a role of
RoleSet. Formally,
ce€O0bjDSoD(RoleSet, App) &

(Vso, $1, $2€STATES, Vre RoleSet, ¥V ope OpSet,
Y obje ObjSet, YSe SUBJECTS,
o starts in so A
op(sy, S, obj, 8) isin G A
subject_roles(sy, S)YMRoleSet#=0 =
access_history(s,, s1, subject_user(S), {r}, obj)n
OpSet < {op}).

The following two properties are static variants of the
object-based dynamic SoD, the first for set of roles with
common members, and the second for single roles.

Object-based Static Separation of Duty
(ObjSSoD). Let App=[ObjSet, OpSet, Plan] be an
application and RoleSet its assigned roles in a secure
RBAC system. ceX satisfies the ObjSSoD property with
respect to App if, in any state G, no group of application
roles with a common assigned user is authorized to
perform more than one operation on each object of the
application. Formally,
ce€O0bjSSoD(RoleSet, App) <
Vs state of o, V RoleSubsetcRoleSet, ¥ op,, op,€ OpSet,

Yobje ObjSet,

Op1#0ps A Nrole_members(r) #3=>

rO0RoleSubset

{opi,op:}y € U auth(s, r, obj).

rORoleSubset
Per-Role Object-based Static Separation of Duty
(RObjSSoD). Let App=[0ObjSet, OpSet, Plan] be an
application and RoleSet its assigned roles in a secure
RBAC system. ceX, satisfies the RObjSSoD property
with respect to App if, in any state of &, no role in RoleSet

is authorized to perform more than one operation of
OpSet. Formally,
G € RObjSSoD(RoleSet, App) <
(Vs state of o, VreRoleSet, Y op,, op,eOpSet,
Yobje ObjSet,
op1#op, = {opy, opa} auth(s, r, oby)).

Another flexible alternative to static SoD is the
operational SoD. The following property is (a corrected
version of that) presented by Ferraiolo, Cugini and Kuhn
[7]:

Operational Static Separation of Duty (OpSSoD).
Let App=[0bjSet, OpSet, Plan] be an application and
RoleSet its assigned roles in a secure RBAC system. g€,
satisfies the OpSSoD property with respect to App if, in
any state of o, any subset of roles in RoleSet with a
common member is not authorized to perform all the
operations of OpSer (if more than one), regardless of the
target object. Formally,
o€ OpSSoD(RoleSet, App) <

Vs state of 6, VRoleSubset_RoleSet,

|OpSet|>2 A N role members(r)#3 =
rORoleSubset -

OpSet & U
rCRoleSubset

0bj00bjSet

The following variant of operational separation of
duty is obtained by applying the operational separation of
duty to single roles.

Per-Role Operational Static Separation of Duty
(ROpSSoD). Let App=[ObjSet, OpSet, Plan] be an
application and RoleSet its assigned roles in a secure
RBAC system. ceX satisfies the OpSSoD property with
respect to App if, in any state of o, no application role is
authorized to perform all the operations of the application
regardless of the target object. Formally,
c€ROpSSoD(RoleSet, App) <

Vs state of &, VreRoleSet,

|OpSet>2 = OpSet & U auth(s, r, obj).
0bj00bjSet

auth(s,r, obj).

Operation separation of duty has the following
dynamic variant.

Operational Dynamic Separation of Duty
(OpDSoD). Let App=[ObjSet, OpSet, Plan] be an
application and RoleSet its assigned roles in a secure
RBAC system. c€ZX, satisfies the OpDSoD property with
respect to App if, in any state of o, any subset of roles in
RoleSet enabled for the same user is not authorized to
perform all the operations of OpSet (if more than one),
regardless of the target object. Formally,
ceOpDSoD(RoleSet, App) <

Vs state of 6, Yue USERS, VY RoleSubsetcRoleSet,

|OpSet|>2 A RoleSubsetccurrent role set(s, u) =

OpSet U

rO0RoleSubset
objT0bjSet

auth(s, r, obj).

Simon and Zurko [15] have generalized both
operational and object-based dynamic separation of duty
as the history-based separation of duty. The formal
version of their property follows.

