
Specification and Enforcement of Object-Oriented RBAC Model

Chang. N. Zhang , Cungang Yang

Department of Computer Science
University of Regina, TRLabs
Regina, Saskatchewan, S4S OA2
zhanq(i7)cs.uregina.ca
cungang@,cs.uregina.ca

Abstract:

Access control for protection and sharing of information
and physical resources is an essential component of any
multi-user computer systems. Role-Based-Access-Control
(RBAC) has been introduced and has offered a powerful
means of specifying access control decisions, as well as
reducing the cost of administrating access control policies
and making them less error-prone. In this paper, we
proposed an object-oriented RBAC model (ORBAC) and
its formal specifications to describe the relationships of the
basic elements of the model. Furthermore, an efficient
ORBAC implementation method was proposed to deal
with statically and dynamically role authorization so that
the problem of seperation of duties can be solved.

Keywords

WAC, ORBAC, Seperation of Duties, Constraint, Least
Priviledge.

appropriate for great flexibility in specifying and enforcing
enterprise-specific protection policies and reduce the
management cost. Users can be assigned to members of
roles as determined by their responsibilities and
qualifications, they can be easily reassigned without
modifying the underlying access structure.

In the last few years, the fundamentals of RBAC
policies have been clearly identified[13, and many RBAC
models have been proposed to satisfy security
requirements in different areas, such as for role-based-
access-control administration mode1[2][3][4], lattice-based
access control model[5], but they are all logic models and
have not efficiently represented the real world. In this
paper, we proposed a new variation of M A C model called
object-oriented RBAC (ORBAC), which is a an object-
oriented one and more easy to be used on distributed
applications. Moreover, in this model, the dynamic role
authorization and the constraint of seperation of duty
problem are also be considered and implemented.

2. Role-Based-Access-Control (RBAC) Model
1. Introduction

Access control for protection and sharing of information
and physical resources is an essential component of any
multi-user computer system. A popular approach for
security management is Access Control List (ACL). In
ACL, each object has an access control list, indicating that
all the accesses to those subjects are authorized on that
object. However, in a large distributed system there are
millions of objects, and each of whch is assigned to
thousands of subjects, so the access control list will be
enormous in size and their maintainance will be much
difficult and costly. To give an acceptable solution to this
problem, Role-Based-Access-Control(RBAC) as a key
security technology was proposed[13.

The central notion of RBAC is that users do not
directly access to enterprise objects, instead, access
priviledges are associated with roles, and each user is
assigned to one or multiple roles. This idea greatly
simplifies management of authorization while providing an

The RBAC model used in t h s paper is shown as fig. 1,
which is basically the one proposed by Sandhu et a1 [l]. It
consists of four basic components: a set of users (Users), a
set of roles (Roles), a set of priviledges (Priviledges), and
a set of sessions (Sessions). A user is a human being or an
autonomous agent, a role is a collection of priviledges
needed to perform a certain job function within an
organization, a priviledge is an access mode that can be
exercised on objects in the system, and each session is a
mapping of one user to possible many roles, a user can
have multiple session and a session includes multiple
activated roles, each session is associated with a single
user. A user can be a member of many roles, and a role can
have multiple members. A role may have many
priviledges, and the same priviledge can be associated to
many roles. When a user logs in the system he/she requests
to activate some subset of the roles he/she is authorized to
play. An activation request is granted only if the
corresponding roles is activated at the time of the request.

- 0301 -

If an activation request is satisfied, the user submits the
request to obtain all the priviledges associated with the role
he/she has required to activate. RBAC introduces role
hierarchies to reflect an organization lines of authority and
responsibility. On the set of roles, a hierarchy is defined
by: If r > r ,then role r i will inherite the priviledges of
role r Moreover, RBAC introduces the concept of
constraints, a common example is of mutual exclusive
roles, such as purchasing manager role and account
payable manager role, in most organizations the same
individual will not be permitted to be a member of both
roles, because this will create a possibility of committing
fraud, this is the well-known principle called seperation of
duties. Constraints ensure the role specifications that
actually enforce the access control requirements. A typical
RBAC model consists of roles to which users and
permissions may be assigned[l]. The assignment of users
and priviledges to roles is limited by constraints.

