Access Control Meets Public Key Infrastructure,

Or: Assigning Roles to Strangers

Amir Herzberg
IBM Haifa Research Lab
amir@il.ibm.com

Dalit Naor
IBM Almaden Research Lab
dalit@almaden.ibm.com

Abstract

The Internet enables connectivity between many
strangers - entities that don't know each other. We
present the Trust Policy Language (TPL), used to define
the mapping of strangers to predefined business roles,
based on certificates issued by third parties. TPL is
expressive enough to allow complex policies, e.g.
non-monotone (negative) certificates, while being simple
enough to allow automated policy checking and
processing. Issuers of certificates are either known in
advance, or provide sufficient certificates to be
considered a trusted authority according to the policy.
This allows bottom-up, ‘grass roots’ buildup of trust, as
in the real world,

We extend, rather than replace, existing role-based
access control mechanisms. This provides a simple,
modular architecture and easy migration from existing
systems.

Our system automatically collects missing certificates
Jrom peer servers. In particular this allows use of
standard browsers, which pass only one certificate to the
server.

We describe our implementation, which can be used as
an extension of a web server or as a separate server with
interface to applications.

Keywords: Authentication, key management, role based
access control, trust management, logic programming,
public key certificates, X.509.

' Work done while at the IBM Haifa Research Lab.

0-7695-0665-8/00 $10.00 © 2000 IEEE

Yosi Mass
IBM Haifa Research Lab
yosimass@il.ibm.com

Joris Mihaeli
IBM Haifa Research Lab
Jorism@il.ibm.com

Yiftach Ravid'
GammaSite Ltd.
yiftach@gammasite.com

1. Introduction

The Internet is quickly becoming the largest marketplace,
allowing commerce and business between parties who are
physically distant and do not know each other. In many
(or most) business relationships, the parties need to
establish some trust in each other, by receiving references
from trusted intermediaries (such as letters of credit). It is
recognized that, on the Internet, this trust can be
facilitated using public key certificates. Indeed, the
creation of recognizable and meaningful public key
certificates infrastructure for Internet-wide use is long
considered a critical problem for the success of electronic
commerce. Unfortunately, this did not happen so far. We
believe that part of the reason is that the traditional
approach was to create a single, top-down, Internet-wide
public key infrastructure, providing identification of
subjects. We advocate a different approach, allowing
bottom-up, “grass roots" buildup of the public key
infrastructure, beginning from isolated "islands’ (typically
Intranets) gradually being connected to cover the entire
Internet, and using the certificates to convey any useful
reference about the subject, not necessarily its identity.

1.1 Trust Establishment and Access Control

The trust establishment problem is a variant of the
well-known Access Control (AC) problem. A simple AC
system as depicted in Figure 1 is a black box that accepts
a query: "Can user U perform action A on resource R"
and returns a Yes (Y) or No (N) answer. A user is
typically identified to the system by username and
password.

Password file
Palicy
[}
]
H J . Log et

| (03, presweord) Identity

Based

2 Aocoas

; 7 Eontrol

| 1gure 1: 1dentity bascd Access Control

A more sophisticated AC system is a role based access
control (RBAC) system [11] as in Figure 2. A RBAC
system has two phases in assigning a privilege to a user:
first the user is assigned one or more roles, and then the
roles are checked against the requested operation. Role
based access control systems reduce the number of
Access Control decisions, since they map users to roles
(one/few mappings for each user), and then roles to
permissions; and the number of roles is typically much
smaller than the number of users. For example, the Unix
OS has a list of all users who can access the system
(/etc/passwd file) and a list of groups with a mapping of
users to groups (/etc/group).

| Password file Roles/groups table

| Policy
Prun— E— S S !
Login ‘ o Role | Rote -+ !
(ID, password) {) Assignment | : Rele 1
—_— | Based |
| Access
r\“"; Control |

Figure 2: Role Based Access Control

Systems that require a stronger authentication can replace
the login process of username, password with a public
key certificate that is used to identify the accessed user,
as in Figure 3. Certificates contain a public key, and
properties of the owner of the corresponding secret key;
in this case, the relevant property is the identity of the
owner. A trusted Certification Authority (CA) digitally
signs each certificate, binding the attributes with the
owner — specifically, providing the identity (name) of the
owner of the private key. The login process is replaced by
an authentication protocol such as SSL, which verifies
that the user has the secret key. This is the mechanism
used, e.g., by certificate-based authentication by current
browsers and servers.

0-7695-0665-8/00 $10.00 ©® 2000 IEEE

Trusted CA’s PKs

Roles/groups table
|

‘ Po}lg\
. L A—
Cert i | o ! Role (0 |
Authentication |, Role — ; ‘
(e.g. SSL) | Assignment | Role j
— Bl b AN | Based |
i Access |

The mechanisms described assumed that every user is
known to the system in advance, with an entry in either
the password file or the Roles/groups table. As previously
explained, for many applications we need to control
access also to users and entities not known in advance.
The certification authentication system simply outputs the
entire certificate, rather than extracting and forwarding
Jjust the identity field from the certificate. This is input to
a Trust Establishment system, which identifies a role,
based on a policy mapping from certificates to roles. See
Figure 4.

Figure 4: Trust Establishment and RBAC

Very simple Trust Establishment modules are available as
part of some systems, such as the IBM S/390 Resource
Access Control Facility (RACF) [5] and Policy
Director[20]. However, these modules just perform
simple mappings from the distinguished names of the
issuer and subject of the certificate to a role (e.g. if the
distinguished name ends with ORG=/IBM, the role is
IBM employee).