History-based Dynamic Separation of Duty
(HDSoD). Let App=[0bjSet, OpSet, Plan] be an
application and RoleSet its assigned roles in a secure
RBAC system. o€Z, satisfies the HDSoD property with
respect to App if in o, the same user cannot perform all
the operations in OpSet on the same object of ObjSer in
roles assigned to the application. Formally,
ceHDSoD(RoleSet, App) <
(V' s, 81, So€STATES, Y ope OpSet, ¥ obje ObjSet,

VSeSUBJECTS, Vue USERS
o starts in sy A op(sy, S, 0bj, $;) is in G A

u = subject_user(S) A

subject_roles(sy, S) N RoleSet=J A | OpSet |>2 =
OpSet & access_history(sy, 1, 4, RoleSet, obj) U {op}).

The following theorem shows that, for all SoD
properties except the Object-based Dynamic SoD and
History-based Dynamic SoD, if the start state of a
command sequence satisfies the state invariants of the
SoD property, then the command sequence satisfies the
SoD property. (The proofs of all theorems of this paper
are included in the Appendix.)

Theorem 1. Let App be an application in a secure
RBAC system, and P one of the following SoD-P
properties based on App: 1sSSSoD, SSSoD, SSoD, DSoD,
RObBjSSoD, ObjSSoD, ROpSSoD, OpSSoD, OpDSoD. Let
$0€STATES,, and GeX starting in sg. If §0 €P then ceP.
As a corollary, if §, P for all s,eSTATES,, then P=X,.

The following two theorems express the Object- and
History-based Dynamic SoD properties by equivalent,
more intuitive properties:

Theorem 2. Let App=[ObjSet, OpSef] be an
application in a secure RBAC system, RoleSet its assigned
roles, and ceXy. o€ ObjDSoD(RoleSet, App) if and only if
all distinct operations in OpSet performed in states of ¢ on
the same object of ObjSer in roles of RoleSet were
performed by distinct users.

Theorem 3. Let App=[ObjSet, OpSef] be an

application in a secure RBAC system, RoleSet its assigned
roles, and ceX,. The following statements are equivalent;
1. ce HDSoD(RoleSet, App);
2. if ¢ executes App, then the operations of App (i.e., the
operations in OpSet on objects in ObjSet performed in
roles in RoleSet) are executed by at least two distinct
users.

The definition of the wide variety of SoD properties
above raises the question as to which policy to implement
in a secure RBAC system, and which of the implemented
policies to enforce in a given application. Although these
questions cannot be answered independently of the
application and system context, it is helpful to examine
the relationships among these properties and property
composability independent of their context of use. These
relationships help in making the choice between
implementing a stronger property, or a set of composable
properties, instead of a more flexible property that may be
harder to implement or administer. For example, one may
choose to implement either Object-based Static SoD or
the composition of per-Role Object-based Static SoD and
Dynamic SoD, instead of Object-based Dynamic SoD
(viz., Figure 1).

The following two theorems summarize the
relationships among, and composability of, the SoD
properties defined in this section.

Theorem 4. Let App be an application and RoleSet its
assigned roles in a secure RBAC system. Assume that, in
each start state, the set role members(r) of each role
reRoleSet is not empty. Then the following properties
hold:
1. 1sSSSoD(RoleSet, App) = SSSoD(RoleSet, App).
2.1sSSSoD(RoleSet, App) = ObjSSoD(RoleSet, App).
3. 1sSSSoD(RoleSet, App) = OpSSoD(RoleSet, App).
4. SSSoD(RoleSet, App) = SSoD(RoleSet, App).
5. SSoD(RoleSet, App) = DSoD(RoleSet, App).
6. ObjSSoD(RoleSet, App) = RObjSSoD(RoleSet, App);
7. SSoD(RoleSet, App) =

(ObjSSoD(RoleSet, App) <

RObjSSoD(RoleSet, App)).

8. RObjSSoD(RoleSet, App) n DSoD(RoleSet, App) =

ObjDSoD(RoleSet, App).

9. ObjSSoD(RoleSet, App) = ObjDSoD(RoleSet, App).
10. OpSSoD(RoleSet, App) = ROpSSoD(RoleSet, App);
11. SSoD(RoleSet, App) =

(OpSSoD(RoleSet, App) <

ROpSSoD(RoleSet, App)).
12. ROpSSoD(RoleSet, App) A DSoD(RoleSet, App) =

OpDSoD(RoleSet, App).

