
An Integrity Enforcement Application Design and Operation Framework
in Role-Based Access Control Systems: A Session-Oriented Approach

HyungHyo Lee, BongNam Noh
Dept. of Computer Science, Chonnam National University, Kwangju, Korea

hlee@athena.chonnam.ac.kr, bongnam@chonnam.ac.kr

Abstract
Role-Based Access Control(RBAC) policy is being widely
accepted not only as an access control policy but as a
flexible permission management framework in various
commercial environments. RBAC simplifies the process of
security management by assigning permissions to roles
not directly to individual users. As security administrators
can design and manage security policies by changing the
configuration of RBAC components to meet their
organization’s own security needs, RBAC is called policy-
neutral and has ability to articulate enterprise-specific
security policies. While most researches on RBAC are for
defining, describing model in formal method and other
important properties such as separation of duty, little
work has been done on how applications should be
designed and then executed in automated information
systems based on RBAC security model. In this paper, we
describe important, dynamic features of a session that can
be used as a vehicle for building applications, and
present a basic framework for session-oriented integrity
enforcement application design and operation applicable
to commercial environments.

1. Introduction

As computer and information systems around the world
are getting connected via various communication channels,
information security is becoming one of most important
issues in every organization. Trusted Computer System
Evaluation Criteria(TCSEC) contains security features
and assurances, exclusively derived, engineered and
rationalized based on DOD security policy[5]. It was to
meet a major security objective - preventing the
unauthorized observation of classified information[6]. The
TCSEC specifies two types of access controls:
Discretionary Access Control(DAC) and Mandatory
Access Control(MAC). MAC is used for multi-level
secure military systems, but its usage in other applications
is rare. DAC has been perceived are being technically
correct for commercial and civilian government security
needs. MAC is based on rules or axioms for deciding

users' access request to objects. Those rules are based on
the security levels: clearance level for users and
classification level of objects, assigned by security
administrator[3]. DAC permits the granting and revoking
of access privileges to be left to the discretion of the
individual users, especially the owner of objects.

While civilian governments and corporations are
concerned with protecting the secrecy of information as in
military environments, many of these organizations have
been greater concern for integrity[4]. Each organization
has unique security requirements, and many of them are
difficult to meet by traditional MAC and DAC controls. In
addition, MAC is too rigid for commercial environments,
and DAC can not provide controlled or centralized access
control capability that almost organizations need.

But in Role-Based Access Control(RBAC), access
control decisions are determined by the roles individual
users take on as part of an organization. Also, in RBAC,
access permissions are assigned not to individual users but
to roles, and access permission can not pass to other users
at users' discretion. This greatly simplifies the process of
permission management in complex and ever changing
contemporary commercial environments.

In order to uphold the integrity properties of
information system where RBAC is applied, several
separation duty policies are defined[7]. They differ in
several criteria such as enforcement phase(static or
dynamic), flexibility, and the target which separation of
duty applied(role or object), etc. Separation of duty is to
minimize the likelihood of collusion that can be made
among the users who have privileges to perform
operations on objects pertinent to integrity properties.
Researches on separation of duty to date are concerned
with what the exact meaning and definition of separation
of duty are, and the relationships among them[4,7,10].

While most researches on RBAC are for defining and
describing model and other important properties such as
separation of duty in formal method, little work has been
done on how applications should be designed and
executed in automated systems upholding security policies
on the other hand. In this paper, we describe important
features and properties of session as a vehicle for building

applications and present a framework for session-oriented
integrity enforcement application design and operation.

In section 2, key features and major components of
RBAC model are described. In order to reduce the
ambiguity and incorrectness, a formal description for
RBAC model and various separation of duty properties
are also reviewed. We revisit the concept and features of
session needed to build integrity preserving application
design and operation in section 3. Section 4 concludes the
features of the proposed framework for flexible and
effective business application design and development.

2. Role-Based Access Control

As mentioned above, MAC is based on rules imposed
by security domain authority that can be automatically
enforced and is most common in military and other
classified environments. In contrast, DAC has much
greater flexibility for providing access rights to resources
to owners of those resources. But none of them solely is
adequate for the commercial environment where both
flexible and rather centralized control are equally
important.

RBAC is another type of security policy which is
particularly not only valuable in contemporary
commercial environments but every other environment
such as operating systems and database systems[2]. RBAC
is concerned more with access to functions and
information than strictly with access to information as in
MAC and DAC policy[1,10]. Sandhu et al.[11] define the
family of RBAC models, and Ferraiolo et al.[7] developed
formal RBAC model as well as its architecture and
prototype. RBAC model is considered policy-neutral and
a means for articulating policy rather than embodying a
particular security policy[13,14]. In this section, we
briefly summarize the features and components of RBAC
model.