Role Hierarchy

\ /

Session

onstraint

Fig 1: RBAC Model

3. Object-Oriented Role-Based-Access-Control Model
(ORBAC)

The proposed object-oriented Role-Based-Access-Control
model (ORBAC) described in Fig 2 fully realizes the
original M A C model and can be implemented on a
distributed environment. In this section we describe some
basic specifications based on RBAC for the ORBAC
Model. A number of different viewpoints about RJ3AC has
been discussed[6][7][8]. The abstract model defined in this
paper intends to capture the essential feature of RBAC and
extend it to satisfy the requirements in the distributed
environment. Because the seperation of duty policies are
often much important in many commercial applications,
the specification for seperation of duty is also proposed.

3.1 Basic elements and their specifications

In this model, class User is a many-to-many relationship
with class Role, and class Role is also a many-to-many
relationship with class priviledge. Formally UserRole and
RoIeRriviledge relations can be expressed by the
following mapping functions:

2R01e : representsany subset of the role
S[t] : the user/role mapping, which gives the subset of Role,
every element of the role subset is authorizedfor the user t;

(2) R(i : Role) + 2User

2User : representsany subset of the user
R[i] : the rolehser mapping, which gives the subset of User,
every element of the user subset is authorized for the Role i;

The class Session has been described as below:
Session id: identifying the session.
User: reference the user object of the session.
Roles: reference all the role objects hold by the

Functions of the class include adding roles to session,

The class User is defined as:

session.

drop roles from session, etc.

User id: identify the user.
Roles: reference to all the role objects of the user.
Sessions: reference to all the session objects of the
user.

A priviledge is an approval of a particular operation to be
performed on one or more objects, the relationship
between roles and priviledges is also many-to-many
mapping as shown in fig 2, we describe it by the following
mapping functions:

Priviledge (3) T(l: Role) + 2
2priviledge

: represents any subset of the priviledge

T[1] : the role/priviledge mapping, which gives the subset of

priviledge.

every element of the priviledge subset is authorized for the role 1;

(4) C(u : Priviledge) + 2"le

role : represents any subset of the role

C[u] : the priviledgehole mapping, which gives the subset of Role,

every element of the user subset is authorizedfor the Priviledge U;

We define class Role as below:
Role id: identify the role.
Priviledges: references to all priviledge objects of the

Users: references to all user objects of this role.
Parent roles: references to all direct parent roles.
Child roles: references to all direct child roles.

Class Role has functions such as adding, deleting,
modifying parent or child roles, adding roles to users,

role.

- 0 3 0 2 -

adding, deleting priviledge objects, also, class role has
multiple constraint functions, we call them role constraint
functions, these functions are used to check role
authorization and solve role-role related problems, such as
mutual exclusive problems.

The class priviledge is also defined as:

Priviledge id: identifying the priviledge.
Actions: define the actions of the proviledge.
Targets: objects which actions apply.
Roles: references to all role objects of this

priviledge.
Functions of the class priviledge includes adding
priviledges to roles, deleting priviledge from roles, also,
class priviledge has multiple constraint functions, we call
them priviledge constraint functions which are used to
check whether the authorized roles are satisfied with the
priviledges constraints.

3.2 Constraint

ORBAC assigns constraints to user-role and role-
priviledge authorization. The association class UR defines
user assignment between users and roles, and class static
UR and dynamic UR describe that users can be statically
or dynamically authorized during a session. In the normal
conditions, a user can be assigned many different static
roles as it satisfied the principle of “Least Priviledge”,
which means that a user was assigned least roles to finish a
certain task which is benefit for the system security. Static
UR object also guarentees the system to prevent the
assignment of mutual exclusive roles, but for a business or
enterprise environment, flexible and efficient role
authorization is also important, it may be acceptable for a
user to be a member of two mutual exclusive roles as long
as the user can not be active in both roles at the same time.
Moreover, object UR has its life cycle, when a user applied
for the roles, the UR object will be created, after the task
finished, it will be destroyed and system resources will be
released.

The relationship class UR can be described as:
User id: identifying the user.
Role id: identifying the role.