We show a more powerful Trust Establishment (TE)
system, with a strong language to define the trust policy.
Our TE system can handle multiple certificates for the
subject, collecting some of them itself, as discussed later.
The system maps the subject of the certificates to a role,
based on the subject’s certificates, on a given
role-assignment policy set by the owner of the resource
and on the roles of the issuers of the certificates.

1.2 Potential Applications

Trust Establishment may be applicable wherever entities

want to engage in sensitive (trust-requiring) transactions,

without sufficient pre-established direct trust. Such
applications involve essentially every aspect of
e-Business, such as electronic marketplaces,
e-government, banking and securities trading. For
example, in auction sites such as e-Bay, buyers need to
trust sellers (to actually deliver) and sellers need to trust
buyers (to pay). Currently, the only mechanism to
establish trust is through a very limited history of
previous transactions kept by the site.

Another example, which will be used throughout this
paper, is a hospital's policy to enable access to large
databases of anonymous medical data for research
purposes, while limiting the access only to authorized
people. The hospital may allow access to cardiology
records only to cardiologists, to oncology data only to
oncologists, etc. A cardiologist is a doctor presenting a
certificate from a recognized hospital. A recognized
hospital can be either known locally or certified by at
least two already recognized hospitals. In this example
there is no need to have a root authority that certifies all
hospitals. Hospitals from different countries can cross-
certify each other to create a web of trust, enabling
doctors to share data. This simple Trust Policy may be
described visually as in Figure 5, and the rule for adding
new hospitals, in Trust Policy Language, is in Figure 6
shown later on.

/,—'—-\
(sef /x

Py

o,

Ho ptals/‘]&
P

SRR

P
F; .
{ Dor:tors) \ Cardiol oqssg Q?ncaf ogxs\
. & >

o e

Figure 5 - Policy for medical data access

The group of recognized hospitals (i.e. public key in
Hospitals role) may grow dynamically and is not
taken from an a priori list of authorized hospitals.
Thus, if a certificate is issued for a new hospital by
two certified hospitals, the new hospital is also
rendered a certified hospital, which now can issue
certificates to e.g. cardiologists. Hospitals from
different countries can cross-certify each other to
create a global web of trust.

0-7695-0665-8/00 $10.00 © 2000 IEEE

Yet another example would be the internal access control
policy to files and documents places on the internal web
sites of a large company (Intranet). Large companies
often have complex matrix organizations, organized e.g.
by geography, business lines (e.g. marketing, sales,
research and development), and product lines (e.g.
storage products and personal computers). Employees
may have several roles from the point of view of every
particular intranet web site.

More application examples can be community of
suppliers/providers, such as the car or electronic
components industries, travel planning where certificates
are evaluations by tourist agencies, consumer discount
clubs, loan applications, peer reviews, and more.

1.3 Related Works on Trust Management

The non-hierarchical, “web of trust” model for public key
certificates which we advocate in this paper, was first
deployed in the popular Pretty Good Privacy (PGP [16])
secure e-mail system. However, PGP supports only a very
restricted policy, based on each user defining fully trusted
and partially trusted users and rules for how many
‘references’ from trusted users are enough to make a new
user (partially) trusted.

Our work is more closely related to KeyNote [9], Policy
Maker [4] and REFEREE [10]. All three works suggest a
programming language to define a policy based on
certificates and an engine to answer the question: "Can
the holder of a certificate X perform action A on resource
R?” Hence, they provide an integrated solution to Trust
Establishment and Access Control. This makes the
solution more complex and more difficult to integrate
with existing systems. Another important drawback in
PolicyMaker, and even more in REFEREE, is that the
policy is defined as a complex, fully programmable
language, hard to define for a non-programmer. While
KeyNote’s policy language is substantially simpler, it is
still hard for non-programmers. All three systems do not
provide mechanisms to collect missing certificates
(except in a very limited, *manual’ way in REFEREE)
and are ‘assertion monotone', which means that only
positive certificates are considered with no support to
negative certificates.

Another related work is the IETF’s Simple Public Key
Infrastructure (SPKI) [7]. This work defines two relevant
notions: one is a method to define global identifiers for
entities and the second is a suggestion for trust
management embedded in certificates. They claim that
the notion of an identity certificate which binds a key to
some name requires a global name space with unique
names, such as the X.500 DN. However, not only did this

concept fail, but this binding is not necessary since all we
want to know is the privileges of the key holder and not
its name. Therefore, they suggest that the unique global
name should be the key itself. We adopt their observation
and also use only public keys to identify entities. Their
other suggestion is to embed a “Tag” field in a certificate
that will contain the privileges of the key holder. We
object to this approach, as the issuer of the certificate
may be unaware of the access control needs of the owner
of the resource; in our work we separate the data in the
certificate from the policy itself.

Winslett et al. [8] discuss the issue of using certificates
with attributes to map users to roles, but they do not
describe a policy language. The paper also discusses a
policy for certificate collection but only through naive
certificate chains.

Seamons et al. [13] discuss a concept of mapping users to
role based on certificates using the prolog programming
language. The drawback in this solution is that there is no
policy language, but a separate program has to be written
for each application, which poses undue constraint on the
user. In addition, their proposed approach relies on
simple certificate chains which lead to root CA.

Trust establishment is only a part of the security
requirements for enabling business between e-strangers; a
complete solution will need to address the complete
access control question as well as other issues, e.g.
contract enforcement and dispute resolution. There are
several attempts at designing complete designs for
securing business between e-strangers. In particular,
Gladney [14] proposes such a design, with a very limited
policy for mapping from certificates to roles — but with a
specific proposal for integrating access control (based on
ticket granting servers), contract enforcement and dispute
resolution protocols.