13. OpSSoD(RoleSet, Appy = OpDSoD(RoleSet, App).
14. ObjDSoD(RoleSet, App) = HDSoD(RoleSet, App).
15. OpDSoD(RoleSet, App) = HDSoD(RoleSet, App).

Figure 1 illustrates the relationships among SoD
properties. To define property composition, let App,, App,
be two applications in a secure RBAC system, and
RoleSet,, RoleSet, their assigned roles, and let P; =
Pi(RoleSet,, App1) and P,= P,(RoleSet,, App,) be any two
of the SoD properties defined in this section.

Definition. We say that properties P; and P, are
composable if PiNP,# whenever P1# and P,#J.

If P, and P, are composable, then P;°P, denotes their
composition. As a predicate, P;°P, = P1AP,, and as a set
of command sequences, P1°P, = P1N\P,.

Theorem 5. In a secure RBAC system that has:

(1) arbitrary start states, STATES, = STATES, any two

SoD properties are composable;

(2) constrained start states, STATES, & STATES, the SoD

properties are not necessarily composable.

(3) a single start state, | STATES, | = 1, any two SoD
properties are composable.

Figure 1. Relationships among SoD Properties

The composition of SoD properties is, actually, a
conjunction of predicates, and an intersection of sets.
Hence, the following relations hold for any set of start
states and any SoD properties P, O, R:

Idempotency. P is composable with itself, and P°P = P.
Monotonicity. If P is composable with O, then P°O=P.
Commutativity. If P is composable with Q, then Q is
composable with P and P°Q = Q°P.

Strengthening. If P=Q, P is composable with R, and O
is composable with R, then P°R=Q°R. Note that the
composability of P with R does not lead to the
composability of O with R (unless P#J).

Associativity. If P is composable with O, P°Q is
composable with R, O is composable with R, and P is
composable with Q°R, then (P°Q)°R = P°(Q°R). Note that
the composability of P with Q and of P°Q with R does not
lead to the composability of O with R (unless P #).

5 A Simple Composition Criterion

In this section, we define a simple composition
criterion for SoD policies in RBAC systems and illustrate
the use of the criterion with two examples.

In Section 2.2, we defined an SoD policy as follows:
SeD-P = SoD-PnAdmin(SoD-P)AnCompat(SoD-P, App)

N RBAC-P
where @84@-P = RBAC-P A Admin(RBAC-P), and both
SoD-P and RBAC-P are conjunctions of A7, AM, and 44
properties. Since we assumed that all SoD policies are
implemented in secure RBAC systems, Z84@-? is
satisfied and, hence,

SD-P = SoD-PAAdmin(SoD-P)ACompat(SoD-P, App),
where Admin(SoD-P) and Compat(SoD-P, App) are
defined as follows:

Definition. Compaf(SoD-P, App) is satisfied if and
only if SoD-P m App #O; i.e., SoD-P includes at least a
command sequence that executes the application App.

Example 2 below shows that, unless Compat(P, App)
is satisfied, composition of two policies cannot guarantee
application executability. Hence, omitting Compat(P,
App) can cause policies which otherwise are not
composable to appear to be composable.

Definition. Admin(SoD-P) is satisfied if and only if
VseSTATES, 3s,e STATES,, 3neQ such that o starts in s
A o reaches sy A § € SoD-P; i.e., starting in an arbitrary
state, the administrative commands have the ability to
bring the system in a state that satisfies property SoD-P’.

A variant of Admin(SoD-P) might require that any
state s,€STATES, such that éo € SoD-P be reachable from
any other state.

Note that the predicate “o reaches so” of Admin(SoD-
P) is not trivially satisfied; e.g., the system may not
provide all the administrative commands to ensure that
certain states of STATES, can be reached.

As a set, SsD-2 = SoD-P whenever Admin(SoD-P)
and Compat(SoD-P, App) are satisfied, and & otherwise.
Whether Admin(SoD-P) and Compat(SoD-P, App) are
satisfied requires the analysis of both command and
application code.