The main function of UR is to realize role authorization
by calling role constraints functions.
The associated class RP establishs the relationship between
roles and priviledges. The activated RP object will check if
there is any problem between a uer’s authorized
priviledges with hisher priviledge requirement, any
difference will lead to access failure. Moreover, RP object
has its life cycle too, it is created and activated on the
server when user submits his priviledge requirements. The
main job of RP is to make the decision whether permitting
hidher access. Finally, the RF’ objects will be destroyed
and the system resource allocated will be released. Fig 3

describes the relationship of UR and Rp on the proposed
model.

The relationship class RP can be described as:
Role id: identifying the role.
Priviledge id: identifying the priviledge.

The main function of the class is priviledge authorization
by calling priviledge constraints functions.

4 Session C;

* I I

I k 4

*,+,\\ Constraint I
I I 1 I

Fig 2 A block diagram of ORBAC Model

Priviledgel

Role 1

User2

Role2

User3 4 Priviledge 3>

I I I

Fig 3: UR and RP on ORBAC

3.3 Mutual Exclusive

The constraint for mutual exclusive roles can be used to
enforce conflicts of interest policies that may arise as a
result of a user gaining authorization for priviledges
associated with conflict roles. That is, if a user is
authorized as a member of one of the conflicted two roles,
the user is prohibited from being a member of another role.

- 0 3 0 3 -

The constraint functions for mutual exclusive roles are
specified as follows:

(5) E : role x role

E[l,m : Role] : the set of role pair 1 and m that are mutual

exclusive with each other

(6) The user can not has two exclusive roles.

(V I,m)(l f m) A E(1,m) A (t E R[1]) * t e R[m]

(7) Mutual exclusive roles can not inherited each other.

V(1,m)3(n)E(l ,m)-7((1>m)~(m>1))

(8) If there are two roles 1, m mutual exclusive then thelr: is

no role n exists to inherite both of them

V(l,m)V(n)E(l,m) * (,3n)((l> n) A (m > n))

(1 3) Role authorization :

Static Role Authorization : a user's active role n must be

in the set of authorized roles for the user t.

(Vt)(n E A[t] - n E S[t])

(14)Dynamic seperation of duties :

With dynamic seperation of duties, an organization can

address potential conflict - of - interest issues at the time

a user's membership is authorized for a role, a pair of roles

may be designated as mutual exclusive regarding role

activation, that is, a user may be active in only one of the two

distinct roles.

(Vt : User)(Vl, m : Role)E[l, m] 3 +A[1] A A[m])

(1 5) Role hiearchy : Roles are organized into a ordered 3.4 Dynamic properties of ORBAC

ORBAC dynamic properties include role activation, set so that if a role is included in the authorizedor active - -
role sets, roles below it are included also priviledge execution and dynamic seperation of duties.

Dynamic properties provide extended support for the
principle of ieast phviledge, such that each user has
different levels of priviledges at different time, depending
on the role being performed. The following functions
formalize the mappings for these dynamic properties.

(9) Active role

(Vl,m)(Vt)(l E A[t] A (1 > m) * m E A[t])

A ((1 E s[t]) A (1 > m) * (m E s[t]))

4. The general method for ORBAC implementation

A(t : User) + 2R01e
Role : represent any subset of the role.

A[r] : the subset of the role, every element of the subset is a

current active role for user t.

(10) P : user x Priviledge + boolean

P[t,u] : true if and only if user t can execute priviledge U.

(1 1) Priviledge Authorization :

a user can execute a priviledge only if the priviledge is

authorized for a role which the user activated

(Vt)(Vu)(3Z)(Z E A [[] A U E T[l]) * P[t,u] = true

(12) Role Assignment :

The proposed ORBAC implementation diagram is shown
in Fig 4. Each user can implement multiple tasks so he/she
can create multiple sessions. In the meantime, each session
can activate many different roles. In order to prevent the
problem of seperation of duties, a session-table was created
by security manager to monitor all the active roles of each
user so that there is no mutual exclusive roles are activated
simultaneously. The role allocation table is issued to
indicate all the roles assigned to each user by the security
manager. The basic security architecture table defines role
hiearchy and role constraints to present the relationship
between roles and their constraints. Resource requirement
table defines the relationships between roles, priviledges
and their priviledge constraints.
The detail implementation on ORBAC can be described as
follows (see Fig 4):
(1) User K first logs in client A with his username,

A user t can execute a priviledgeu only if helshe has password.
(2) User K opens an application and creates a session
number and sents it with his username to security manager
B.
(3) Security manager B got it and creates a UR object to
check role allocation table and returns all user K's
allocated roles back to K, in the meantime, UR will create
a session for K with his session id and usemame.

selected an active role for priviledge U.

