
Design and specification of role based access
control policies

M.Hitchens and V.Varadharajan

Abstract: The authors describe a language based approach to the specification of authorisation
policies that can be used to support the range of access control policies in commercial object
systems. They discuss the issues involved in the design of a language for role based access control
systems. The notion of roles is used as a primitive construct within the language. The basic
constructs of the language are discussed and the language is used to specify several access control
policies such as role based access control; static and dynamic separation of duty delegation and
joint action based access policies. The language is flexible and is able to capture meta-level
operations, and it is often these features which are significant when it comes to the applicability of
an access control system to practical real situations.

1 Introduction

In a computing system, when a request for a certain service
is received by one principal (an agent) from another, the
receiving principal needs to address two questions. First, is
the requesting principal the one it claims to be? Secondly,
does the requesting principal have the appropriate privi-
leges for the requested service? These two questions relate
to the issues of authentication and access control (author-
isation). Traditionally the work on access control classifies
security models into two broad categories, namely discre-
tionary and non-discretionary (mandatory) models. Typi-
cally, discretionary access control (DAC) models leave the
specification of access control policies to individual users,
and control the access of users to information on the basis
of identity of users. In mandatory access control (MAC)
models the standard approach is to have the access defined
by a system administrator, and employ attributes such as
classifications and clearances [I] . Recently, there has been
extensive interest in role based access control (RBAC) [2]
even though the idea of the use of roles for controlling
access to entities and objects is as old as the traditional
access control models. In the RBAC models, the attributes
used in access control are the roles associated with the
principals and the privileges associated with the roles.

An important aspect of an access control model is the
type of policies that the model can support. The model must
be flexible enough to support the variety of access control
requirements needed in modern application environments.
Many of the proposed models are often inflexible because
they assume certain pre-defined access policies, and these
policies have been built into the access control mechanisms.
In fact, in some sense, DAC, MAC and RBAC are all

0 IEE, 2000
IEE Proceedings online no. 20000792
DOI: 10.1049/ip-sen:20000792
Paper received 27th January 2000
The authors are with the Distributed System and Network Security
Research Unit, University of Western Sydney, Nepean, NSW 2150,
Australia

IEE Proc.-sofhv., Vol 147, No. 4, August 2000

mechanism oriented. They all fall into the trap of using
access control mechanisms both for policy expression as
well as in policy enforcement. By separating out the policy
expression from the mechanisms used to implement and to
enforce the policy, a number of advantages can be achieved
in practice. On the one hand, a mechanism can be used to
support a number of policies, while on the other hand a
policy may be supported by multiple mechanisms. Of
course, it may not be useful or even possible for any
given policy specification to be implemented by all of the
existing mechanisms. It is well known from language
theory that any mechanism for expression has its limits.
For instance, it has been shown in [3] that the multilevel
MAC mechanism is not adequate for implementing some
role based access control specifications.

It has been claimed elsewhere that role based access
control better suits the needs of some real world organisa-
tions than MAC or DAC based approaches [4]. While we
support this, view, we believe that a number of issues in the
design and implementation of RBAC systems have not
been adequately addressed in previous work. Much of the
work on RBAC models and systems has not addressed the
issue of how to express policies in a real world system. We
strongly believe that a language-based approach to author-
isation is required to support the range of access control
policies required in commercial systems. While some
language-based proposals have been presented, such as in
[SI and [6], these tend to either lack expressiveness or be
highly formal.

It has been recognised that RBAC systems need to deal
with privileges which reflect the operations of the applica-
tion (such as credit and debit in a financial system) rather
than the more traditional approach of a fixed set of
operations such as read, write and execute [7]. However
the effects of this on the design of such systems is rarely
addressed. This is especially important in choosing this
level of granularity of access control, which has obvious
parallels with the ideas of object-oriented design.

Several RBAC proposals tend to avoid the question of
ownership. Indeed, it has been claimed that RBAC is
simply a form of MAC [SI. Expecting the system manager
to make all policy decisions in a distributed system is

117

impractical and probably unnecessary in most cases. Some
proposals such as in [4] have addressed this issue by
suggesting that the system manager delegate authority
over various objects to other users. These delegated autho-
rities are then exercising control equivalent to that of
ownership in DAC systems. It has also been noted that,
in practice, the users of RBAC systems still wish to
maintain individual control over some objects. Given
this, the concept of ownership in relation to RBAC
deserves further consideration.

If a language based approach to RBAC is adopted, then
we also need to consider other issues, such as how a history
of actions can be maintained. Such information is often
necessary for access policies such as separation of duty.
Consideration also needs to be given to how users are
represented and assigned to roles.

2 A language based approach

Roles are intended to reflect the real world job functions
within an organisation. The permissions that are attached
to the roles reflect the actual operations that may be carried
out by members of the role. The policies that need to be
expressed in an RBAC system can therefore be seen to
have the potential to be both extensive and intricate. The
inter-relationships between structures of an RBAC system,
such as role, users and permissions, likewise have the
potential to become complicated.

Languages, in various forms, have long been recognised
in computing as ideal vehicles for dealing with the expres-
sion and structuring of complex and dynamic relationships.
Therefore it seems sensible to at least attempt to employ a
language based approach for expressing RBAC. If the
language is well designed, this will deliver a degree of
flexibility superior to other approaches. Flexibility is a
necessary requirement if the RBAC system is to be capable
of supporting a wide range of access policies used in
commercial systems. Other work has also recognised
the possibility of using a language to express access
policies [9].

While in theory a general-purpose language could be
used, a special purpose language allows for optimisations
and domain specific structures which can improve effi-
ciency. In particular, the notion of roles and other domain
specific concepts should be available as primitive
constructs within the language. Certainly, the use of roles
as a construct would help to simplify the problem of
management of large numbers of access control privileges
by grouping them according to job functions and tasks.
The permissions associated with the roles tend to change
less often than the people who fill the job function that the
role represents. Being able to express the relationships
between permissions and roles within the structure of the
language would make the administration of the access
control system simpler and this is a major advantage
when it comes to management of authorisation policies.
In fact, key aspects of any authorisation model are the ease
with which one can change, add and delete policy speci-
fications and the specification of authorities that are able to
perform such operations. A language that does not support
the necessary constructs will not fulfill these requirements.

In some sense, the question of who can modify the
policy setting is what determines whether something is
discretionary or mandatory. In general we feel that the
traditional notions of discretionary and mandatory are not
very helpful, in that a policy may be discretionary to some
and mandatory to others. For instance, consider a manager

118

of a project group and a number of group members. A
policy can be mandatory to the group as it is set by the
manager, but is discretionary to the group manager. Simi-
larly at a higher level, a policy may be mandatory to the
group manager but is discre:tionary to the laboratory
manager above. This is typical of many organisations, and
is often true in large distributed systems. It is often the
flexibility and management of i:he operations of the access
control system itself which are ;significant when it comes to
the applicability of such a system to practical real situa-
tions. The use of a language based policy approach helps
us to better structure such policies. Some recent work such
as [6] and [I O] have considered the use of a logic based
language in the specification of authorisation policies. This
paper proposes a language theory based approach,. and is
primarily targeted towards object based systems.

Of course, another reason for employing a special
purpose language is that a general-purpose language will
include many constructs not required for access (control.
This would impinge on the efficiency, safety and usability
of such a system.

3 Role based access conlrol language design
issues

Typically, a role based access control model Inas the
following three essential strucrures [7]:

0 users: which correspond to real world users of the
computing system
0 permissions: a description of the access users can have
to objects in the system
0 roles: a description of the functions of users within an
organisation

Permissions and users are mapped to roles, as shown in
Fig. 1. The relationships are many to many.

