
An Object-Oriented RBAC Model for Distributed System

Chang. N. Zhang , Cungang Yang

Department of Computer Science
University of Regina, TRLabs
Regina, Saskatchewan, S4S OA2

zhane@cs.urerina.ca
cunpang~:cs.urepina.ca

Abstract:

In the distributed coniputing environments, users would
like to share resources and comniunicate with each
other to perj?orni their jobs more efficiently. For better
pe$orniance, it is important to keep resources and the
information integrity from the unexpected use by
unauthorized users. Therefore, there is a strong
demand f o r the access control of distributed shared
resources in the last few years. Role-Based-Access-
Control (RBAC) has been introduced and has offered a
powterful niearis of speci’ing access control decisions.
I n this paper, we propose an object-oriented RBAC
niodel f o r distributed system (ORBAC), it ejjiciently
represents the real world. Moreover, under the
ciecetitralized ORBAC ninnagenient architecture, an
implementation of the model has realized multiple-
domain access control. Finally, statically and
dytmnrically role authorization has been considered
and U niethod to deal with the problem of seperation of
duties has been presented.

Keywords

KBAC, ORBAC, Seperation of Duties, Constraint,
Least Priviledge.

1. Introduction

Distributed systems are increasingly being used in
commercial environments necessitating the
development of trustworthy and reliable security
mechanisms. A popular approach for security
management is Access Control List (ACL). In ACL,
each object has an access control list, indicating that all
the iiccesses to those subjects are authorized on that
object. However, in a large distributed system there are

millions of objects, and each of which is assigned to
thousands of subjects, so the access control list will be
enormous in size and their maintainance will be much
difficult and costly. To give an acceptable solution to
this problem, Role-Based-Access-Control(RBAC) as a
key security technology was proposed[11.

The central notion of RBAC is that users do not
directly access to enterprise objects, instead, access
priviledges are associated with roles, and each user is
assigned to one or multiple members of appropriate
roles. This idea greatly simplifies management of
authorization while providing an appropriate for great
flexibility in specifying and enforcing enterprise-
specific protection policies and reduce the management
cost. Users can be assigned to members of roles as
determined by their responsibilities and qualifications,
they can be easily reassigned without modifying the
underlying access structure.

In the last few years, the fundamentals of RBAC
policies have been clearly identified[11, and many
RBAC models have been proposed to satisfy security
requirements in different areas, such as for role-based-
access-control administration mode1[2][3][4], lattice-
based access control model[5], but they are all logic
models and have not efficiently represented the real
world. In this paper, we proposed a new variation of
RBAC model called object-oriented RBAC (ORBAC),
which is a an object-oriented one and more easy to be
used in distributed applications. Moreover, in this
model, the dynamic role authorization and the
constraint of seperation of duty problem are also be
considered and implemented.

2. Role-Based-Access-Control (RBAC) Model

The RBAC model used in this paper is shown as fig. 1 ,
which is basically the one proposed by Sandhu et al[l].

0-7695-1360-3/01 $10.00 0 2001 IEEE 24

It consists of four basic components: a set of users
(Users), a set of roles (Roles), a set of priviledges
(Priviledges), and a set of sessions (Sessions). A user
is a human being or an autonomous agent, a role is a
collection of priviledges needed to perform a certain
job function within an organization, a priviledge is an
access mode that can be exercised on objects in the
system, and each session is a mapping of one user to
possible many roles, a user can have multiple session
and a session includes multiple activated roles, each
session is associated with a single user. A user can be a
member of many roles, and a role can have multiple
members. A role may have many priviledges, and the
same priviledge can bc associated to many roles. When
a user logs in the system he/she requests to activate
some subset of the roles helshe is authorized to play.
An activation request is granted only i f the
corresponding roles is activated at the time of the
request. If an activation request is satisfied, the user
submits the request to obtain all the priviledges
associated with the role he/she has required to activate.
RBAC introduces role hierarchies to reflect an
organization lines of authority and responsibility. On
the set of roles, a hierarchy is defined by: If r > r , ,
then role r ,
Moreover, RBAC introduces the concept of
constraints, a common example is of mutual exclusive
roles. such as purchasing manager role and account
payable manager role, in most organizations the same
individual will not be permitted to be a member of both
roles, because this will create a possibility of
committing fraud, this is the well-known principle
called seperation of duties. Constraints ensure thc role
specifications that actually enforce the access control
requirements. A typical RBAC model consists of roles
to which users and permissions may be assigned[l].
The assignment of users and priviledges to roles is
limited by constraints.