A work closely related to ours is [15], which extends a
logic, programming language with constructs to support
trust. The constructs described there, such as threshold
and delegation, can be expressed in our policy language
through the repeat tag and the membership certificate.
While using a general-purpose logic programming can
solve a more general problem, we believe that our
language, which is focused toward solving a specific
problem, is easier for the system administrator who needs
to define her business policy, and can be more efficient.
In addition the TE system collects missing certificates,
and therefore is able to solve goals even if there are not
enough assertions in the local engine.

0-7695-0665-8/00 $10.00 © 2000 IEEE

2. Design Principles

We now describe some of our guidelines and principles,
motivating the Trust Establishment approach and the
Trust Policy Language.

2.1 Principles (entities) and names/identifiers.

We consider, essentially, three types of entities: the
owner of a resource defining the policy on access to it;
the subject requesting specific action (access) on the
resource; and issuers, which issue certificates with some
properties to the subject or to other issuers.

We focus on trust based on cryptographically signed or
authenticated statements. The name or identity of the
entity making the statement is not really meaningful and
for our purposes, the only relevant identifiers are the
public keys (or cryptographic one-way hashes of them),
which simply identify the corresponding private keys.
Names, including distinguished names in X.509
certificates, and other identifiers can only be interpreted
as specific attributes associated to the owner of the
private key.

2.2 Certificates.

A certificate is a statement signed by the issuer’s public
key, identifying a subject’s public key and properties of
the holder of the corresponding subject’s private key.
This implies that we use an internal, generic certificate
object, transcoding from specific certificate formats such
as X.509v3 [1], SPKI [7], PGP [16] or KeyNote [9].
Currently we have implemented transcoding only from
X.509v3 certificates; adding additional transcoders
should be easy. Namely, we consider our system to be
certificate format independent.

We find it convenient to categorize certificates, by
defining a special attribute of the generic certificate
object which we call certificate type. Notice that the
certificate type does not necessarily have to be an actual
attribute of the “real’ certificate, but instead may be added
by the transcoder. Certificate types help us identify the
semantic and syntax of certificates from different issuers,
which is essential to ensure interoperability. Every
certificate must have a certificate type, where the set of
all certificate types is dynamic and easily extendible. The
certificate type must be unique, so either it is registered
through some central organization or it becomes unique
by adding to it the originator prefix (e.g. ibm.employee).

Each certificate type has a certificate profile, which
defines the certificate structure; namely, which fields it is

composed of, and for each field what types of values it

can admit. The certificate profile must address two issues:

* Syntax - A listing of all fields, types of values each
field can admit and the mandatory fields. The syntax is
expressed in XML to ease interoperability.

* Semantics - A free text explanation of the meaning of
each field and its corresponding values.

The issuer is likely to be different from the owner of the
resource. Therefore, the properties in the certificate
represent beliefs of the issuer with respect to the subject,
rather than the policy of access to the resource, which is
defined by its owner. This is the principle of separation
of issuers from authorization.

When decisions are made on the basis of certificates, an
obvious question is: do we have all the necessary
certificates to decide? Almost all existing systems require
the subject to provide all the relevant certificates; this
makes some sense as the subject is making the request.
However, in many cases, this requirement is not realistic.
In particular, the subject may be limited in ability to store
multiple certificates (e.g. on smartcard), or to transfer
multiple certificates (e.g. on wireless link or when using
SSL, which sends only one certificate chain). To solve
this, we allow certificates to contain a special attribute,
which is the address of a repository where additional
certificates may be found.

In real life, trust decisions are influenced by negative
opinions and reviews as well as by positive ones.
Traditional approaches to certificates focus on the
relatively simple case of revocation of a certificate, as a
negative indication — rendering a certificate null. We
extend this to support general negative certificates. We
cannot trust the subject to point us at the repositories of
negative certificates; the owner should define, as part of
the policy, which repositories should be searched for
negative certificates.

To summarize, the following are mandatory components
in TE certificate object:

1. Issuer’s public key — as identifier of the issuer.

2. Subject’s public key — an identifier of the subject.
3. The certificate type

4. Version of the certificate.

profileURL - URL that describes the certificate
type namely, its structure and semantics.

6. issuerCertRepository - Provides addresses where to
look for more certificates for the issuer (in order to map

0-7695-0665-8/00 $10.00 © 2000 IEEE

the issuer to some group), as well as requesting most
updated CRL’s to verify certificate validity.

7. subjectCertRepository - Provides addresses where
to look for more certificates for the subject. This is
important mainly in cases where the subject can present
only one certificate (because it has a limited capacity on
her accessing device or is limited by the accessing
protocol such as SSL).

Each certificate may include more fields, where a field is
identified by its name (a string), and its value can be
numeric, a string, a range of values, or a set of strings or
numbers.

2.3 Trust Policy Language.

The TE system enables a business to define a flexible
policy for role assignment, which supports dynamic
ad-hoc relationships and a "web of trust - allowing
complex networks of trust rather than requiring a
pre-defined tree with a fixed ‘root certification authority’.

Processing of the policy is essential, to ensure reasonable
efficiency (e.g. in handling a new certificate or
revocation), to check policy (e.g. for conflicts), to collect
missing certificates, to compose policies, and to allow
subjects to select which certificates to present. We also
expect policy (fragments) to be shipped around, e.g.
policies of a large company defined centrally with limited
local refinements. For this reason, we used XML [3] to
define the policy language, which helps portability and
provides several automated processing tools. In
particular, we recently developed a visual tool for editing
graphs, and, in particular, TE policies, which can produce
the XML representation or accept XML representation as
input.