3.1 Privileges and permissions
The ‘classical’ role based access model takes a simplistic
view of the entities to which access is being controlled.
When its application to object oriented systems is consid-
ered, it is to be noted that the object, the basic construct of
such systems, is not directly rlspresented within the classi-
cal model. in an object-oriented system, operations on
objects are represented by the methods of the ob.jects. In
the classical model, permissions will therefore specify the
object and the method to which access is allowed. If a user
has access to a particular object, it is likely that the user
will have access to more than one method of that object.
While this will not always be true, it will generally hold.
This could be handled by having a separate permission for
each method. Given the number of methods to which users
will have access, this is obviously cumbersome. More
promising is the option of allowing a permission to control
access to a number of methods. The language should be
able to handle both these situations.

Fig. 1 Clussical role bused access control model

IEE Proc.-Sofrw.. Vol. 147, No. 4, August 2000

I I
/- \ I

I I
Fig. 2 Object-oriented role based access control model

Another important concept in object-oriented systems is
that of a class. Users will often have access to a number of
objects in a class, and may have identical access to such
objects. Similar options to those for dealing with multiple
methods should be possible. A separate permission for
each object could be employed. Again this could lead to an
unwieldy number of privileges. Alternatively, a permission
could cover a number of objects as well as a number of
methods. While this restricts the number of permissions, it
gives them a complicated internal structure. Once again,
the language needs to handle both situations involving
access to a single object as well as access to a number of
objects in a class. If these were handled within the permis-
sion, permissions would then be many to many mapping
between objects and methods. Given that the mappings
between entities in the classical model are many to many, it
seems clear that two separate constructs are required.

The first construct, which we refer to as permission,
specifies an object or objects to which a user has access. In
this sense, it resembles a capability. The objects may be
explicitly named [Note I], be referenced by a named set, or
a whole class could be referred to. Note that, as privileges
generally refer to specific methods, the objects covered by
a permission must belong to the same class (or a common
super-class). Using named sets allows grouping of objects,
and such groups may change dynamically.

Privileges, the second construct, are mapped to permis-
sions in a many-to-many relationship, specifying the meth-
ods of those objects to which access is granted. Objects do
not appear in privileges, which are concerned solely with
methods and the conditions under which they can be
accessed. The structures and the mappings between them
are shown in Fig. 2. This model takes into account the
objects, which are the chief structuring concept in an
object-oriented system. The dashed lines in Fig. 2 represent
ownership relations, which are discussed in section 3.4

3.2 Users and sessions
A basic structure in the language is that of the user. The
elementary requirements for a RBAC language include the
ability to specify a user (such as a name and a user
identity), and the roles for which the user is authorised.
Users can have access to multiple roles that they can
assume as their authorised roles. Note that users may not
always want one of their sessions to have access to all the
user’s objects and permissions. For example, a user may
wish to run some untrusted code with only a small subset
of their normal access.

For a particular process or login session [Note 21, a user
may wish (or be required to have) the access to be

Note 1 : Permission may not actually include the name (as in directory
path) of the object, but could hold a pointer to the object or other system
dependent construct.
Note 2: As systems vary significantly in their treatment of processes and
login sessions, we shall simply refer to sessions and leave the details to
implementations.

IEE Proc.-Sofhv., k l . 147, No. 4, Augtnt 2000

governed by a subset of their authorised roles. We shall
refer to this subset as the active roles. In a session, allowed
accesses to objects are limited to those within the current
active roles for that session.

If a user is authorised for a given role then a user may
adopt that role as an active role. A role is not used for
access checking until it becomes active. When a role
becomes active it does so for a particular session of the
user. Some systems allow only one role to be active at any
one time. Others allow any number of active roles and,
indeed, the user may have different roles active for simul-
taneously existing sessions.

There is obviously the need for a session structure that
records the active roles, i.e. the ones actually used to
determine whether accesses attempted in that session will
be allowed or not.

3.3 Roles
Let us now consider the role structure in the language.
Roles delimit the functions of users within organisations
by prescribing the access to objects which users have. It
must be possible within a role to specify a set of permis-
sions. There are two other important considerations in
determining what must exist within a role. RBAC models
often need to include the concepts of role hierarchy and
constraints. Role hierarchies allow roles to be constructed
from other roles. Constraints place restrictions on how
users are assigned to roles.

Regarding roles as simply sets of permissions is not
sufficiently powerful, as the relationships between job
descriptions within real world organisations can be quite
complex. If a RBAC system is to accurately model real
world systems then it must support some form of role
inheritance. This follows from the observation that one real
world job description is often an extension of another. For
similar reasons, it must be possible to specify constraints
on users taking on roles (for example, users may not be
allowed to take on one role if another role they already
have specifically disallows it).

3.3, I Role inheritance: Role inheritance can be
modelled by allowing roles to be formed, in part, from
other roles. The one possible consequence of building roles
from permissions and other roles, which themselves
consist of yet other permissions and roles (i.e. inheritance)
is the issue of conflicts between the permissions (and their
privileges) of the various roles. Consider the simple exam-
ple of a role branch-manager that inherits from both the
role accountsmanager and the role 1oansw”ager. Both
accounts-manager and loans-manager inherit from the
role teller.

0 what is the effect of the branch-manager having the
permissions of the teller twice (once through
accountsmanager and once through loansmanager)?

what if the permissions unique to accounts-manager and
loans-manager are in conflict at some point?

The answer to the first question should be that there is no
effect. The operations allowed by an active role, its
privileges and permissions should not depend upon how
they were retrieved internally by the RBAC system during
access checking. This is the classic answer to this question
when multiple inheritance is allowed.

The second question revolves around the forms of
conflicts that are possible in the language. If the language
allows negative permissions (i.e. operations a user is

There are two points that require discussion

I19

specifically barred from carrying out) then a conflict
resolution mechanism is required. If the language allows
only positive permissions, then a decision must be made as
to whether the most restrictive or most generous permis-
sion will apply; and this is a policy issue.

For example, the accounts manager may only be allowed
to examine loan balances during business hours, but the
loans manager may be able to examine them on Saturdays
as well. If the branch manager is attempting to check a loan
balance on a Saturday, the privilege inherited from the
accounts manager's role may be checked first. Although
this permission does not allow the action, the search
continues and eventually the appropriate permission, inher-
ited from the loans manager's role, is checked. As the
branch manager is inheriting all the functions of the loans
and accounts managers, it follows that the least restrictive
form should apply. In this case, the second option of most
generous permission applies. Similar arguments apply
regardless of whether the conditions conflict in external
factors (such as different limits to time or place of access)
or internal factors (such as status of the object or access
control system).

The other requirement for role inheritance is that it
should be possible for the inheritance to be partial. That
is, a role inherits some (but not all) of the permissions of
another role. It has been noted that in practice [1 11 the real
world organisations that roles are intended to model do not
always display total inheritance. The language must be able
to support this requirement. It must be possible to specify
that one role inherits all the permissions of another, less
certain stated permissions. The converse (explicitly stating
those privileges to be inherited) does not really require an
ancestor role at all, although it may be useful for modelling
purposes. This partial inheritance provides the ability to
limit the depth of inheritance. In some sense, this captures
the effects of overriding inheritance and being able to
define certain private roles. This feature is important to
enable specification of principles such as the separation of
duty and delegation. For instance, this feature helps to
address some of the issues raised in [12] concerning role
inheritance and enforcement of control principles. Real
world job descriptions may be related by some overlap of
job functions, rather then the strict subset relationship
implied by simple inheritance. It may be useful, for
modelling purposes, to create roles which contain the
common functions of job descriptions, and have the roles
which correspond to the actual job functions inherit from
those roles. As the ancestor role does not correspond to any
actual real world job, it can be nominated as a virtual role
and no user may then have it as an authorised role.