will inherite the priviledges of role r ,

Role Hierarchy
\ 1 g$-; Priviledges

Session
Constraints

3. Decentralized Security management
Architecture

For distributed system, like Internet, centralized
network administration is impossible and unflexible.
The implementation of ORBAC model is based on a
decentralized management architecture shown in Fig.2.
A distributed environment has multiple different
administration domains such as domain], domain2, etc.
The basic elements for each domain basically include
client, server, domain security manager and foreign
security manager. The main function of each element is
described below .

Client: Accepts the requirements of a user to get
access to local or foreign domain resources and returns
the rcsult to user.

Server: permits authorized accesses.
Domain Security Manager: Design and maintain

the security policy (domain security policy and foreign
security policy), authorize roles and access priviledges
to its local domain users according to domain security
policy.

Foreign Security Manager: In order to realize
multi-domain access control, the foreign
domain security manager is introduced, it accepts the
requirements of the local domain user for foreign
domain resources and returns the result. On the other
hand, under the foreign security policies, i t also
supports foreign domain users accessing to its local
domain resources.

4. An Object-Oriented Role-Based-Access-
Control Model (ORBAC)

The proposed object-oriented Role-Based-Access-
Control model (ORBAC) described in Fig.3 fully
realize the original RBAC model and can be
implemented on a multi-domain distributed
environment. In this section, we describe some basic
specifications for ORBAC Model based on RBAC. A
number of different viewpoints about RBAC has been
discussed(6][7][8], the abstract model defned in this
paper intends to capture the essential feature of RBAC
and extend it to satisfy the requirements in the
distributed environment. Because the seperation of
duty policies are often much important in many
commercial applications, the specification for
seperation of duty is also proposed.

>
Fig 1: RBAC Model

25

Figure 2. Decentralized Security Management Architecture

4.1 QRBAC: Basic elements and their
specifications

4.1.1 User, Role, Priviledge, Session

In this model, class User is a many-to-many
relationship with class Role, and class Role is also a
many-to-many relationship with class priviledge.
Formally User/Role and Role/Priviledge relations can
be expressed by the following mappings. functions:

User) Role - 3 2

Role : represents any subset of the Role.

S(t), the userhole mapping, which gives the subset

of Role, every element of the subset is authorized

for the User. t.

User (2) R(i : Role) :Role -+ 2

2User :represents any subset of the User

R(i), the Role/User mapping, which gives

thesubset

thesubset is authorizedfor the Role, i .

of User, every element of

Class User is defined as:
User id: identify the user.
Roles: reference to all the role objects of the user.
Sessions: reference to all the session objects of
the user.

Class Role is defined as :
Role id: identify the role.
Priviledges: references to all priviledge objects of
the role.
Users: references to all user objects of this
role.
Parent roles: references to all direct parent roles.
Child roles: references to all direct child roles.

26

Class Role has functions such as adding, deleting,
modifying parent or child roles, adding roles to users,
adding, deleting priviledge objects, also, class role has
multiple constraint functions which are used to check
role authorization and solve role related problems, such
as mutual exclusive problems.
A priviledge is an approval of a particular operation to
be performed on one or more objects, the relationship
between roles and priviledges is also many-to-many
shown in fig 3, we describe it by the following
mapping functions:

Priviledge
(3) T(l : Rol) + 2

2Priviledge
: represents any subset of the

Priviledge ,

T(l), the role/privi ledge mapping, which gives the

subset of Priviledge , every element of the subset

is authorized for the role, 1.

Role (4) C(u : Priviledge) + 2

Role : represents any subset of the Role.

C(u), the priviledge /role mapping, which gives

the subset of Role, every element of the subset

is authorized for the priviledge , U.