2.4 System considerations.

The TE system does not require replacing or
re-engineering existing role-based access control systems.
Instead, it extends them by mapping unknown users to
roles.

3. The Trust Policy Language

The main purpose of the Trust Policy Language (TPL) is
to map entities to roles, using well defined logical rules.
A role in TPL is a group of entities that can represent a
specific organizational unit (e.g. employees, managers,
auditors). Entities are identified by their public keys. A
special role is ‘self’, which includes the key of the policy
owner. Each role has one or more rules defining how a
certificate holder can become a member in the role. The
rules are OR(ed); namely, it’s enough that one rule holds

for mapping an entity to a role. Note that we use the
terms role and group interchangeably.

The language is defined using XML [3] where roles are
defined at the top level and under each role there are
rules for role membership. See Figure 6 for illustration of
the rule to add a new hospital to the Hospitals group
(role), by providing two recommendations from existing
members of the Hospitals group, as in the policy
illustrated in Figure 5. In this section we describe the
main components of this syntax; see our site [18] for the
complete definition.

<GROUP NAME="Hospitals">

ospital recommended by at Jeast
<RULE=>
<INCLUSION ID="reco" TYPE="Recommendation"
FROM="hospitals" REPEAT="2"></INCLUSION>

<FUNCTION=>
<GT=>
<FIELD ID="reco" NAME="Level"></FIELD>
<CONST=1</CONST=
</GT>
</FUNCTION=>

</RULE=>
</GROUP=>

Figure 6: Rule for hospital membership

There is a separation between the issuers of the
certificates and the owner of the resource (except for
‘group membership’ certificate — see below). Only the
owner defines the trust and access control polices. The
certificates are general statements about the subject (e.g.
a user can have a certificate from some institute with her
degree and average marks) and a company policy can
state the conditions on certificate fields (e.g. an employee
should present a certificate from a recognized institute
and the average marks should be higher than 80).

We describe two flavors of the TE policy language. The
first one is called DTPL (Definite Trust Policy Language)
which is monotonic and does not include negative rules.
We show that DTPL specifications may be mapped to
Prolog. The stronger TPL (Trust Policy Language) is
non-monotonic since it includes negative rules. In future
work we hope to show completeness and soundness of
these languages.

3.1 Definite Trust Policy Language (DTPL)

3.1.1 The Group tag

A policy in DTPL (and TPL) consists of a sequence of
definitions of groups (roles) using the <GROUP> tag.
The only attribute of <GROUP> is NAME - the name of
the group. Within the scope of each <GROUP> tag there

is one or more <RULE> tags, each defining one rule for
membership in the group; it is sufficient for one of the
rules to hold for the entity (public key) to be added to the
group.

3.1.2 The Rule tag

A rule defines a set of certificates necessary to join a
group. Two types of requirements are possible on
certificates: the issuer needs to belong to a specific group,
and the attributes in the certificates may need to match
some conditions. For example, in the rule presented in
Figure 6, two certificates are required (REPEAT=2), both
from already recognized hospitals, and of type
Recommendation. Furthermore, the Level field in both
should be more than 1.

We include two tags for defining the necessary
certificates: the <INCLUSION> tag defines each of the
necessary certificates, and the <FUNCTION> tag defines
necessary conditions on the attributes. A rule may contain
multiple <INCLUSION> tags, but only one
<FUNCTION> tag.

3.1.3 The Inclusion tag

The inclusion tag defines a certificate that must exist for
the rule to hold. For example, the tag <INCLUSION
ID="C1" TYPE="T1" FROM="G1"></INCLUSION>

stands for “exists a certificate of type 77 whose issuer
belongs to group G7”. The basic attributes here are:

Type parameter - specifies the necessary type of the
certificate, as explained in section 2.2.

From parameter - defines the name of one or more groups
to which the issuer should belong.

ID parameter — an identifier for the certificate. It refers
to this certificate within the <FUNCTION>> tag to define
additional conditions on the certificate.

An important attribute that can appear in an inclusion
statement is “REPEAT=k”. This defines that at least k
certificates of that type should exist, from different
issuers, for the rule to hold. A “REPEAT=2" parameter is
used in the medical data access example from figures 5
and 6. Namely, to become a recognized hospital, we
require two certificates from already recognized
hospitals.

Another important attribute that can appear in an
inclusion statement is the “DEPTH=k” which is used to
limit the length of certificate chains. Consider a rule that
requires a certificate with an issuer from some group. The
issuer was put into this group by virtue of some other
certificates from other issuers, and so on, until direct
assignments (which we consider certifications by self).
The owner may want to restrict the amount of indirection,
namely the depth (length) of the chain of certificates. We

0-7695-0665-8/00 $10.00 © 2000 IEEE

facilitate this by the DEPTH parameter of the
INCLUSION tag.

For example, if we look again at the hospitals example in
figures 5 and 6 above, there is a rule that a hospital can
be mapped to the “Hospitals” group if it brings at least 2
certificates from already trusted hospitals. We can limit
the depth of that rule by setting DEPTH, as in Figure 7.

attribute named groups, holding a list of policy groups
that the subject can be mapped to. This rule can be
expressed as in Figure 8 below.

<GROUP NAME="Hospitals"=>
feeen hrospital 1 mmended by at least 2 hospitals ---
<RULE=>
<INCLUSION ID="reco" TYPE="Recommendation"
FROM="hospitals" REPEAT="2" DEPTH="3">

</INCLUSION=>
</RULE=>
</GROUP=

Figure 7: DEPTH attribute of INCLUSION tag

The result is any hospital was selected by the owner (self)
directly (depth=1), by hospitals selected by self
(depth=2), or by hospitals selected by hospitals selected
by self (depth =3) — but no more indirection.