3.3.2 Role constraints: Constraints on roles limit the
possible roles that may be active and/or authorised for a
user. Constraints between roles must be checked at two
points. First, when the role is authorised for the user;
secondly, whenever an attempt is made to make the role
active for a particular session. While a user may be
authorised for two roles, it should be possible to prevent
the user being simultaneously active in both roles. This
decision on whether a role can be made active for a session
may be based solely on the roles already active for that
particular session, or on the roles active for all current
sessions of the user.

In general, constraint decisions can be based on a
number of factors, such as which roles are already
authorised or active for the user or session, or how many
users are already authorised or active in that role. It should

120

be possible to stop a role being authorised or active based
on other role assignments of the user or session (mutual
exclusion). It should also be possible to request that
another role is authorised or active for the user before a
role assignment is made (prerequisite roles).

3.4 Object ownership
In most role based access control systems, there appears to
be an implicit assumption that objects are exlplicitly
referred to in the permissions. In general, it could be a
named set whose membership can change dynamically.
While this is often what is required, it can lead to problems.
Specifically, what happens when a new object is created? If
objects are explicitly named within permissions, then
permissions have to be updated or created every time a
new object is created. This is an unwanted and unnecessary
overhead. It also violates the general requirement that the
access control system interfere as little as possible with the
rest of the system. However, if objects are not explicitly
named within permissions, how can one determine to
which objects a permission refers. While the posibility
of specifying a class, rather than a group of objects, within
a permission, partially solves this problem, there are many
occasions when users should not have access to all objects
of a given class.

The concept of ownership, found in other access control
systems, can be used to provide a solution to this problem.
This would allow permissions to be written so that. access
to objects was granted only to the owners of the objects.
Such permissions could be ,written in advance of the
objects coming into existence, and would not need to
refer to the objects by name. Ownership can be checked
within the privileges and permissions, allowing dynamic
creation of objects without each such creation requiring
update of the privileges and permissions. While the infor-
mation for a newly created ohject (who or what owns it)
must be entered into the access control system, this is no
more information required than in any other approach to
access control.

The immediate question that arises is where to vest the
ownership - in users or in roles? The obvious answer, for a
role based system, may be in the roles. However, consider
the following example. A system may have a basic role,
user, which includes a permission giving access to the
factory object for word processing documents. If owner-
ship of word processing objects (documents) was vested in
the role, then all members of the role user (i.e. probably
every user of the system) could access the word processing
objects. This situation would (at least in general) be
undesirable. More sensible would be that ownership of a
new word processing object would be vested in the user
that requested its creation.

However, restricting ownership to users only is also not
entirely satisfactory. For example, consider the role
budget-working-group. It is likely that access to spread-
sheet documents created by members of this role should be
automatically granted to all other members of the role, not
just the particular member who created the document. The
granting of such access should be on creation of the
document and should not require manual input for every
new document. It would not be feasible to say that all
spreadsheets are owned by the role through which access
was granted to their creating object, as this would preclude
private ownership of such objects. As a further example,
consider that user and budget-working-group may exist on
the same system and that the budget-working_gnmp may

1EE Proc.-SoftM., Vol. 147, No. 4, A'ugusf 21100

produce word processing documents as well as spread-
sheets.

Another possibility is to use the concept of role inheri-
tance to guide ownership, if ownership is to be vested
solely in roles. Ownership is then granted to the role that is
actually the active role of the user, not any intermediate
roles from which the active role has inherited. Therefore, if
budget-working-group was the active role of the user [Note
31, then ownership of any objects created would be vested
in the budget-working-group. However, allowing ‘private’
ownership of objects would then require the creation of
‘private’ roles for each individual user, each of which
inherits basic permission from the role user. Each user
could retain ownership of private objects by having this
private role as their active role. The result would be that no
user would ever have user as their active role - which, at
the very least, does not follow the spirit of role based
access control.

It thus seems clear that it must be possible to vest
ownership of an object in one or more users, one or more
roles, or some combination thereof. A user owning an
object has a clear meaning. With role ownership the
choice is between requiring the user attempting the access
requiring ownership to have that role as one of their
currently active roles, or to have that role as one of their
possibly active, but not currently, active roles. The latter
case restricts the possibility of sand-boxing operations and
hence we advocate the former. The final argument in favour
of allowing user-based ownership is that practical experi-
ence with role based systems has found that it is impractical
to do away with them. Such abilities should be encom-
passed within the RBAC system, as otherwise a separate
access control system would be required to handle them.
This would then produce obvious problems in coordinating
and understanding the two access control systems.

Whether the information regarding ownership is stored
with the object or elsewhere (and accessible to the access
control system) or by the access control system (and if so
exactly how) is implementation dependent.

3.5 History and variables
Access control decisions will often need to be made based
on the previous actions of the user attempting access (or of
other users with the object in question or even other
objects). This is as true for RBAC systems as for any
other, and various proposals for dealing with this have been
made, e.g. in [5, 131. Most of these are fairly restricted
mechanisms, recording simply the past occurrence of
actions (or transactions).

In taking a language-based approach we have the option
of a more flexible mechanism. One of the important
features of most programming languages is the manner in
which they store information. We propose that a language
for RBAC should allow the declaration and use of variables
to hold information useful for such purposes as tracking
the history of user actions. Access control decisions can be
based upon the values of such variables; we refer to such
variables as meta-variables, to separate them from the
variables of the programming languages used to write the
objects being protected [Note 41. The values of meta-

Note 3: For purposes of the example in this paragraph we assume that each
user can have only one active role at a time. This is unnecessarily
restrictive, but allows a clearer presentation of the example.
Note 4: The term ‘meta’ in this paper is used to refer to operations and
values within the access control mechanism itself, as opposed to those of
the entities to which access is being controlled.

IEE Pmc.-Sofi., Vol. 147, No. 4, Aigusi 2000

variables can be checked in the condition clauses of the
various structures of the language, such as privileges and
permissions. Changes to the values can also be included in
these structures. This will allow the state of the access
control system to automatically change in response to user
actions; hence such variables are particularly useful when it
comes to modelling dynamic access control. For instance,
while classical role based access control is able to model
static separation of duties, modelling dynamic separation
of duties is often less straightforward [14, 151. While the
need for dynamic separation of duties is commonly
acknowledged, the details of how it is to be achieved in
practical implementations are often omitted. A common
example of dynamic separation of duties is the initiation
and authorisation of a payment. While members of a given
role, such as accountant, may be allowed to initiate and
authorise payments, a given member may not be allowed to
both initiate and authorise a particular payment. Assume
that the payment objects do not record the identity of the
initiator and do not enforce the separation of duties. It is
then the responsibility of the access control system to
record this information and enforce the separation. When
the payment is to be authorised, the identity of the
authorising entity can be checked against that of the
initiator. This is achieved using meta-variables. In fact,
we will see later that meta-variables are also useful when it
is necessary to limit the number of times a permission can
be used, and to alter the state of roles and collections and
record parameters to actions. Recording parameters with
actions has been suggested in the definition of role
templates for content-based access control [161.

3.6 Attributes
Roles are intended to reflect the real world job functions
within an organisation. In practice, job functions often
encompass attributes such as physical ones (e.g. location)
and job classification (e.g. probationary period). Attributes
can also be used in handling MAC and Lattice based
controls (such as a Chinese Wall policy [171).