2.1. Features and Components of RBAC Model

RBAC has recently received considerable attention as a
promising alternative to traditional DAC and MAC[6,11].
In RBAC, permissions are associated with roles, and users
are made members of appropriate roles thereby acquiring
the roles’ permissions. This greatly simplifies the
management of permissions[14]. Although the RBAC
concept is policy-neutral, it directly supports three well-
known security principles such as least privilege,
separation of duties, and data abstraction.

Figure 1 shows the components of RBAC model[11].
A role is a named job function within the organization that
describes both the equality and responsibility conferred on
a member of the role. Role hierarchy(RH), a partial order
relationship among roles, is a natural means for both

structuring roles to reflect an organization's lines of
authority and responsibility. User is either a human being
or process that interacts directly with a computer system.
Permission is an approval of a particular access to one or
more objects in the system. Permission is sometimes
expressed in the term such as authorization, access right
and privilege. Permissions can apply to single object or to
many, and they can be as specific as read access to a
particular file or as generic as read access to a particular
department. Objects are data objects or resources of
system represented by data in the computer system.
Sessions map one user to possibly many roles. Sessions
are established by users, and during which users may
activate a subset of roles they belong to.

Both user assignment(UA) and permission
assignment(PA) relations are many-to-many and
important components of RBAC. The role’s position as an
intermediary to let user exercise permission provides
greater control over access configuration than does a
direct relationship between users and permissions.
Constraints can apply to any of the preceding components.
Examples of constraints are separation of duties,
cardinality and prerequisite roles, etc.

2.2. Formal Description of RBAC

Formal methods are to reduce misunderstandings
among different groups of software developers and across
different stages of the development process. Formal
methods utilize specification techniques to precisely state
and analyze the behaviors of system. In this paper, we use
Z as a formal specification method to describe both
properties and components of RBAC. Z is based on typed
set theory and the schema construct[15]. Schemas are
used to capture both static and dynamic aspects of system
being modeled. At first, we declare the following basic
types, functions and state schemas for RBAC model.

Sessions
(S)

Constraints

Users
(U)

Roles
(R)

Permis-
sion
(P)

User
Assignment (UA)

Permission
Assignment (PA)

Role
Hierarchy (RH)

•
•

•

Figure 1: Components of RBAC Model

[USERS, OPERATIONS, OBJECTS, CONSTRAINTS]
USERS: a set of user or process identifiers,
OPERATIONS: a set of operations,
OBJECTS: a set of objects that contain information,
CONSTRAINTS: a set of constraints.

users_of_role: Role → 3 USERS
roles_of_user: USERS → 3 Role
user_of_session: Session → USERS
roles_of_session: Session → 3 Role
active_roles: Session → 3 Role
mutex_roles: Role ∪ 3 Role → 3 Role

Permission
operations: OPERATIONS
objects: 3 OBJECTS
Role
name: STRING
users: 3 USER
permissions: P Permission
Session
name: STRING
user: USERS
roles: 3 Role
∀ r : Role | r ∈ roles • user ∈ users_of_role(r)

 A set of active roles for a specific session is a subset
of roles that are authorized to the user of that session.
Whether all of the roles for session become active or not
when that session is activated depends on the policy of
organization.

2.3. Separation of Duty

While secrecy of information is the key concern in
specialized environments, integrity may be the most
important property in commercial environments. To
ensure the integrity of information, separation of
duty(SOD), as a security principle, is introduced. The
purpose of SOD is to prevent and minimize those chances
of collusion, assigning users with the integrity-related
conflicting interests or mutually exclusive roles to
separate users[9].

SOD can be either static or dynamic. Static SOD
requirements can be simply satisfied by the assignment of
individuals to roles. Static SOD requires that the same
user can not be made member of mutually exclusive roles.
But such a policy is too restrictive for commercial domain,
another more flexible SOD policy is needed. Dynamic
SOD allows one user to be a member of mutually
exclusive roles, but places constraints on the simultaneous
activation of roles. The objective behind dynamic SOD is
to allow more flexibility in operations, and checking the
compliance with the dynamic SOD requirement can be

determined only during system operation. But, it is more
difficult to show given transaction complies with the
dynamic SOD requirement.