3.1.4 The Function tag

This tag allows definition of additional conditions over
the certificates, as a function of the certificate fields.
DTPL supports a syntax for simple operators (e.g.
comparing two values, AND between two Boolean
expressions) which is expressed as a computation tree
with conditions on the certificates fields. It also enables
invocation of an external code for more complex
computations. For complete details on the expressions
supported by the <KFUNCTION> tag, see the complete
definition in our site [18].

For example, in the hospitals policy of Figure 6, the
function states that the value of the field “Level”
(NAME="Level”) in both certificates should be greater
than 1. Note that in this example we assume that
certificate of type “Recommendation” has a field called
“Level”.

3.1.5 The group membership certificate

As mentioned above, we advocate separation between
certificate issuers and the policy owner. We assume most
certificates carry some general statement about the
certificate’s subject (e.g. X is an IBM employee) and not
some policy specific enforcement as exists in other
systems (e.g. SPKI [7]).

However, in this section we illustrate that DTPL allows
the owners to delegate the membership decision (is X in
G). For that end, we suggest that owners use a special
certificate type, e.g. certType=membership, which has an

0-7695-0665-8/00 $10.00 ® 2000 IEEE

<GROUP NAME="Hospitals">
<RULE>
<INCLUSION ID="c1" TYPE="membership"
FROM="delegators">

</INCLUSION>

<FUNCTION>
<ITEM>
<CONST>Hospitals</CONST>

NAME="groups'
</ITE!
<FUNCTION>
</RULE>
</GROUP>

Figure 8: Group membership certificate

The policy above assumes a group “delegators” which
includes all the trusted delegators. The rule above states
that if exists a certificate of type ‘membership’ where X is
the subject, and the issuer is one of the trusted delegators,
and the group ‘Hospitals’ appears as one of the groups in
the certificate (the ITEM tag), then according to the
policy, X can be mapped to the ‘Hospitals’ group.

3.2 DTPL as a logic programming language

DTPL (Definite TPL) is monotonic since it does not
include negative rules. It can be easily shown that DTPL
can be mapped to a standard logic programming e.g.
Prolog [15]. We show now how to express DTPL in
Prolog and analyze the advantages of using our own
language implementation over Prolog.

1. Each certificate can be expressed as a predicate of
the form cert (Issuer, Subject, Type, Fields).

2. The predicate field(Fields, FieldName,
_FieldValue) is used to denote that a field FieldName
is one of the fields in the Fields variable and its value is
_FieldValue.

3. The predicate group(X, Group) is used to denote that
X is a member in group Group.

4. The DTPL function tag can be programmed using
standard prolog programming,.

5. We can now define rules for group membership in
group G as clauses with head group(Member, Group)
and body as a prolog program.

Getting back to the hospitals policy (Figures 5 and 6), the
first rule that states that an hospital X can be mapped to

the Hospitals group if X has a recommendation certificate
signed by someone from the self group, can be expressed
in DTPL:

<GROUP NAME="Hospitals">

<leaa- A hospital recommended by self --->

<RULE>
<INCLUSION ID="reco" TYPE="Recommendation"
FROM="self"></INCLUSION>
</RULE>
</GROUP>

And can be mapped to the following prolog program:

group(X, Hospitals) :-
cert(Y, X, “Recommendation”, _RecFields),
group(Y, self),

The more complicated DTPL rule in Figure 6 states that
an hospital X can be mapped to the Hospitals group if X
can show at least two different recommendation
certificates whose issuers are already known to be in the
Hospitals group, and their recommendation level is
higher than 1. The corresponding prolog program is:

group(X, Hospitals) :-
cert(Y1, X, “Recommendation”, RecFields1),
cert(Y2, X, “Recommendation”, RecFields2),
Y1!=Y2,
group(Y 1, Hospitals),
group(Y2, Hospitals),
field(RecFields1, “Level”, L1), L1 > 1,
field(RecFields2, “Level”, L2), L2 > 1.

Note that if the policy requires at least k certificates
(Repeat=k where k is larger than 2), the Prolog program
may become quite complex.

There are some advantages to using our language and our
policy engine over using a prolog interpreter. First, DTPL
has special constructs such as the repeat and depth tags,
which would require some extra logic programming for
each policy (see example above how the Repeat tag can
be implemented in Prolog). In addition we support the
proof for each mapping and use it to check validity while
implementing this in a general Prolog policy would
require non-trivial programming for each policy.

Another feature that our role assignment module supports
is dynamic extension of the assertion database through
the collector, while a Prolog interpreter can solve goals
only from its existing assertion base. Moreover since TE
is targeted at a specific task of mapping entities to roles,
we can optimize the algorithm over a general-purpose
Prolog engine.

3.3 TPL - extending DTPL with negative rules

0-7695-0665-8/00 $10.00 © 2000 IEEE

We extend our policy language with negative certificates,
namely certificates which are interpreted as suggestions
not to trust a user or not to assign him with a given role or
group. In this case, the rule states that a user cannot be
assigned the role if there exists a negative certificate of
given type about it.

The syntax we introduce is the “Exclusion” tag, which
has the same attributes as the “Inclusion” tag. The
semantics of the exclusion tag is "Not exist a certificate X
such that the rule's function holds".

Notice that for positive certificates, we assumed that the
user will provide the certificate repositories with the
submitted certificate. However this assumption is not
reasonable for negative certificates. Instead, we require
the policy owner to define where the system should look
for negative certificates. This mimics the real life, where
a part of an organization or individual policy is which
sources are queried for bad references (e.g., do you query
the BBB or TRW, etc.).