For example, consider a wholesale company with a
number of warehouses. There may be a role within the
company’s computer system stock-inventory-clerk. Users
in this role have the responsibility for entering movement
of goods into and out of the warehouses. However, there is
no need (and possibly good arguments exist against) for
such clerks being able to alter the values at warehouses
other than the specific ones at which they work. This could
be handled by having a separate role for each location and
including within each such role privileges for the objects at
each location; however, this simply results in a large
number of virtually identical roles. This can be avoided
by giving each user and object a location attribute and
checking (in the conditions of privileges and permissions)
whether the values of the attributes match at the time of
access.

It may be thought that the attributes that specify the fine
details of a job description are unnecessary. For example,
whether a clerk is in a probationary period or not could be
handled by having two separate roles. However, the
number of such attributes and their interaction, in practice,
can again lead to an explosion in the number of roles. A
quoted example [181 is for 3 125 separate sub-categories of
bank teller arising only from different attributes. It is
obviously far easier to handle these using attributes than
by using multiple roles.

We believe that it is impossible to precisely define in
advance all the possible attributes that could be of interest

121

to the designers of security systems. However we believe
that it is possible to define a useful set of attribute types.
This is inline with programming language design, where
language designers do not attempt to pre-set the variables
available to programmers. Therefore an RBAC language
should allow attributes of various names and types to be
associated with users and objects. The designer of a
security system can then decide which situations require
separate roles and which can be handled by a single role
with differing attribute values.

Ownership, as discussed in Section 3.4, can be thought
of as a special attribute. It can be tested in a privilege, as
can any other attribute. This allows users to delegate access
to other users on the basis of the objects they own. For
example, a user could delegate access to a secretary on the
basis of the objects s/he owns. Of course, this is a powerful
form of access and the user would need to set lifetimes on
the privileges. Lifetimes could be set by simply checking
the current time within the privilege and ensuring that it is
not beyond a cut-off point.

3.7 Access control algorithm
Based on the above discussion, the general structure of a
permission comprises

0 a set of methods which are governed by the permission
0 a condition which determines whether access is allowed
to the methods
0 an action (or alteration to the value of meta-variables)
which is carried out when permission for access is
requested or granted

Requests to the access control system are of the following
form:

access (s,o,m,p)

where

s is a session identifier, which can be used to identify a
o identifies an object being accessed
m identifies the method being invoked
p is the set of parameters for the invocation

user

The access control system will report whether the
method invocation is to be allowed or disallowed, accord-
ing to the following algorithm:

for each active role for the session
for each permission in the role

if the permission applies to the object
for each privilege in the permission

if the method being invoked is one of those listed
for the privilege and

the privilege’s condition evaluates to true
then execute the action of the privilege

allow the access

Note that the ordering of roles, permission and privileges is
significant in this algorithm; the ordering determines which
action section will be executed if more than one is possible.

4 Access control language: Tower

In this section, we briefly describe major features of a
language called Tower that is currently being developed to
specifj role based access control in distributed systems.

The most important structures in Tower are the defini-
tions of users, roles, permissions and privileges. Each
structure is declared and is given a name. The name is
used to identify the structure throughout the access control
system. Therefore each of these names must be unique and

122

these can be block structured for scoping. A new structure
instance may be created and assigned to a structure vari-
able. The closure of a structure includes any variables
declared in the same scope. The structures are immediately
available upon creation for evaluating access requests.
They may also have their values modified in code which
is subsequently executed. In this paper we do not specify
the management interface of the access control system. We
envisage that both users and administrators can enter
policies (in the form of Tower expressions) into the
system. Whether this is in a form similar to the Adage
VPB [9] or by some other means is not relevant to the
design of the language itself.

4.1 Block structure and variables
For an access control system to function it will require
some capacity for storing information about the objects it
manages and the access policies to be enforced. The Tower
language allows the specification of information internal to
the access control system in the form of variables. There
are two distinct categories of variable in Tower, which
differ in the type of information stored, their scope and use.
These categories are

0 Simple variables (henceforth referred to as variables)
0 Structure variables

The types of (simple) variables supported are the standard
ones such as integer, real, Boolean, string, userid (user
identity) and sets.

From the point of view of such variables, Tower is a
block structured language. A I-ilock consists of the defini-
tion of either a role or permission or statements between
matching begin and end statements. Within a block, vari-
ables are declared before any roles, permissions or interior
blocks. Avariable is in scope within the block in which it is
declared, within any structures declared within tha.t block
and within any interior blocks (except for further declara-
tions using the same variable names) and any coiistructs
defined within them. Variables declared within permissions
or roles are only in scope within those constructs. Variable
declarations have the following syntax:

var_name[= vulue], var_name[= vulue], . . . : var-type

except for set variables, which are declared as

setvar_name[= value], setvaraame[:= value], :
set of element-type

A set variable of any set type may be empty.
The optional section after each variable name allows the

value of variables to be initialised when declared. The
value of variables can be altered in subsequent code,
especially in the action sections of privileges (see below).
The values of variables may be tested within condition
expressions and constraints. Any attempt to access a value
of a variable before it is initialised results in an error.

Each variable name may be followed by a ‘ *’ or a ‘&’ (or
both). These control the actual number of instances of the
named variable and their effect within the current scope. If
neither symbol follows the variable name in the declaration
then only a single variable is created. If the variable name
in the declaration is followed by either or both of these
symbols then more than one variable, each with the same
name, is (potentially) created within this scope. If a
variable’s name is followed by a ‘*’, then a separate such
variable is created for each object covered by the permis-
sion(s:) within the scope of the declaration. If a variable’s
name is followed by a ‘&’, then a separate such variable is

IEE Proc-Sojh., Vol. 147, No. 4, Airgust 2000

created for each user whose access requests involve this
scope. If both symbols occur, then a separate variable is
created for each userlobject pair. As it cannot always be
known in advance which users and objects will be
involved, these variables are created dynamically as
required. As accesses to variables only happen when a
request to a specific object by a specific user occurs, it is
straightforward for the system to determine which variable
is to be used in any particular case.

Structure variables cover the following constructs within
Tower: permissions, privileges, roles, users, ownership and
blocks. Such structures are declared using the syntax given
above for variables; as with the variables, their values must
be initialised before use (the exception to these provisions
is blocks). The details of how values for these structures
are created are covered in the following sections. Apart
from the obvious differences between structures and vari-
ables in terms of syntax and value, the chief difference
between them is the scope of structures. Unlike variables,
which are only in scope within the block or structure within
which they are declared, structure variables can be in scope
within the entire access control system. The decision on
scoping must be made when the structure variable is
declared. Global scope is the default; if a structure’s
scope is not to be global then its name must be followed
by a ‘@’ character in the declaration. The unique user
identification of the user who created the structure can be
pre-pended to its declared name to ensure uniqueness.

The exception to the above is blocks defined by begin
and end keywords. Any such block is considered to be
global if it is not defined within another block. Blocks do
not need declaration but can be given a name, as in the
following:

my-block := begin

end
. . .

The name of a block can be used to add additional
structures or variables to the scope, it represents. That is,
Tower is not a statically scoped language but to some
extent it is dynamically scoped. This is related to database
schema evolution.

Many constructs within Tower are based upon sets. The
language provides a number of operations upon sets for all
of these constructs. The following standard set operations
are provided:

0 union, e.g. Setl: = Set2 + {elementl,element2},
0 difference, e.g. Setl: = Set2-Set3,
0 intersection, e.g. Setl : = Set3lSet4,
0 test for inclusion, e.g. element1 in Setl,
0 cardinality, e.g. size(Setl),
0 equality, e.g. Setl = Set2
0 subset test, e.g. Sett1 < S e d .

The operators are type-sensitive, i.e. the types of all the
sets involved must match and the types of the elements
must match the declared element type of the sets.