Another important SOD is operational SOD.
Operational SOD requires that for all the operations
associated with a particular business function, no single
user can be allowed to perform all of these operations.
Clark and Wilson, Nash and Poland, and Simon and Zurko
introduce the wide variety of SOD and describe the
properties of each SOD[3,4,10]. Gligor et al. formally
define various SOD properties and establish their
relationship within a formal model of RBAC[9].

Static, dynamic and operational separation of duty
policies are represented formally as follows:

 StaticSOD
r1?, r2?: Role
r1?∈ mutex_roles(r2?) ∧ r2?∈ mutex_roles(r1?) ∧
 users_of_role(r1?) ∩ users_of_role(r2?) = ∅
 DynamicSOD
s?: Session
∀ r : Role | r ∈ s?.roles •
 mutex_roles(r) ∩ s?.roles = ∅

Both static and dynamic SOD policies could be used to
maintain the integrity of information systems effectively if
applied appropriately.

Before we define the operational SOD in formal
method, the concept of business function or application
also should be clarified. As each session should have only
one user in RBAC model, two of more users or sessions
are grouped together to execute integrity-relevant
applications. In other words, application can be described
as inter-related sessions with some constraints for
preserving integrity properties of organization. Like role
membership(static) and session(dynamic), application also
is another target of SOD policy applied.

Application
name: STRING
initiators: 3 Role
sessions: 3 Session
constraint: CONSTRAINTS
OperationalSOD
app?: Application
¬ (∀ s : Session; ∀ r : Role; ∃ u: USERS |
 s ∈ app?.sessions, r ∈ roles_of_session(s) •
 u ∈ users_of_role(r))

But, as the constraint of operational SOD is too weak

and does not consider the meaning and the relationship
among sessions of application, there is a possibility that
the integrity may be compromised. In section 3, in order
to prevent such an integrity violation, we revisit and

extend the concept of session in commercial environments
and propose additional strict separation of duty for
upholding the integrity of applications.

3. Session-Oriented Application Design and
Operation Framework

As noted earlier, we define business function or
application as inter-related sessions and some constraints
for preserving integrity properties. Despite the several
important features session has, little work has been done
about how it can be used as a vehicle for building
applications, and when user and roles should be assigned
to each session, and in which way sessions are related
each other, etc. Furthermore, in order to session-oriented
application design and operation is implemented in
computerized and automated system, the concept and
features of session should be explored. Traditional
meaning of session is a logical duration of interaction
between system and user from user login to user logout.
But, in automated information processing environments,
session can be invoked and assigned to user dynamically
within the security policy stipulated by security
administrator. This, dynamic and extended view of session,
made RBAC model be a useful in workflow and
distributed systems.

As session in RBAC model plays an important role in
our research, we define and describe the important
features of sessions.

Reusable, Sharable Unit of Application
In real world, a unit of job performed by single user

may be used or sharable in several, independent
applications. Such a job function can be mapped to
session of RBAC model, and session is a building block
for applications in RBAC systems.

Enforcement of Least Privilege Principle
As RBAC model permits a user to be a member of

several roles, privileges authorized to a user are the union
of the privileges of each role to which a user is assigned.
But session activates the only needed roles, a subset of
authorized roles to given user to execute the part of
application function, the possibility of privilege misuse is
minimized.

∀ u : USERS, ∀ s: Session | user_of_session(s) = u •
 roles_of_session(s) ⊆ roles_of_user(u)

Enforcement of Separation of Duty Enforcement
In order to preserve the integrity of information

systems, every integrity-related application should not be
executed by a single user. Such an application should be
divided into sessions and each of those sessions should be
assigned to different user not to compromise the integrity.

Provision of Higher Level of Abstraction
In the previous works of RBAC model, applications as

regarded as a collection of objects, operations on them,
and other constraints such as execution sequence, etc[9].
As a consequence, some SOD properties are described in
terms of primitive objects and operations. But, session-
oriented application design approach where objects and
operations are encapsulated in session provides higher
level of abstraction and management of SOD properties to
application designers and security administrators.

3.1. Application in Session-Oriented Approach

As we defined session in formal method, application
consists of well-defined sessions, constrains such as SOD
properties, execution order, temporal limitations, its
unique name, etc. Applications can be regarded as not just
a service providing entity but as a dynamic integrity
enforcement unit providing session activation, session-to-
user mapping according to their constraints.

3.2. Session-Based Separation of Duty

The definition of operational SOD requires that all the
operations associated with a particular business function,
no single user can be allowed to perform all of those
operations[7,9]. But there exists integrity hole even if
applications satisfy operational SOD.