Let App, and App, be two applications of a secure
system, and let 2, = PiAddmin(P,)ACompat(P,, App,), P>
= PynAdmin(P)ACompat(P,, App,) be two SoD policies
for applications App; and App;.

Definition. Let 2, °2, be the SoD policy (PiAP)A
Admin(PiAP)ACompat(P1AP,, AppilLUApp,). We say that

> We note that Admin(SoD-P) and Compat(SoD-P, App) are not
properties of individual command sequences. Hence, they are neither
“safety” nor “liveness” properties in the sense of Alpern and Schneider
|2], and not subject to the Abadi-Lamport composition principle [1].

P is composable with P, if and only if 2,°2, # &
whenever 2,20 and 2,#2J. Hence,

21 is composable with 2, &

(do,€Py: o, executes Appy A Admin(Py) A

do,e P, o, executes App, A Admin(P,) =

doeP NP, o executes Appy, App, A Admin(P;AP,)).

If 2, is composable with 2,, then 2,°2; is called the
composition of 2| with 2, or the emerging policy, and the
set command sequences is 212,

The following properties of composition hold:
ldempotency: any policy 2 is composable with itself, and
P =7.

Commutativity: for any two policies, 2, and 2, if 2, is
composable with 2,, then 2, is composable with 2, and
P1°P, = PP

Monotonicity: for any two policies 2; and 2,, if 2, is
composable with 2,, then 2,°P, = 2.

Associativity: for any three policies, 2y, 2,, P, if 2y is
composable with 2,, 2,°2, is composable with 2;, 2, is
composable with 2;, and 2, is composable with 2,°2;,
then (2,°2,)°P; = 2,°(P,°P3).

Theorem 6. Let App, and App, be two applications of
a secure system with STATES, = STATES, and 2, = Py A
Admin(Py) A Compat(Py, App1), P, = Py A Admin(P,) A
Compat(P,, App,;) two SoD policies. If the applications
App, and App, do not share roles, operations, or objects,
then the policies 2, and 2, are composable.

In the following two examples we illustrate the use of
the composition criterion. We show that not all SoD
policies are composable despite the fact that their SoD-P
properties are composable. For simplicity, we assume
that the properties Admin(P,), Admin(P5), and Admin(P; A
P,), where P, and P, are the two SoD-P properties, are
satisfied in both examples.

Example 1. Let podApp = [{purchase-order},
{read/write, sign, verify-sign}, poPlan] be a “purchase-
order processing” application, partitioned according to the
plan poPlan = {(purchase-order, read/write), (purchase-
order, sign), (purchase-order, verify-sign)}. The user
assignments of this application allow a purchase order
clerk, but no other user, to write and sign purchase
orders, and purchase orders become valid documents only
after they are countersigned by an approving authority.
Within the RBAC system, the roles of the purchase-order
clerk and that of the approval authority are separated and
the users are assigned accordingly; i.e., the operations
read/write and sign purchase orders are executed by a role
ry, and verify-sign purchase orders is executed by a role
r,. Furthermore, the purchase order clerk and the approval
authority may not be the same user, and hence, different
users are enrolled in , and r, .

The following property specifies both the role

assignments and the desired SoD property:

poP =

(Os state of o, r OROLES,r #1,,r #1, U

execute U auth(s,r, poApp)) U

(Os state of 0, verify_ sign U auth(s,r,, purchase_ order)

Oread / write Uauth(s, ry, purchase_ order) [

sign Oauth(s, r,, purchase_order)) U

SSoD({r,, 1, }, podpp).

Property poP is compatible with poApp, and
consequently the policy 2, = poP A Compat(poP, poApp)
is not empty. The administrator has to grant the
permissions read/write, sign to the role ry, and verify-sign
to r,, and to assign two different users to roles r; and r,.