4.2 Ownership of objects and structures
As described in Section 3.4, the concept of ownership can
simplify the expression of access control policies. Many
systems limit ownership to a single user. This does not
match many real world situations, where ownership is often
equally shared between many people. For example, all
members of the committee may jointly own a document
produced by a committee. Vesting ownership in more than
a single entity leads to the question of how many of these

IEE Proc.-Sof?~?, Vol. 147, No. 4, August 2000

entities must co-operate for successful performance of
actions restricted to an owner. In Tower, we employ a
relatively simple answer to this question: for each object,
the number (or fraction) of the joint owners who must
agree before an action can be performed is stored along
with the ownership information.

Each object (and class specification) stored in the system
has a corresponding access control structure. These struc-
tures record the owner(s) of the corresponding object and
other related information. While the creation of the owner-
ship structures is automatic on the creation of the corre-
sponding object, they have a conceptual Tower syntax.
This allows for updating of the ownership information
within the scope of the language.

name := object
owners
(uuid, uuid, . . .)I(role, role, . . .JJ{uuid. uuid. . . .) (rob, role, . . .)
quorum positive integer I real between 0 and 1 lall
creation (uuid, uuid, . . .] l{rok. role,. . .Jl(uuid, uuid, . . .]{role,

role, , . .)

end-object
[variable declarations]

The name of the structure is the system dependent unique
object identifier. The first clause specifies the owner of the
object, as one or more specified users and/or the members
of named roles. The second option allows for a dynamic
concept of ownership, as it grants joint ownership to all
users who currently have at least one of the named roles as
an active role [Note 51.

The second clause specifies how many of the owners
must agree if any operation requiring owner approval is to
be carried out. For an object there are only three such
operations:

0 changing any of the information stored in the ownership
structure (including the specification of the owner),
0 allowing the object (or class specification) to be refer-
enced from within a permission, and
0 revoking the ability of the object (or class specification)
to be referenced from within a permission.

The second operation prevents users from including
objects within a permission when they do not own that
object. The third operation allows for revocation of access.

The third creation clause specifies the owner of any
object created as a direct result (i.e. without subsequent
accesses to other objects) of access to this object. For
example, while the owner of a text editor may be the
system manager, any files created using the text editor can
be specified as belonging to the user who accessed it.

The same principles of ownership can be applied to
structures of the access control system (roles, permissions,
privileges, users). The syntax is the same as that given
above, except that the keyword object is replaced with
structure. The name of the ownership structure is that of
the structye to which it applies, followed by the special
character ‘ ’. This allows us to control access to the access
control system itself in a conceptually efficient manner.
Each structure in Tower has an associated ownership
structure. The ownership information in such an ownership
structure also applies to itself, avoiding infinite recursion.
Thus it is possible to specify who owns each structure and
can therefore modify it. This also allows us to restrict the
use of access control structures; they can only be altered or
used (included in the values of other structures) either by

Note 5: While we could have simply allowed the role to be an authorised
role, insisting that it must be an active role helps protect untrusted code
running using limited privileges.

I23

their owner, or with their owner’s permission. In the case of
removing one structure from another (such as removing a
role from a user’s list of authorised roles), the permission
of the owner of either structure is sufficient.

4.3 Privileges
In an object-oriented system, it is reasonable to base the
lowest level construct of the access control system at the
method level. In Tower, a privilege is a triple, consisting of
the set of names of the methods to which it gives access,
the condition under which access is granted and any action
to be taken within the access control system if access is
granted. A new privilege is created as follows:

privilege-name := privilege
[condition_exprcssion]
[action_statement,action_statement, . . .]
(niethod_clause, method-clause, . . . J

end-permission

The condition expression and the set of action statements
are optional. The condition expression is a Boolean
expression (of arbitrary complexity) which must evaluate
to true if any of the methods is to be invoked under the
authority of this privilege. A condition expression can test
the state of the object being invoked (by itself invoking
methods of the object) and the values of parameters passed
and access control system variables in scope. An action
statement can only be executed if the invocation of any of
the methods is allowed under the authority of the privilege
(the default) or whenever the condition expression is tested
(via the use of the keyword always). When an action
statement is executed, the state of the access control
system is altered. A method-clause is either a method
name or a set of method names.

Note that there is no specification within a privilege as to
the objects to which it applies. This is handled at the
permission level. While users will probably have access to
multiple methods of each object, they will not necessarily
be able to access those methods under the same condition.
We therefore associate conditions and methods in a privi-
lege and group privileges together with a specification of
which objects they apply to within permissions. Those
methods of an object to which the same conditions apply
may be grouped together in the method set of a privilege.

4.4 Permissions
Permissions encapsulate the access to objects of a single
class. A permission consists of a specification of the
objects to which it gives access and how those objects
can be accessed. The latter is specified as a set of
privileges. A permission will give access to some subset
of the objects of the class. Normally the subset will be a
proper subset, and not all the objects of the class. This
restriction reflects the observation that normally a user will
not have access to all the objects of a class (unless they are
the only user who can access objects of that class). It would
be an unusual situation where, for example, a single user
would have access to all spreadsheets or all text documents
in a multi-user system. However, it is usually impossible to
specify in advance the names (or other identifiers) of all the
objects of a given class to which a user will have access. A
permission can specify that it allows access to objects of a
class owned by a given set of users. This allows access
Ilcontrol to be specified for objects which have not yet
come into existence. The syntax for creating a new permis-
sion is as follows:

124

pennission_nanie := permission
class-name
[owner]
[users userset]
[roles roleset]
[objects objeciset]
[variable_declarations]
privileges (puivilege-clause, privilege_clacrse. . . . J

end-permission

The class-name gives the name ‘of the class of the object to
which this permission grants access. After that are clauses
specifying the objects covered by the permission. The
objects to which the permission will grant access niay be
specified in terms of their ownership. If the keyword owner
is employed then the permission can grant access to objects
of the named class owned (singly or jointly) by th.e user
attempting to gain access. ‘The permission may grant access
to objects of the named class owned by any of the listed
entities. This may be a set of explicitly named users, or users
which currently have the namecl role as an active role. The
permission may be defined to give access to a set of existing
objects by explicitly naming them. The permission can then
be used to access those objects and no others. Finally the
object set may be a named object set, which can be dynami-
cally updated without directly accessing the permission.

If an access is attempted to an object which is not to one
of the named objects then this, permission will not grant
access. Of course, even if the object which is being
accessed is the one covered by the permission access
may still be denied according to the privileges included
within the permission. Tests for ownership may also occur
in the condition sections of privileges, but such tests are
additional (not an alternative) tO the permission level tests.

Then any variables which are in scope within the
permission are declared. Finall:,: there is a set of privileges
which define the exact access allowed by the permission. A
privilege-clause is either a privilege, a privilege s.et or a
privilege-expression. A pivileye-expression is an expres-
sion specifying changes to a privilege (such as adding or
subtracting methods, conditions or actions).

The following gives an example of the initialisation of a
permission and the effects of ownership. A user a wishes to
access the objects of class text-object owned by user b. a
enters the following code:

b-text := permission
text-object
users b
@rivilege,privilege, . . .)

end-permission

The permission will be created if both the owner of the
class definition for text-objects and user b give their
permission. The method by which they would do this
relates to the management interface and is outside the
scope of this paper.

4.5 Roles
The syntax for creating a new role value is as follsows:

rolename := role
[variable_declarations]
[authorised constraint~expression
[constraint-action]]
[active constraint-expression
[constraint-action]]
[session constraint-expression
[constraint-action]]
[roles (role_cluuse. role-clause, . . .)]
[permissions @ermission_cluuse, permission-clause, . . . J]

end-role

IEE Prot.-Sofiv, Vol. 147, No. 4, Avgust 2000

Role constraints may be expressed to affect the roles at
three different levels:

the roles that a user may be authorised to have as active
the roles that a user has active across concurrent sessions
the roles that a user has authorised within a particular

session

These are in increasing level of refinement - if a role
specifies that no user can have both it and another role as
authorised roles, then obviously the user cannot have both
those roles as active roles (either in the same session or in
another one).