We support the specification of repositories by adding a
new tag to the rule, the <REPOSITORY> tag.
Repositories may be specified as a URI, using the HREF
parameter of the <REPOSITORY> tag. Alternatively,
specific groups may be defined as repositories, so that the
TE system will automatically query all of them for
negative certificates. This is done using a GROUP
parameter of the <REPOSITORY> tag.

4. Trust Establishment implementation

We have implemented a prototype of the Trust
Establishment system, using Java and X509v3 for the
certificate format. We describe now its four main
components; the certificate library, the policy engine, the
certificate collector and the database. We also describe
the integration with a web server.

4.1 The Certificate Library

A certificate object in the Trust Establishment system
(TEcertificate) is a statement signed by the Issuer, which
contains the Subject’s public key and a list of
<attribute,value> pairs. Certificates may expire or be
revoked.

The designs calls for a library of transcoders from
different certificate formats to the abstract certificate
object. We currently support only transcoder from the
X509v3 [1] format. The X509v3 format is currently by
far the most common and widely used format for digital
certificates and its latest version (version 3) provides
sufficient flexibility that could be used to implement all
requirements stated above. We currently support only the

following simple transcoding from X.509v3 certificates
and the certificate object:

Attributes: X509v3 format allows to define as many
additional extensions as needed to the basic X509v1
object, where an X509 extension is identified by Object
Identifier (OID) [12] and have a Value. OIDs are strings
of numbers (e.g. 1.20.3.5) allocated in hierarchical order
so the owner of an OID can create new OIDs with the
same prefix. Since the policy deals with names and not
with OIDs, we have a mapping from OIDs to names. The
mapping is kept in the certificate profile. We use an X509
extension to define attributes of certificates: the attribute
name becomes the extension’s Name and the attribute’s
value is the extension’s Value. X.509 extensions may also
be defined as “mandatory” and this mechanism is used to
define the mandatory attributes in a TEcertificate such as
certType, version, profileUrl, subjectCertRepository and
issuerCertRepository.

The Issuer and Subject: The Issuer and Subject fields in
an X509 certificate are based on a textual format called
distinguished names. Therefore they can not be used as
the Issuer and Subject identities in the TE system, which
should be public keys or their cryptographic hash.
Instead, the principal’s unique name, which is derived
from its public key, is defined by two special mandatory
fields, issuerAltName and subjectditName. The X509
name fields may optionally be used as attributes, if the
principals are provided with a DN.

Validity: Every certificate has an expiration date as well
as a serial number that is unique to the issuer. This serial
number is used to indicate revocation - if it is included in
the Issuer’s revocation list (CRL). The expiration date
and serial number are both provided by the X.509 format.

Certificates Management: Every TE module maintains
a local library of certificates and CRLs which it had
collected.

Revocation List: The TE System uses the existing X.509
mechanisms for certificate revocation. Specifically, every
TE module has the capability of producing its own CRL,
which is a certificate that contains a list of all revoked
certificates it had issued in the past, along with the
revocation Reason. We use the X509 CRL format to
produce the CRL of a TE module. This CRL is valid for a
given period of time.

Certificate Validity check: Validity of a certificates is
determined by expiration date, which is embedded in the
certificate itself, and by inspecting the CRL of its Issuer.
The CRL of the certificate Issuer either resides locally (if
still valid) or is requested on-line by approaching the

0-7695-0665-8/00 $10.00 © 2000 IEEE

10

Issuer’s URL (recall that issuer URL is one of the
mandatory fields of the certificate).

4.2 The Policy Language and the Policy Engine

The policy language is defined in XML and can be
viewed/edited either through a text editor or graphically.
We have developed a graphic editor that reads the XML
policy and displays it as a graph were nodes are groups
and edges are rules defining relations between groups.

The core of the TrustEstablishment module is the Policy
Engine which is used to decide if an entity X (given by its
public key) can be mapped to a given policy group. The
current implementation uses a very simple, but
inefficient, policy engine. An efficient algorithm for the
policy engine will be presented in another work.

4.3 The Certificate Collector and Repository

The certificate collector is responsible for collecting
missing certificates from certificate repositories. The
collector holds a local database of collected certificates,
and has the capability to crawl the network and retrieve
certificates from remote certificate repositories. The
certificate collector is operated particularly when the role
assignment module tries to map X to role R and the
checked rule prescribes that X can be mapped to role R if
exist a certificate where the issuer is in group G. Assume
that a certificate exist with issuer Y but Y is not known
locally to be in group G. The Trust Establishment module
requests the collector to find certificates about Y (where
Y is the subject) that can prove that Y is in G. If such
certificates exist in the collector’s local DB then it can
return them immediately to the caller. Otherwise it has to
request it from a remote certificate repository. As
described in section 2.2, one of the fields in each
certificate is the issuerCertRepository, which holds the
address of the issuer’s server. The collector will contact
this repository to ask for additional certificates.
Similiarly, if looking for negative certificates, the
collector will contact the repositories listed in the policy.
In addition the collector can be configured to collect
certificates from central repositories.

The architecture of the TE module and the collector is
depicted in Fig 9. Every TE has a local collector to which
it sends requests. It is only natural that a certificate
repository may not be willing to give its certificates to
everyone, instead it may contact an access control system
(which may in turn contact a local Trust Establishment
module) to decide. An example policy might be that a
repository is willing to give all certificates to "IBM
servers", and only certain certificates to all other servers.
The repository can use a local access control and/or TE

system to map remote collectors to roles according to its
policy. Note that in order to implement that, the
certificate repository must receive a certificate from the
collector in the initiation of the request.

| Bolicy | A ememn Comrid /. |

Trust

Applications | L, : | Trust
I e | Establishurent Eamblnbumern
=i
el
1
Reuend |
Certifioate + |«-—- . | Certificate
Collector | Reposilory
I IguTE 2 Cerifseate Collector and H-.'-|-.'.-‘|1.'i-.