It may be possible all sessions of an application
perform integrity-related activities. But in most cases, if
some sessions are assigned to a single user, integrity of
information system may be severely compromised. In
other words, compliance with operational SOD does not
always guarantee the integrity properties. For example,
suppose a simple item-purchasing application that consists
of 3 sequential sessions:

s1: making an item-purchasing order
s2: checking /recording numbers of the arrived items
s3: authorizing the payment for items

Suppose user, u1, is assigned to session s1 and s2, and
u2 executes s3. Although this application satisfies
operational SOD, but if u1 intentionally checks on the
items in wrong way, the integrity of organization's
information system is seriously compromised. Therefore,
we propose a new session-based SOD to prevent such
possible security problems.

As SOD is application-dependent, application
designer can specify which sessions should not be
assigned to a single user as in mutually exclusive roles.
Mutually exclusive sessions are formally expressed as
follows:

MUTEX_SESSIONS ==
 3(Session × Session) \ { si, sj : Session | si = sj, • (si, sj) }

SessionSOD
app?: Application
mutex_sessions: MUTEX_SESSIONS
∀ si, sj : Session | si ≠ sj,
 si ∈ app?.sessions, sj ∈ app?.sessions •
 (si, sj) ∈ mutex_sessions ∨ (sj, si) ∈ mutex_sessions
 ⇒ user_of_session(si) ≠ user_of_session(sj)

3.3. Session-User, Session-Role Assignment

In RBAC model, both UA and PA procedures are
performed by security administrator. But there is no rule
or research effort on how and when session-to-user,
session-to-role(s) mapping should be done. As there are a
lot of different configurations to assigning roles and user
to a session, Session-User Assignment(SUA) and Session-
Role Assignment(SRA) policy may be an important factor
for deciding the flexibility of integrity enforcement tasks
of the system. If application designer designates both user
and roles for a specific session in application design phase,
performance of system may be enhanced but the flexibility
should be diminished. But constructing a session and
assigning to a session in runtime greatly may increase the
flexibility of system, but the performance should be
degraded.

In order to provide moderate flexibility and
performance of system, we propose the policy in which
SRA is performed in application design phase and SUA is
carried out in application operation phase. Considering the
relationship between roles and permissions is rather stable,
whereas the changes in users and roles relationship is
relatively frequent, proposed SRA and SUA policy is
reasonable.

3.4. Feasibility Checking of Application

Feasibility checking in application design phase only
checks the existence of the instance in which the designed
application can be executed as specified. Due to dynamic,
operational SOD and constraints of RBAC components
such as number of users, maximum number of session
permitted per user, maximum number of session that
system can afford, some applications may not be
performed to the end even if they are passed by feasibility
algorithm.

Before we present feasibility checking schema, we
describe a new variant of SOD to enhance the flexibility
of integrity enforcement process and some application
specification constructs in the first place.

Feasibility checking in application design phase is
whether there exists a case in which session-based SOD is

satisfied. In order to define schema for checking
application's feasibility, we introduce schema named
‘CandidateUserSet’.

 CandidateUserSet
session?: Session
candidate_users!: 3 USERS
 candidate_users! = { ∀ u : USERS; ∀ r : Role |
 r ∈ roles_of_session(session?) •
 u ∈ users_of_role(r) }

It returns a set of users whose authorized roles contain
roles of a given session, and each of them is capable of
performing given session. Formal definition for checking
the feasibility of a given application based on session-
based SOD is as follows:

FeasibilityCheck
SessionSOD
∀ si, sj : Session | (si, sj) ∈ mutex_sessions •
 CandidateUserSet(si) ≠ ∅ ∧
 CandidateUserSet(sj) ≠ ∅ ∧
 CandidateUserSet(si) \ CandidateUserSet(sj) ≠ ∅ ∧
 CandidateUserSet(sj) \ CandidateUserSet(si) ≠ ∅

3.5. Session-Oriented Application Specification

Session-oriented application specification constructs
are useful not only for building applications but as a frame
of reference in application operation phase. Several
application specification constructs are showed in table 1.

In table 1, session-list may be any session composed by
specification constructs. A special construct for
termination, abort, is used to quit the application if
specific condition holds. In addition, temporal constraints
may be added to enhance the integrity properties of
information systems. Temporal constraints may include
the limitation of the session start or termination time, the
maximum time interval between a pair of sessions, etc.