Let apApp = [{purchase-order, check}, {read,
read/write, sign}, apPlan] be an “accounts payable”
application, partitioned according to the plan apPlan =
{(purchase-order, read), (check, read/write), (check,
sign)}. The user assignments of this application allow a
clerk, but no other user, to read purchase orders and write
checks, but the checks must be signed by another user
who has signature authority. Within the RBAC system, the
roles of the clerk who writes checks and that of the check-
signing authority are separated accordingly; i.e., the
operations read purchase orders and read/write checks are
executed by a role 73, and sign checks are executed by a
role r,. Furthermore, the clerk and the signature authority
must not be the same user, and hence, different users are
enrolled in r; and r,. The following property specifies
both the role assignments and the desired SoD property:
apP =
(Os state of o, Or O ROLES,r # ry,r # 1, U
execute Jauth(s, r, apApp)) O
(Os state Cs state of 0, sign U auth(s, ry, check)) O
(Os state of 0, read Uauth(s,r,, purchase_ order)) [
(Os state of g, read / write O auth(s, r,, check)) U
ObjDSoD({ry, 1, }, apApp).

Property apP is compatible with apdpp, and
consequently the policy 2, = apP A Compat(apP, apApp)
is not empty. The administrator has to grant the
permissions read purchase orders, read/write checks to
the role r3, and sign checks to r4, and assign two different
users to roles r; and 7.

Obviously, the policies 2; and 2, are composable
under the composability criteria defined in this section:
there are tranquil command sequences that execute both
applications and satisty both poP and apP.

Example 2. Let’s define 2, as in Example 1, and let
cpApp = [{purchase-order}, {read/write, sign}, cpPlan]
be a “central purchasing” application, partitioned

according to the plan is c¢pPlan = {(purchase-order,
read), (purchase-order, read/write), (purchase-order,
sign)}. The user assignments of this application require
that the reading of the departmental purchase orders and
the writing of organization purchase orders be separated
from the signing of organization purchase order. Thus, in
the RBAC system, the first two operations and the last
operation of the plan are executed by separate roles »; and
rs. The following property specifies the role assignments
and the desired SoD property:

cpP =

(Us state of g,0r OROLES,r # 1,7 # 15 U

execute O auth(s,r, cpApp)) O

(Us state of g, read / write Uauth(s, rs, purchase_order))
LU OpSSoD({r, . rs}, cpApp).

Property c¢pP is compatible with c¢pdpp, and
consequently the policy 2; = cpP A Compat(cpP, cpApp)
is not empty. The administrator has only to grant
read/write permissions to r; and sign permission to rs
(and, of course, to have users assigned to these roles).

Policies 2, and 2; are not composable. To satisfy the
OpSSoD property of policy 25, o must start in a state such
that »; does not have the sign permission. Such a tranquil
command sequence could never execute poApp, because
ry requires the sign permission by virtue of policy 2;.

We note that the administrator can redefine policies
2, and 25 to obtain policies 2,° and 2;°, which are
composable. This can be done by making either one of the
following changes via non-tranquil commands;

- add a new role in 2, and grant the sign permission to it
and, at the same time, remove the sign permission from r;
or

- replace r; in 2; with a new role that has only read/write
permissions.

Note that, had we defined the above SoD policies
only via SoD-P properties, all the policies would have
appeared to be composable. However, Example 2 above
shows that, when compatibility is taken into account, two
of the SoD policies become incompatible and, hence, not
composable.

6 Conclusions

The use of formalism in the definition of SoD properties
helps (1) identify a wide variety of such properties, (2)
remove ambiguities from informal definitions, and (3)
establish heretofore unknown relationships among these
properties. Formal SoD policies were also defined using
the SoD properties.

The variety of SoD properties, while offering a wide
choice of implementation, suggests that new

administrative methods and tools are necessary if these
properties are to be effectively used. This is the case even
for RBAC systems, which offer significant support for
implementing SoD properties.

Acknowledgments

This paper was funded in part by the US Department
of Commerce, National Oceanographic and Atmospheric
Administration, under the SBIR Contract No. 50-DKNB-
7-90120. The views expressed herein are those of the
authors and do not necessarily reflect the views of the US
Department of Commerce or any of its sub-agencies. The
first author would like to thank C. Sekar Chandersekaran
of IBM Corporation for his interest in, and support of,
this work. We also thank John McLean for his helpful
comments.

References

[1] Abadi M., and L. Lamport, “Composing specifications,”
Stepwise refinement of Distributed Systems, J. W. de
Bakker, W. P. de Roever, and G. Rosenberg, eds., Lecture
Notes in Computer Science, vol. 430, Springer-Verlag,
1990.