Constraints in a role may be used to impose restrictions
upon whether a user may have this role added to hisher set
of roles, or whether a user may add another role while
possessing this one. Such a constraint is specified as a
Boolean hnction which must evaluate to true if the role is
to be added. A shorthand is provided for the common case
of exclusion, which is that possession of the current role is
mutually exclusive with the roles in the role set.

exclude roleset

This set can be explicitly listed in the constraint expression
or represented by a set variable, allowing easier dynamic
update.

The constraint action allows for updating of any vari-
ables relevant to the constraint. The role and permission
sections define the access allowed by the newly created
role. The definitions of role-clause and permission-clause
are analogous to that of privilege-clause in Section 4.4.
Role inheritance is modelled by allowing roles to be
formed, in part, from other roles. These roles may already
exist, and are referred to by name, or are defined within the
new role.

4.6 Users and sessions
The syntax for creating a new user structure is as follows:

userxame := user
name
Zlllid

[(role, role, . . .)]
end-user

Note that the roles are those which the user may take on
(known as the authorised roles of that user). When a new
user is created this set may often be empty. In addition to
explicitly naming roles, one or more role sets could also be
given.

For each login session of a user, it is also necessary to
record the actual roles that are currently active. It is the
active roles that are used to check whether any attempted
method invocation should be allowed.

The syntax for a session is:

sessionname := session
usel-name
uuid
[(role, role, . . .)]

end-session

Note that in some sense this a conceptual syntax; as such
structures would be implicitly created whenever a new user
session is commenced. However, they have an actual
existence and are used in checking role constraints as
well as actual method invocation.

IEE Proc.-Sofm., Vol. 147. No 4, August 2000

4.7 System evolution : Alterations to structure
values
We have described how the various structures of the
language are given their initial values. As the system
evolves, any of these structures may need to have their
values updated. Set operations may be applied to each of
these structures, for example

P1 := PI f (Prl Pr2)

Permission P1 now has privileges Prl and Pr2 added to its
set of privileges. The type of Prl and Pr2 means that the
update must be to the privilege set of the permission.
Therefore we can simply use the permission name without
further qualification. This applies to all the components of
structures that can be unambiguously identified. Where a
structure consists of two or more sets of the same element
type, such as the record of the owners of an object and the
owners of any new objects, further qualification, and
updates occur as follows:

object1.owners := objectl .owners + {michael}
object1.creation := objectl .creation + (vijay}

The first statement adds the user michael to the set of users
who own object objectl. The second statement adds the
user vijay to the set of users who will own any objects
created using objectl.

From the above, the set operations applied to a privilege
alter the contents of its set of method names (as the only
set contained in a permission is the method set). Similarly,
the roles and permissions which make up a role can be
altered, as in the following examples:

R := {Pl, P2)

The permissions in R are now P1 and P2.

R1 := R 1 + (R2, R3)

RI has R2 and R3 added to its roles

R1 := R1 - (R4)

R4 is no longer one of R1 's roles
The system can determine if the roles or permissions of

a role are being updated by resolving the names on the
righthand side of the assignment statements.

The other information held in a structure may also be
updated within assignment statements. For example, the
condition within a privilege may be added to. For example,

Prl := Prl + condition expression

The new condition expression for the privilege is formed
by joining the previous expression and that in the assign-
ment statement with the and conjunction.

5 Access policy examples

The basic constructs and structures of the Tower language
can be used to specify a range of access control polices.
This section describes some commonly used access control
policies using Tower. In the interests of space, the exam-
ples do not include all the necessary preliminary declara-
tions and initialisations. Nevertheless we hope they convey
the required information.

5.1 Role hierarchy
One of the most important advantages claimed for the role
based approach is that it can model organisation structures.
A simple (possibly simplistic) view of such structures is a

125

Loans Accounts
Manager Manager

hierarchical ordering of responsibilities, with more senior
positions encompassing all the privileges of the more
junior positions, plus some extra privileges. For example,
consider a hypothetical structure for a branch of a bank, as
shown in Fig. 3.

Let tellerrole be a role containing all the appropriate
permissions and privileges needed for a teller to carry out
his or her functions. Let PI and P2 be permissions which
contain the extra privileges required for an accounts
manager. Let P3 and P4 be the permissions which contain
the extra privileges required for a loans manager. Let
permissions P5 and P6 contain the extra permissions
required for a branch manager.

The roles for accounts manager and loans manager can
be created as follows (we assume appropriate variable
declarations):

Teller

accounts-manager-role := role
roles teller-role
permission (Pl,P2}

end-role
loansmanager-role := role

roles tellerxole
permissions {P3,P4]

end-role

Note that both these roles inherit all the privileges of the
teller role. The role for the branch manager can be created
as follows:

branchmanagerxole := role
roles { accountsmanagerJole, loans-manager-role)
permissions (P5,P6)

end-role

Note that the privileges associated with the teller role are
indirectly inherited by the branch manager role. In fact, it
is also possible to inherit only some of the privileges. For
instance, the bank manager’s role could inherit all the
privileges of accounts manager except say XI , and all the
privileges of loans manager except x2. This would be
specified as:

branch-managerxole := role
roles {accountsmanagerxole - x l , loansmanagerxole - x2}
permissions (P5,P6)

end-role

While this may be considered a simplistic example, it does
demonstrate role inheritance in Tower. Other examples
involving partial overlap rather then strict inheritance can
be modelled using virtual roles, as discussed in Section
3.3.1.

126

5.2 Role hierarchy with private roles
In the previous section, it was implicitly assumed that all
actions that can be carried out by other staff can also be
done by the branch manager. For example, there are no
private files for correspondence and record keeping. While
this may well be the policy for a bank, in practice it would
also allow some privacy to its employees. We would
therefore require that not all privileges be inherited. Privi-
leges may need to be shared amongst all holders of a
position, but not inherited or we may require privileges to
be private to individual users.

For example, for privileges that are to be shared by all
loans managers but not inherited by branch managers, each
loan manager has their user structure defined as:

userstructure-name := user
(name of loans manager)
(uuid of loans manager)
(loansmanager_role,private_loans_manager_role}

end-user

where private-loansmanagerv-ole contains those: privi-
leges not to be given to branch managers.

A user can be allowed their own private privileges by
creating a role for which they will be the only authorised
user. For example, for a tellerjohn, a role calledjohnpri-
vate-role could be created and their user structure would be

john-user-structure := user
john
(uuid of john)
{tellersole, john-privatexole}

end-user

5.3 Separation of duties

5.3.7 Static separation of duty: Consider a class
where one group of users is allowed to add itenis to an
object, and another is allowed to remove items from the
object; for example, items an: produced by one group of
users and submitted for certification by another. 13etween
creation and certification, the items are held in a container
object. This situation is a simple example of static: separa-
tion of duties and can be represented in Tower as follows:

create-privilege := privilege
{create)

endprivilege
certify-privilege := privilege

(certify)
end-privilege
create-permission := permission

containerxlass
objects {container_object)
privileges { creakprivilege}

end-permission
certify-permission := permission

container-class
ohjects (container-object}
privileges (certify-privilege}

end-permission
creator-role := role

authorised exclude certifier-role
permissions (create-permission)

end-role
certifier-role := role

authorised exclude creator_role.
permissions (certify-permission}

end-role

Only one constraint expression is actually necessary. For
completeness, a constraint expression is included in both.