(Vt)(Vu)(3 l)((A[t] z 0) A (1 E A[t) A U E T[l])) * P[t,u]

= True

- 0304 -

(4) K chooses suitable roles for his current application and
sends them back to B.
(5) UR got it, then checks role hiearchy in the Basic
security Architecture table and got all chosen roles’ child
roles, furthermore got all child roles’ constraints and check
whether the chosen roles violate role constraints. To
prevent the problem of mutual exclusive roles, UR will
following check the session table to see if there exists
mutual exclusive problem after adding the chosen roles to
the session table, if not, the roles will be activated and be
added into the session table, .otherwise, this role
application will be refused.
(6) After roles were authorized, the authorized roles will
return back to A.
(7) Client A got the authorized role, then accesses the
server C with his priviledge requirement.
(8) In the server C, an RP object will be create after the
roles and K’s priviledges is received,
then RP object got the authorized roles’ priviledges and
their constraints from the resource requirement table and
judge whether the authorized roles corresponded with the
priviledge constraints, if yes the priviledges will be
authorized.
(9) Compare the authorized priviledges with K’s required
priviledge, if the require priviledges less than or equal to
the authorized priviledges, K’s access will be granted,
otherwise, the access application will be refused.
After the application finished, session will be closed and
the application session item on the session table will be
deleted, also, UR and RP object will be destroyed.

Resource

8 RP

Server (C) Resource
Requirement
Table

(8) Roles

t ’ Privi edge

Role Allocation

Roles
Hiearchy + Role

Table pxq-mq

,o @

Basic security F) Architecture Security
Table \ Manager (B)

client (A)

4. Conclusion:

In this paper we have presented an objected-oriented
RBAC model(0RBAC). The driving motive of it is to
simplify security policy administration. The session table
was established to prevent the problem of seperation of
duty, and it provides a way to prevent the domain security
manager assign multiple exclusive role to a user at one
time. Moreover, this paper also discussed some ORBAC
and seperation of duty specifications.

Reference:

Sandhu,R.S, Coyne, E.J., Feinseein, H.L., and
Younman C. E., Proceedings of the .first ACM
Workshop on Role-Based-Access Control , ACM,
1996.
Ravi Sandhu and Venkata Bhamidipati. The URA97
model for Role-based administration of user-role
assignment. In T.Y. Lin and Xiaolei Qian, editor,
Database Security : Status and prospects. North-
Holland, 1997.
Ravi sandhu and Venkata Bhamidipati, The
ARBAC97 Model for Role-Based Administration of
Roles: Preliminary Description and outline, Second
ACM workrhop on Role-Based-Access-Control ,
Fairfax, Virginia, USA, November, 6-7, 1997.
Trent Jaeger, Frederquegiraud, A Role-Based
Access Control Model for Protection domain
Derivation and Management, Second ACM
Workshop on Role-Based-Access-Control, Fairfax,
Virginia, USA, November 6-7, 1997.
R.S. Sandhu, Lattice-based access control .
Computer, 26: 9-19, Nov 1993.
D.Ferraiolo, J. Cugini, and D.R. Kulin. Role based
access control: Features and motivacation. In
annual Computer security applications conference.
IEEE Computer Society Press, 1995.
Sylvia sbom, Yuxiao Guo, Modeling users in role-
based access control, Fifth ACM workshop on Role-
Based Access Control, Berlin, Germany, July 26-27,
2000.
Ravi sandhu, David Ferraiodo and Richard Kulin,
The NIST Model for Role-Based Access Control:
Towards a unified Standard, Fifth ACM Workshop
on Role-Based Access Control, Berlin, Germany,
July 26-27,2000.

Fig 4. ORBAC implementation diagram

- 0305 -