[2] Alpern B., and F. Schneider, “Defining liveness,”
Information Processing Letters, vol. 21, no. 4, Oct. 1985,
pp- 181-185.

[3] Clark D. D., and D. R. Wilson, “A Comparison of
Commercial and Military Security Policies,” Proc. of the
1987 IEEE Symposium on Security and Privacy, Oakland,
California, 1987, pp. 184-194.

[4] Clark D. D., and D. R. Wilson, “Evolution of a Model for
Computer Integrity,” in Report of the Invitational
Workshop on Data Integrity, 7.G. Ruthberg and W.T. Polk
(eds.), NIST Special Publication 500-168, Appendix A,
September 1989.

[51 Common Criteria for Information Technology Security
Evaluation, GISA, NNCSA, CESG, NIST, NSA, Version
2.0 Draft, December 1997.

[6] Federal Criteria for Information Technology Security, Vol.
1, Chapter 3 and Appendix C, Version 1.0, NIST and
NSA, December 1992.

[7] Ferraiolo D., J. Cugini, and D. R. Kuhn, “Role-Based
Access Control (RBAC): Features and Motivations,” Proc.
1995 Computer Security Applications Conference,
December 1995, pp. 241-248.

[8] Gligor, V. D., S. I. Gavrila, and J. Cugini, “The RBAC
Security Policy Model”, http://cspa09.ncsl.nist.gov/disk2/
rbac/docs/model.ps

[9] Hecht, M. S., M. E. Carson, C. S. Chandersekaran, R. S.
Chapman, L. J. Dotterer, V. D. Gligor, W. D. Jiang, A.
Johri, G. L. Luckenbaugh, and N. Vasudevan, “Unix
Without the Superuser,” Proc. of the 1987 USENIX
Conference, Phoenix, Arizona, June 1987, pp. 243-256.

[10] Hummel, A. A., K. Deinhart, S. Lorenz, V. D. Gligor,
“Role-Based Security Administration,” Sicherheit in

Informationsystemen (K. Bauknecht, D. Karagiannis, and
S. Teufel (eds.)), vdf Hochschulverlag, ETH Zurich, March
1996, pp. 69-92.

[11] Kailar R., V. D. Gligor, and L. Gong, “Security
Effectiveness of Cryptographic Protocols,” in Dependable
Computing for Critical Applications - 4, F. Cristian, G.
LeLann, and T. Lunt (eds.), Springer Verlag, 1995, pp.
139-157.

[12] Koch, G., and K. Loney, Oracle. The complete reference,
Oracle Press, 1995.

[13] Nash M. J., and K. R. Poland, “Some Conundrums
Concerning Separation of Duty,” Proc. 1990 IEEE
Symposium on Security and Privacy, Oakland, California,
May 1990, pp. 201-207.

[14] Sandhu, R., “Transaction Control Expressions for
Separation of Duties,” Proc. of the 4th Aerospace
Computer Security Conference, Tucson, Arizona, Dec.
1988, pp. 282-286.

[15] Simon R. T., and M. E. Zurko, “Separation of Duty in
Role-Based Environments,” Proc. of Computer Security
Foundations Workshop X, Rockport, Massachusetts, June
1997.

[16] Trusted Recovery Guideline, NCSC-TG-022, Version 1,
National Computer Security Center, December, 1989.

[17] Unified INFOSEC Criteria, INFOSEC Concepts, Section
3, “Dependencies among TCSEC Requirements
(unclassified)”, National Security Agency, 1993.

Appendix: Proofs

Proof of Theorem 1. We prove the theorem for the
SSoD property. The proofs for the other properties are
similar, and, for simplicity, are omitted. Note first that the
SSoD property is a state property, and that all other state
and transition properties are RBAC specific, and are
satisfied in the secure RBAC system. Let ¢ be op;(sy, Si,
obj1, $1)-0px(s1, Sz, 0bjs, $3)-.... We know that s, satisfies
the SSoD property. Suppose that s, , where n>0, satisfies
SSoD, and that s,., does not.. This implies that there are
two roles ry, 7, sharing a common user # in state ..
There are two possible cases:

a) r; and r, had the common user in state s,,;
b) the command op(s,, Sy, 0bj1, Sy+1) created or
updated 7| or r,;

Case a) is rejected by the inductive hypothesis, and
case b) is contradicted by ¢ being tranquil. Hence, s,
satisfies SSoD.