The collector has a local DB of collected certificates. It
handles queries like:

¢ Get from local DB all certificates with certType
X about a given subject Y.

* Request from repository (address given) all
certificates with certType X about a given subject Y.

* Get an updated CRL of some issuer. If the CRL
exist and is valid in local DB it is returned, otherwise
the issuer (or its certificate repository) is contacted to
supply an updated CRL.

4.4 Implementation of the Database

The policy related data is kept in a database where
collected client certificates, their issuers, subjects, and
other data is stored. The results from the reasoning
process over the policy rules are also stored in the
database. These results include the assignment of the
certificate holders to particular groups. Typically, during
the database design process we build conceptual model
that represent as fully as possible the semantics of the
particular application. The resultant DB structure is
rather static and does not change considerably over time.
In our case, however, we expect wide variety of different
application areas and flexible policies for each one of
them. This will lead to very different database structures
depending on the particular case that have to be recreated
in each particular case. In order to avoid this we decided
to take into consideration during the DB design process
only the application independent aspects of the policy
related issues. This led us to rather static conceptual
model, consisting of the following classes: issuers,
subjects, entities, certificates, groups, memberships, and
proofs. The collector manages the certificates in the DB
while the TE component manages the groups,
memberships and proofs. Here the entity class is
generalization of the issuer and subject classes. The

0-7695-0665-8/00 $10.00 © 2000 IEEE

conceptual model is mapped into relational and LDAP
data model. We have implemented the policy database
using relational DBMS (DB2), and LDAP directory
server.

4.5 Adding TE to a Web server

The TE component exposes APIs to applications that
need to map entities to roles based on their certificates
and a given policy. In this section we describe how we
extended a web server to use the TE for mapping web
users to roles.

The configuration (depicted in Fig 10 below)
demonstrates how a web server can serve different pages
to unknown users accessing it through a regular browser.
The demo was run with apache server that supports SSL,
and with Netscape browser. The servlet case was run
under IBM WebSphere Application Server [21].

Fig 10 — Extending web server with the TE module

11

The sequence of requesting a page is described below:

1. The browser requests a page from the http server.
The page is requested through SSL session [2] and
the server is configured to use SSL client
authentication. The http server asks the browser for a
certificate and the browser displays to the user a
screen to select which certificate to send. The user
selects a certificate and it is sent to the http server for
client authentication.

2. The http server runs a CGl/Servlet program and
passes the client certificate to it.

3. The CGL/Servlet sends the certificate and a policy
to the TE module for deciding on the role of this user.

4. The TE checks the policy and returns to the
CGl/Servlet program the set of role(s) of that user.

5. The CGl/Servlet decides based on the user's roles,
which page to display to the user and sends that page
to the http server.

6. Page is sent to the user

Note that authentication is done by the application that
uses the TE. The TE’s job is to map the subject of a
certificate to a role based on the certificate and policy,
not to authenticate. It’s the web server’s who makes the
authentication.

Implementation note: the TE can decide on user’s role
even if the client certificate’s issuer is not known,
however some Web servers would abort any SSL session
where the issuer is not known. We overcame this problem
by adding a patch to the Apache server, such that it will
be willing to continue the SSL session and pass the client
certificate to our CGI even if the issuer is not known.

Another solution can be to define a public key whose
correspondent private key is known to everyone. This key
will be added as a known CA to the web server and TE
can be used to create a dummy certificate for that user
with an extension subjectCertRepository that will direct
the collector to collect more certificates about that user.
The dummy certificate will pass SSL client authentication
since the issuer is known and thus the http server will
support the SSL session and will pass the certificate to
the CGI.

5. Summary, conclusions and future work

We presented a mechanism that allows a business to
define a policy to map accessed users to roles, based on
certificates received from the user and collected
automatically by the system. The policy language is
expressed in XML and allows the system administrator to
define flexible rules based on attributes in X509
certificates. The TE supports privacy (no need to know
the user identity in order to map it to a role) and it is able
to collect missing certificates from the web to reach a
decision.

A possible work could be to develop a tool that checks
the validity of the policy, checks that it has no loops and
suggests alternatives to make the search on the policy tree
more efficient. Another research direction could be to add
inheritance to the policy language on groups (i.e. a group
G’ extends a group G by inheriting all the rules of group
G and adding more rules to group G’). Another direction
could be to define parts of the policy to be computed by
another policy (e.g. a group G is computed by some other
policy) which can be done for example in different
departments in the same organization.

Other work could be done to improve the collector work
by cooperation between collectors. For example, when a
collector checks a path and needs to check that along the
path some Y is in G, then it could ask another collector
to check this and return a Y/N answer. This cooperation

0-7695-0665-8/00 $10.00 © 2000 IEEE

12

requires some synchronization in the groups in both
collectors' policies and it could be done, for example, in
different departments in the same organization. This
approach could simplify the definition of the policy, and
moreover, it could be used to keep the privacy of the
proof such that one collector would know only that the
proof exists, without knowing how the proof was made.
Another extension could be the design of a new collector
algorithm to decide on the order to look in different
repositories and to improve the check if a certificate is
revoked.