Table 1: Application Specification Construct Examples
construct notation

sequential s1; s2

parallel s1 || s2

conditional if <condition> then s1 else s2

loop while <condition> do <session-list>
with max_loop = <integer>

grouping (<session-list>)

termination abort

Figure 2 depicts the overall structure of session-
oriented integrity enforcement application design and

operation framework. Session layer provides reusable,
functional unit to applications and runtime module
provides session activation, session-to-user mapping
according to the constraints of given application.

In RBAC administration phase, security administrator
decides which SOD policies adopted, adds or deletes
RBAC components based on SOD policies. For example,
before adding a user to member of role or roles,
compliance with static SOD policy should be checked.

Application designer analyzes the characteristics of
business function in the first place and designs integrity-
preserving application by constructing constituent sessions
of application. Deciding which roles are grouped together
into a session, and which user is assigned to each session,
checking the feasibility of designed application should be
compliant with various SOD policies.

In application operation, both dynamic and operational
SOD are referred to ensure the integrity of information
system(Table 2).

Table 2: Phases and Activities of Session-Oriented
Security Systems

Phase Activities Role

security
administration

- management of components
of RBAC model, SOD
policies

security
administra-
tor

application
design

- session-to-role assignment
- specification of application's

 constraints

application
designer

application
operation

- session-to-user assignment
- enforcement of application's

 constraints

application
user

4. Conclusion and Future Work

In this paper, we present a basic but important
framework for session-oriented integrity enforcement

application design and operation in RBAC systems. The
refined and dynamic features needed to architect the
model for integrity-preserving application design and
operation are described. We conclude session is a
dynamic component of application design and integrity
enforcement process and will play an important role in
automated information systems such as distributed and
workflow management systems. On the other hand further
work is necessary on the description method for session-
oriented application specification, constraints on sessions,
and exception handling.

References

[1] R. W. Baldwin, “Naming and Grouping Privileges to
Simplify Security Management in Large Databases,” IEEE
Symposium on Computer Security and Privacy, 1990.
[2] John Barkley, "Comparing Simple Role Based Access
Control Models and Access Control Lists," August 1997.
[3] Silvana Castano et al., Database Security, Addison-Wesley,
1994, pp18-34.
[4] D. D. Clark, D. R. Wilson, "A Comparison of a Model for
Computer Integrity," Proceedings of the 1987 IEEE Symposium
on Security and Privacy, 1987, pp.184-194.
[5] U.S. Department of Defense, Department of Defense
Trusted Computer System Evaluation Criteria, DOD 5200.28-
STD, National Computer Security Center, December 1985.
[6] David Ferraiolo, Richard Kuhn, “Role-Based Access
Controls,” Proceedings of the 15th NIST-NCSC National
Computer Security Conference, October 1992, pp.554-563.
[7] David F. Ferraiolo, Janet A. Cugini, D. Richard Kuhn,
"Role-Based Access Control(RBAC): Features and
Motivations," Proceedings of the 11th Annual Computer
Security Applications Conferences, December 1995, pp. 241-
248.
[8] Warwick Ford, Computer Communications Security,
Prentice Hall, 1994
[9] Virgil D. Gligor, Serban I. Gavrila, David Ferraiolo, "On
the Formal Definition of Separation-of-Duty Policies and their
Composition," Proceedings of the IEEE Symposium on Security
and Privacy, May 1998, pp. 172-183.
[10] K. R. Poland, M. J. Nash, “Some Conundrums Concerning
Separation of Duty,” IEEE Symposium on Computer Security
and Privacy, 1990.
[11] Ravi S. Sandhu, Edward J. Coyne, "Role-Based Access
Control Models," IEEE Computer, February 1996, pp.38-47.
[12] Ravi S. Sandhu, Pierangela Samarati, "Access Control:
Principle and Practice," IEEE Computer, September 1994,
pp.40-48.
[13] Ravi S. Sandhu, "Role Hierarchies and Constraints for
Lattice-Based Access Controls," Proceedings of the 4th

European Symposium on Research in Computer Security,
September 1996.
[14] Ravi S. Sandhu, "Access Control: The Neglected Frontier,"
Proceedings of the 1st Australian Conference on Information
Security and Privacy, June 1996.
[15] J. M. Spivey, Understanding Z, Cambridge University
Press, 1988.

Figure 2: Integrity Enforcement Application Design
and Operation Framework

Application
Layer

Session
Layer

Role
Layer

Permission
Layer

Runtime Module
• session activation
• session-to-user
 assignment
• enforcement of
 constraints

Components
of RBAC
model, SOD
properties