Proof of Theorem 2. Let ¢ be in ObjDSoD(RoleSet,
App), and let o start in s,. When a user u performs two
distinct operations, op;, op, € OpSet on an object
0bje ObjSet, in roles of RoleSet and in states of o, the
system reaches a state s of o such that {op;, op,}c
access_history(s,, s, u, RoleSet, obj). But ObjDSoD and
the access_history properties imply that access_history(s,,
s, u, RoleSet, obj)c{op;}and, hence, {op;, op.}={op1},

contradiction. ~Conversely, assume, by way of
contradiction, that ¢ ObjDSoD. Then there is a state s in
o such that access history(so, s, u, RoleSet, obj)o{op,
op»} , where u is a user, obje ObjSet, op,, op,€OpSet.
This means that u has performed two distinct operations
on the same object of App.

Proof of Theorem 3. Similar to the proof of
Theorem 2.

Proof of Theorem 4.
1. This is a consequence of the two SoD definitions.
2. The 1sSSSoD property says that RoleSet has no roles
with common role members, so that a RoleSubset in the
ObjSSoD condition is reduced to a single role. Also by
ssSSoD, that role is authorized to at most one operation of
OpSet.
3. As before, the 15sSSSoD property reduces a RoleSubset
with common role members to a single role, which is
authorized to perform at most one operation of OpSet.
Consequently, OpSet with a cardinality of at least 2 cannot
be a subset of the authorized permissions of that single
role.
4. This is a consequence of the two SoD definitions.
5. The roles enabled (active) for a user must be among
those assigned to that user. Thus, if two roles have no
common members, they cannot have common active
users.
6. Let » be a role in RoleSet, op,#op, two operations in
OpSet, and obj in ObjSet. If we apply the ObjSSoD
property to RoleSubset={r}, we get as a conclusion {op;,

opay & U auth(s, x, 0bj)= auth(s, r, obj).
xORoleSubsel

7. Assuming that SSoD holds, we have to prove the
converse of 6. Let RoleSubset be a subset of roles in
RoleSet with common members. SSoD implies that
RoleSubset is reduced to a single role. For such
RoleSubset, the ObjSSoD and RObjSSoD conditions
coincide.

8. Let o be a command sequence starting in s, and
satisfying the RObjSSoD and DSoD properties, and op(s,
S, obj, s;) a command of o, with resubject roles(s,
S)YNRoleSet#D, obje ObjSet, ope OpSet.Assume, by way
of contradiction, that there is a role r,€RoleSet and an
operation op,€OpSet, op#op, such that
opi€access_history(sy, s1, subject _user(S), {ri}, obj).
Either r=r;, and this means that in a state s of o {op,
opiycauth(s, r, obj), which contradicts RObjSSoD, or
r#ry, and this means that subject user(S) is active in both
r and r in a state of &, which contradicts DSoD.

9. Let o be a command sequence starting in s, and
satisfying the ObjSSoD property, and op(s;, S, 0bj, s;) a
command of o, with resubject roles(s;, S)MRoleSet#D,
0bje ObjSet, ope OpSet. Assume, by way of contradiction,

that there is a role reRoleSet and an operation
op1€OpSet, opi#op, such that opeaccess _history(sy, si,
subject_user(S), {ri}, obj). We conclude that
subject_user(S) € role_members(r) M role_members(ry),
and {op, op1} < auth(s,, r, obj) U auth(s,, r1, obj), which
contradicts the ObjSSoD property.

10. Let o be a command sequence satisfying the OpSSoD
property. Let |OpSet|>2 and suppose by way of
contradiction that there is a role re RoleSet and a state s of

o such that OpSet = U auth(s,r,obj). Let us
0bj0bjSet

choose RoleSubset = {r}. The preceding inclusion can be

written as OpSet < rDRU,LUJ%M auth(s, x, obj), which
' obj EDthS’ut

contradicts the OpSSoD property.

11. If o satisfies the SSoD property, any RoleSubset with

common members is reduced to a single role, and for such

subsets the OpSSoD and ROpSSoD conditions are

equivalent.