IEE Proc.-Sofhu, Vol. 147, No. 4, August 2000

5.3.2 Dynamic separation of duty
Tower can also handle dynamic separations of duty.
Consider a class of cheque objects, which may be accessed
by members of the role accountant. However, the same
user may not both issue and authorise the same cheque.

begin
issuing_user* : userid
issue-privilege : = privilege

issuing-user := user
[issue)

end-privilege
authorise-privilege := privilege

(issuing-user <> user)
{authorise)

endprivilege
cheque-permission := permission

cheque-class
privilege (issue-privilege, authorise-privilege)

endpermission
accountant := role

end-role
permissions (cheque_permission]

end

Note that one copy of the variable issuing_user is created
for each object covered by the chequepermission and its
privileges. The value of the variable is set in the action part
of the issueprivilege and checked in the condition part of
the authoriseprivilege. The role accountant does not need
to be declared within the block, but placing it within the
block aids readability.

5.4 Chinese Wall policy
The Chinese Wall policy [I71 can be viewed as a special
form of dynamic separation of duty. In this policy, objects
are grouped together into different sets which reflect
conflicts of interests. If a user has accessed an object in
a set, then the user is not allowed to access any other object
within that conflict of interest set. For example, if company
A and company B are in the same conflict of interest set
and if a user is acting as a consultant to company A, then
slhe is not allowed to act as a consultant to company B.

The operations for each company are placed in a
separate role. A conflict of interest set is represented by
the set of each of these roles. The constraint expression for
each role must reflect, on a per user basis, the actual role
which has been accessed.

begin
companyA, companyB : role
user-company = {] : set of role
compaiiyA := role

authorised user-company = ()or user-company = (companyA)
userxompany := (companyA]
permissions (permissions for conipanpl)

end-role
companyB := role

authorised user-company = ()or user-company = (companyB]
userxompany := (companyBJ
permissions (permissions for conipanyB)

end-role
end

Objects may affect more than one conflict of interest set.
Consider the example where the users are consultants to
various firms. One conflict of interest set is accounting
firms, and another mining companies. An object, which
holds information about both a mining company and an
accounting firm, checks on both conflict of interest sets for
a user. As the labels associated with objects and users are
global in such systems they are handled in Tower by

IEE Proc.-Sofrw., Vol. 147, No. 4, August 2000

including all conflict of interest variables and roles in a
single Tower block.

5.5 Delegation
Delegation within Tower is handled by dynamically assign-
ing and de-assigning roles. While roles are usually thought
of as broad concepts covering complete job descriptions,
they can also be used in a much more fine-grained manner.
The collections representing the delegated authority can be
placed in a new role. This role can be added to the
authorised role of the user (which may represent a real
world uses or some active system entity) to whom the
authority is to be delegated. When the delegated actions are
completed, the role can be removed.

Consider the following delegation situation [IS]: a
departmental manager has access to view and modify the
overall departmental portfolio object DP. The department
may have several projects, each of which has an individual
portfolio object DPi. A project manager can only view or
modify his or her own portfolio object. A project manager,
p m , can only view or modify another project’s portfolio if,
and only if, the departmental manager dm has delegated the
appropriate privilege to it. That is, in this case, the project
manager is acting on behalf of the departmental manager.
This could be handled in Tower by the dm executing the
following:

delegated-rights := permission

end-permission
delegation~role := role

end-role
pm := pm + delegationLrole

. . .

permissions (delegatednghts)

The departmental manager (after executing the above code)
has created a new role holding the delegated permissions,
and this role has been added to the set of authorised roles
for the project manager. As the departmental manager is
probably not the owner of the user structure for the project
manager, the last line will not take effect until the project
manager (assuming he/she owns hislher own user struc-
ture) gives permission for the update. As the department
manager retains ownership of the new role and collection,
the project manager cannot pass on the delegated rights
without the department manager’s agreement.

However, the department manager may wish the project
manager to be able to further pass on the delegated permis-
sion without referring back to the department manager. This
can be handled in a number of ways. The department
manager could transfer ownership of the new structures to
the project manager. The project manager could then
distribute them freely. However, the project manager
could also alter them before distribution. Even though
such alteration would have to obey the access restrictions
implied by ownership of objects, this may still be more than
the department manager desires. In such a case the depart-
ment manager could transfer ownership of only the delega-
tion-vole. This would allow the project manager to add this
role to other user’s roles or user structures, without being
able to alter the encapsulated permission.

As an example of delegation at the access control system
level, consider a situation where a new member wishes to
join a club and requires two recommendations from exist-
ing members. For instance, we may have roles candidate
and member. A user with a role candidate is considered to
be applying for membership.

127

member := role
authorised candidate in user
user := user - candidate

end-role
candidate" .owners := member
member".owners := member
member^.quorum := 2

. . .

Recall that the use of the ' ' character with the name of a
structure refers to the ownership of that structure. The
constraint section of role member checks that the prospec-
tive member is a candidate and then removes the role
candidate from that user's set of roles. The other state-
ments allow any two members to approve a new member.

5.6 Joint action based policies
Joint action based policies [19] are used in situations where
trust in individuals needs to be dispersed. Often this arises
due to the fact that individuals are trusted according to
their expertise which in turn maps the concept of trust to a
specific set of actions. In delegation, there is a partial or
complete granting of privileges, whereas in joint actions
agents may acquire privileges, by working together in
tandem, which none posses in isolation. For instance,
consider the following examples:

Admission of a patient: a patient is admitted to the
hospital if the patient and a doctor agree. The doctor and
the patient jointly own a patient's record. Every doctor and
patient has the following permission and privileges.

patientLrecord-permission := permission
patient-record
owner
doctor_id* = 0, patienkid* = 0 : userid
privileges (admit-privilege, . . .)

end-permission
admit-privilege := privilege

doctor-id <> 0 and patient in user and user <> doctorid
or
patient-id <> 0 and doctor in user and user <> patient-id
always
if doctor in user then

doctor-id := user
else patient-id := user
(admit)

end-privilege

The above example depends on ownership specified in the
patient-record as only specific members of the roles
patient and doctor could act on specific patient records.
Note that the first attempt to admit the patient, by either the
doctor or the patient, will fail; the access control system
cannot predict future access. If actions are assumed to be
sequential, then the first attempt must fail.

Authorising payment for goods: any member of the role
buyer and any member of the role accountant can authorise
the payment. The two roles are assumed to be mutually
exclusive.

payment1ecord := permission
payment
authorising_buyer* = 0, authorising-accountant* = 0 : userid
privilege (authorise-privilege, . . .]

end-permission
authorise-privilege : = privilege

authorising-buyer <> 0 and accountantin user
or
authorising-accountant <> 0 and buyer in user
always
if buyer in user then

authorising-buyer := user
else if accountant in user then

authorising-accountant := user
{authorise]
end-privilege

128

5.7 Limiting number of accesses
Sometimes one user will wish to give access to another
user, but limit that access to a certain number of opera-
tions. Such situations can be handled in Tower as follows.
User a wishes to give user b access to method m of object
0, but wishes to impose a maximum number of times (say
five) that b may call m.

counting-permission := permission
o-class
object o
count = 5 : integer
privileges (m-privilege]

end-permission
m-privilege := privilege

count > 0
count := count - 1
(m)

end-privilege

If the user wished to have more than one privilege, then
count would apply to all calls on the object. If the
requirement was to limit the number of calls to each
method individually, then a separate variable w,ould be
required for each method.

If the limit was to be over a number of objects, then the
variable could be declared wifhin a block and used within
the permission for each object; which would also have to
be declared and initialised within the block.

As the count variables can be updated within th.e action
parts of the permission, the exact limiting of the access can
be quite flexible.