References

[1] Internet X509 Public Key Infrastructure documents,
http://www.ietf.org/ids.by.wg/pkix.html

{2] SSL 3.0 Specification — The SSL Protocol Drafts
http://home.netscape.com/eng/sst3/index.html

[3] Extensible Markup Language (XML), W3C Specifications,
hitp://www.w3.org/TR/WD-xml-lang. htm]l

[4] M. Blaze, J. Feigenbaum, and J. Lacy, Decentralized Trust
Management, In Proc. of the 17th Symposium on Security and
Privacy, pp 164-173, 1996.

[5] Resource Access -Control Facility (RACF), V.2
http://www.s390.ibm.com/products/ract/

[6] Common Data Security Architecture (CDSA),
http://developer.intel.com/ial/security/documentation.htm

[7] Simple Public Key Infrastructure (SPKI),
http://www.ietf org/html.chapters/spki-chapter.html|

[8] M. Winslett, N. Ching, V. Jones, and 1. Slepchin, "Using
Digital Credentials on the World-Wide Web," Journal of
Computer Security, 1997

[9] M. Blaze, J. Feigenbaum, J. loannidis and A. Keromytis,
The KeyNote Trust-Management System,
http://www.cis.upenn.edu/~angelos/keynote.html

[10] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick and
M. Strauss, REFEREE: Trust Management for Web
Applications, in World Wide Web Journal, 2, pp. 127-139,
1997.

[11] D. F. Ferraiolo et el, Role based Access control (RBAC)
Features and Motivations, NIST, U.S. Department of
Commerce.

[12] Object Identifier, OID, ITU-T recommendation X.208
(ASN.1).

[13] K. E. Seamons, W. Winsborough, and M. Winslett,
“Internet Credential Acceptance Policies”, Proceedings of the
Workshop on Logic Programming for Internet Applications,
Leuven, Belgium, July 1997,

[14] H. Gladney, “Safe deals between strangers”, IBM Research
technical report (draft), August 1999.

[15] N. Li, B. N. Grosof, J. Feigenbaum, A Logic-based
knowledge Representation for Authorization with Delegation,
IBM Research Report, RC 21492, May 99.

[16] P. Zimmerman, “The Official PGP User’s Guide”, MIT
Press, Cambridge, 1995.

[17]J. W. Lloyd, Foundations of Logic Programming, second
edition, Springer, Berlin, 1987.

[18] IBM Haifa Research Lab, E-Business and Security
Technologies group, http://www.hrl.il.ibm.com

[19] IBM AlphaWorks, http://www.alphaworks.ibm.com

[20] IBM Policy Director,
http://www.ibm.com/software/security/policy/

[21] IBM WebSphere,
http://www.ibm.com/software/webservers/

Appendix A - the medical data policy file

We describe now the policy file for the medical data
example in section 5.1 above. The tricky part are the two
rules for becoming a recognized hospital which appear
under the <GROUP NAME="Hospitals”> line. The first

rule states that a recognized hospital is every hospital that

has a certificate issued by ‘self” which means that the
hospital is certified directly by the policy owner (self).
The second rule is more complex and it states that a
recognized hospital should have at least two certificates
from already known hospitals and that there not exist a
‘warning’ certificate from any recognized hospital.

<?xml version="1.0"7>
<POLICY>

<GROUP NAME="self">
</GROUP>

1

<GROUP NAME="Hospitals">

<leeem First rule : a hospital recommended by “self” with
recommendation value greater thep 1 ==

<RULE>
<INCLUSION ID="from_self"
TYPE="Recommendation” FROM="self" ></INCLUSION>
<FUNCTION>
<GT>
<FIELD ID="from_self"
NAME="Recommendation"></FIELD>
<CONST>1</CONST>
</GT>

0-7695-0665-8/00 $10.00 © 2000 IEEE

</FUNCTION>
</RULE>

<emme Second rule @ a hospital recommended by at least
2 hospitals. and there is no warning about it {from any hospital

———T

<RULE>
<INCLUSION ID="reco" TYPE="Recommendation"
FROM="hospitals" REPEAT=2></INCLUSION>
<EXCLUSION ID="warn" TYPE="Warning"
FROM="hospitals"></EXCLUSION>
<FUNCTION>
<AND>
<GT>
<FIELD ID="reco"
NAME="Recommendation"></FIELD>
<CONST>1</CONST>
</GT>
<GT>
<FIELD ID="warn"
NAME="Recommendation"></FIELD>
<CONST>4</CONST>
</GT>
</AND>
</FUNCTION>
</RULE>
</GROUP>

g .
<l-- A regular doctor - should have a certificate from some
hospital -->

< amma

<GROUP NAME="Doctors">
<RULE>
<INCLUSION ID="from_hospital” TYPE="doctor"
FROM="Hospitals"></INCLUSION>
<FUNCTION>
</FUNCTION>
</RULE>
</GROUP>

<GROUP NAME="Cardiologists">
<RULE>
<INCLUSION ID="from_hospital" TYPE="doctor"
FROM="Hospitals"></INCLUSION>
<FUNCTION>
<EQ>
<FIELD ID="from_hospital"
NAME="Rank"></FIELD>
<CONST>Cardiologist</CONST>
</EQ>
</FUNCTION>
</RULE>
</GROUP>

13

[(R
<t An oncologist - should have a certificate from some
hospital -->

<4 oS

<GROUP NAME="Oncologists">
<RULE>
<INCLUSION ID="from_hospital" TYPE="doctor"
FROM="Hospitals"></INCLUSION>
<FUNCTION>
<EQ>
<FIELD ID="from_hospital"
NAME="Rank"></FIELD>
<CONST>Oncologist</CONST>
</EQ>
</FUNCTION>
</RULE>
</GROUP>

</POLICY>

0-7695-0665-8/00 $10.00 © 2000 IEEE

14