12. Let o be a command sequence that satisfies the DSoD

and ROpSSoD properties. Because of DSoD, any

RoleSubset with common active users (as required by the

OpDSoD property) is reduced to a single role, RoleSubset

= {r}. The OpDSOD condition OpSet
xmvly&’bm auth(s,x,0bj) may be written OpSet
0bj00bjSet

& U auth(s,r, obj), which is true by the ROpSSoD

objT0bjSet
property.
13. Let ¢ be a command sequence that satisfies the
OpSSoD property, and RoleSubset a subset of RoleSet
with common active users. Then RoleSubset also has
common members. If we assume |OpSef|>2 and apply
OpSSoD, we get exactly the conclusion of OpDSoD.
14. Let o be a command sequence that starts in s, and
satisfies the ObjDSoD property, |OpSet|>2, and op(s,, S,
obj, s;) a command in ¢ with opeOpSet, objeObjSet,
resubject roles(S) ™ RoleSet. Assume, by way of
contradiction that OpSet < access history(sy, s, u,
RoleSet, obj){op}. There must be op,€OpSet, op#op,
and rj€RoleSet, such that op,eaccess history(s,, si,
subject_user(S), {ri}, obj), which contradicts the
ObjDSoD property.
15. Let o be a command sequence that starts in s, and
satisfies the OpDSoD property, |OpSet|>2, and op(s;, S,
obj, s,) a command of o such that ope OpSet, objc ObjSet,
resubject roles(S) M RoleSet. Suppose by way of
contradiction that OpSet < access_history(sy, sy,
subject_user(S), RoleSet, obj)u{op}. But
access_history(sy, s1, subject _user(S), RoleSet, obj) <

U auth(s],x, obj), and opeauth(s,, r, obj).

xORoleSet

Consequently, OpSerc U
xORoleSet

contradicts the OpDSoD property.

Proof of Theorem 5.

(1) Let P; and P, be two SoD properties. If we can
find a start state s, satisfying the state invariants of both P,
and P, then clearly § € PinP,. We note that if the roles
assigned to an application satisfy a SoD property P, then
after revoking a permission from one of the roles or
removing a member from one of the roles, they still satisfy
P. Now, starting in an arbitrary state with the current
roles, and through possibly non-tranquil commands, we
can revoke permissions one by one and/or remove
members one by one from the App,’s roles until we reach
a state that satisfies P;. It is always possible to do that,
because the empty role (without permissions) with no
members satisfies any SoD property. Then, we can apply
the same procedure to App,’s roles, until we reach a state
that satisfies P, (and P;). This new state, which satisfies
both P, and P,, is the new start state.

(2y Let App=[{obj}, {op, opa}, plam],
App-=[{obj,}, {ops, ops}, plan,] be two applications in a
secure RBAC system, and RoleSet,={ry, r}, RoleSet, =
{rs, r4} their assigned roles. Let STATES, = {sy, 50"}, with
the states sy, so” such that:

auth(sl ,Xx,0bj), which

- in s¢, 1 and 7, do not have common assigned users, and
r3 has permissions op;, op,; and

- in s¢", ry and r, have a common assigned user, and r; has
only permission op;, and r, has only permission op,.

Then, P1=SSoD(RoleSet,, App\)=J, P,= ROpSSoD
(RoleSet,, App,) #J, but P1nP, = . Indeed, any tranquil
command sequence starting in so" satisfies P; but not P,
and any tranquil command sequence starting in s,"
satisfies P, but not P;.

(3) P1=SSoD(RoleSet,, App)#=< and P,= ROpSSoD
(RoleSet,, App,) #< means that the start state s, satisfies
PiAP,. At least §, € PiNPs.

Proof of Theorem 6. Suppose that Jc,€Pi: o,
executes App, A do,€P,: G, executes App,. Hence, there
are start states so’ satisfying P, and s," satisfying P,. Then,
starting from sy, for example, and using possibly non-
tranquil transitions, we can reach a state s, satisfying both
P1 and P, (their constraints do not interfere). Taking s, as
start state, we can apply the commands of o, executing
Appy, then the commands of o, executing App,, which
again do not interfere.