6 Brief comparison with other work

The language described above is far from the first attempt
at expressing role based accizss control. Other proposals
have been put forward which allow the access, control
policies to be expressed in a systematic manner for role
based or related systems. These proposals range from the
formal one such as in [6] to more practical ones such as in
[5] and [ll], to related mechanisms such as in [l:;]. While
formal languages such as the ASL in [6] can have good
expressive power, they suffer from a resistance amongst
real users due to their highly intricate nature. For 'example,
these languages often depend upon their users having a
reasonable level of understanding of logical principles.
This is not always found amongst real world users, even
those entrusted with the management of acces,s control
policies for a system. The: syntax will often contain
symbols not commonly used, limiting their appeal. While
it is true that such languages are not generally written for
widespread use, perhaps this simply strengthens the argu-
ment that a different approach should be used for the
expression of access control policies in real world systems.
Another drawback of some such proposals is the attempt to
be too general: while it may be useful in a theoretical
language to be able to cover a number of access control
approaches, in the real world it is more important to be able
to address those that are used in practice and to develop
tools tailored to support them. The language described in
this paper is intended to address this practical issue, and
does not assume an overly high level of theoretical ability.

Furthermore, in the language that has been proposed in
this paper we have considered meta-variables and role
constraints, which few of the other propo!jals have
included. For example, [5] ,attempts to use an assortment
of predefined functions to fulfil the functionality that we
address using meta-variables. A set of predefined functions

IEE Proc.-Sofrw., Vol. 147, No. 4, August 2000

is highly unlikely to present a sufficient degree of flex-
ibility and capability. It is far better to provide the user who
needs to specify access control policies with flexible
mechanisms (such as those we provide) and allow them
to build structures for expressing their policies. Finally,
some other earlier work such as [13] is limited in its
expressiveness: it does not address concepts such as time
or object attributes; and the syntax is also somewhat
limited, being targeted at specific operating systems.
Other work, such as [15] considers the use of RBAC
structures in the management of RBAC policies. We
believe that Tower can be used in this manner, but leave
the detailed exposition of this to a future paper.

7 Concluding remarks

We have proposed a language based approach to the
specification of authorisation policies. We believe that
such an approach is required to support the range of
access control policies in commercial systems. We have
discussed the issues involved in the design of a language
for role based access control systems. The proposed
language focuses in particular on object-oriented systems.
The notion of roles is used as a primitive construct within
the language. It is often the flexibility and management of
the meta-level operations which are significant when it
comes to the applicability of an access control system to
practical real situations. The use of a language based policy
approach helps us to better structure such meta-level
policies. We have described the basic constructs of the
language, and used the language to specify several access
control policies. In particular, we have described policy
example scenarios involving role hierarchy, separation of
duties both static and dynamic, Chinese Wall policy
delegation, and joint action based access policies.

The implementation of Tower is in its early stages. We
found implementation on top of other access control list
mechanisms to be somewhat inefficient. Hence we have
chosen to implement it directly. The chosen vehicle is
based on the C O D A interceptor mechanism [20]. This
allows the access control to be independent of the rest of
the system, while still being able to allow or deny access.
The implementations in each ORB can communicate,
thereby allowing distributed access control. However addi-
tional implementation issues arise when providing RBAC
management in a distributed environment. These will be
reported when the implementation is completed.

9

1

2

3

4

5

6

7

8

9

I O

14

15

16

17

18

19

20

References

PFLEEGER, C.P.: ‘Security in computing’, (Prentice Hall, 1997), 2nd
edn.
SANDHU. R., COYNE, E.J., and FEINSTEM, H.L.: ‘Role based
access control models’. Computer, 1996, 29, (2), pp. 38-47
OSBORNE, S.: ‘Mandatory access control and role-based access
control revisited’. Proceedings of the 2nd ACM RBAC Workshop,
Fairfax, VA, USA, 1997, pp. 3 1 4 0
SANDHU, R., and FEINSTEIN, H.: ‘A three tier architecture for role-
based access control’. Proceedings of the 17th national computer
security conference, Baltimore, MD, USA, 1994, pp. 34-46
SIMON, R., and ZURKO, M.: ‘Separation of duty in role-based
environments‘. Proceedings of the 10th computer security foundations
workshop, Rockport, MA, USA, 1997, IEEE CS Press, pp. 183-94
JAJODIA, S., SMARATI, P., and SUBRAHMANIAN, V: ‘A logical
language for expressing authorizations’. Proceedings of the IEE
Symposium on Security and information privacy, 1997, Oakland,
CA, USA, pp. 3 1-42
SANDHU, R., COYNE, E., FEINSTEIN, H., and YOUMAN, C.:
‘Role-based access control: A multi-dimensional view’. 10th Annual
computer security applications conference, Orlando, FL, USA, 1994,
IEEE CS Press, pp. 54-61
HILCHENBACH, B.: ‘Observations on the real-world implementation
of role-based access control’. Proceedings of the 20th National infor-
mation systems security conference, 1997, Baltimore, MD, USA, pp.

ZURKO, M., SIMON, R., and SANFILIPPO, T.: ‘A user-centered,
modular authorization service built on an RBAC foundation’. Proceed-
ings of the IEEE symposium on Security undprivacy, 1999, Oakland,

BAI, Y., and VARADHARAJAN, V: ‘A logic for state transformations
in authorization policies’. Proceedings of the lQth IEEE computer
security foundations workshop, 1997, Rockport, MA, USA, IEEE,
Computer Society Press, pp. 173-183
VARADHARAJAN, V, CRALL, C., and PATO, J.: ‘Authorization for
enterprise wide distributed systems: Design and application’. Proceed-
ings of the IEEE computer security applications conference,
ACSAC’98, 1998, Scottsdale, AZ, USA
MOFFETT, J.: ‘Control principles and role hierarchies’. Proceedings of
the 3rd ACM Workshop on Role bused access control, 1998, Fairfax,
VA, USA
KARGER, P.: ‘Implementing commercial data integrity with secure
capabilities’. Proceedings of the IEEE Symposium on Security and
privacy, 1988, Oakland, CA, USA, pp. 130-39
FERRAIOLO, D., and KUHN, R.: ‘Role based access controls’.
Proceedings of the 15th NIST-NCSC national computer security
conference, 1992, Baltimore, MD, USA
SANDHU, R.: ‘Role activation hierarchies’. Proceedings of the 3rd
ACM RBAC Workshop on Role bused access control, 1998, Fairfax,
VA, USA, pp. 33-40
GIURI, L., and IGLIO, P.: ‘Role templates for content-based access
control’. Proceedings of the 2nd ACM Workshop on Role bused access
control, 1997, Fairfax, VA, USA
BREWER, D., and NASH, M.: ‘The Chinese Wall security policy’,
Proceedings of the IEEE Symposium on Secui-ify and privacy, 1989,
pp. 206-214, Las Alamitos, CA, USA
VARADHARAJAN, V, ALLEN, P., a?d BLACK, S.: ‘Analysis of
proxy problem in distributed systems , Proceedings of the IEEE
Symposium on Security andprivacy, 1991, Las Alamitos, CA, USA
VARADHARAJAN, V, and ALLEN, P.: ‘Joint action based authoriza-
tion schemes’, ACM 30, Oper. Syst. Rev., 1996, 3, pp. 3 2 4 5
Object Management Group (OMG), ‘CORBAservices: Common
object services specification’ and ‘security services in common object
request broker architecture’, 1996-98.

341-52

CA. USA, pp. 57-71

8 Acknowledgments

The authors would like to thank the anonymous referees
for their valuable comments.

IEE Proc.-sofhv., Vol. 147, No. 4, August 2000 129