Class priviledge is defined as:
Priviledge id: identifying the priviledge.
Actions: define the actions of the proviledge.
Targets: objects which actions apply.
Roles: references to all role objects of this
priviledge.

-Functions of the class priviledge includes adding
priviledges to roles, deleting priviledge from roles.

4.1.2 Fin and Fout

Fin and Fout are created by foreign security manager.
Fin deals with foreign domain user accessing local
domain resource, Fout deals with local domain user
accessing foreign domain resource. A local domain
user can get multiple foreign domain priviledges by
Fout, a foreign domain user can get multiple local
domain priviledges as well.

Class Fin is defined as:
Foreign domain user id: identify the foreign

domain user.
Roles: all the role objects required by the foreign

domain user.
The main function of the class is to accept foreign
domain user’s role requirements and evaluate them by
the foreign security policy, return the authorized
priviledges to the foreign domain user.

Class Fout is defined as:
Local domain user id: identify the local domain

user.
Roles: all the role objccts required by local

domain user.
The main function of the class is to accept local
domain user’s role requirements and return the
authorized priviledges to local domain user.

4.1.3 UR

The association class UR defines user assignment
between users and roles, and class static UR and class
dynamic UR describe that users can be statically or
dynamically authorized during a session. In normal
conditions, a user can be assigned many different static
roles as it satisfied the principle of “Least Priviledge”,
which mean that a user can be assigned least roles to
finish a certain task that is benefit for the system
security. But for a business or enterprise environment,
flexible and efficient role authorization is also
important, i t may be acceptable for a user to be a
member of two mutual exclusive roles but not both
roles are activated at the same time. For a distributed
environment, the activated roles can be dynamically
assigned if they will not lead to the problem of
seperation of duty. Moreover, UR has its life cycle,
when a user applied for the roles, the UR object will be
created, after the task finished, it will be destroyed and
system resources will be released.

Class session is defined as:
Session id: identifying the session.
User: reference the user object of the
session.

Roles: reference all the role objects hold by
the session.
Functions of the class include adding roles to session,
drop roles from session, etc.

27

Foreign Domain

-

I 1 *

F i n Foreign 2 Foreign

4 Session h *'
1

Role

I I -

Priviledge

I I I

User Role * Priviledge

, I c ,ohstmint +, e, Dynamic UR

Fig 3: A block diagram of ORBAC modal

Relationship class UR can be described as:
User id: identifying the user.
Role id: identifying the role.

The main function of UR is to realize role and
priviledge authorization by calling constraints
functions.

4.1.4 Constraints

ORBAC assigns constraints to user-role authorization,
called constraints. Based on security policy, constraint
defines which role or roles can be authorized to a valid
user.

28

The constraint for mutual exclusive roles is a major
part of the constraints. It can be used to enforce interest
conflicts policies that may arise as a result of a user
gaining authorization for priviledges associated with
conflict roles. That is, if a user is authorized as a
member of one of the two conflicted roles, the user is
prohibited from being a member of another role. An
efficient method has been presented in the next section.
The constraint functions for mutual exclusive roles can
be specified as follows:

(5) E :role x role

E[I, m : Role] :the set of role pair I and m that

are mutual exclusivc with each other.

(6) The user can not has two exclusive roles.

(b' I , m :Role)(3t : User) (I # m) A E(1, m) A

(t E R[I]) * t 6 R[m]

(7) Mutual exclusive roles can no t inherited

cach othcr.

b'(l, in :Role) 3(n) E(I , m) =$ T ((I > m) A

(m > 1))

(8) If there are two mutual exclusive roles then

there is no other role exists to inheritc both of

them

V(l, m :Role) b'(n : Role)E(l, in) 3

(7 3 n)(l > n) A (m > n))

4.2 Dynamic properties

ORBAC d yn amicpropert i es in c I ude role act 1 vat ion,
priviledge execution and dynamic seperation of duties.
Dynamic properties provide extended support for the
principle of least priviledge. Each user has different
levels of priviledges at different time, depending on the
role being performed. The following functions
formalize the mappings for these dynamic properties.

(9) ActiveRole : A(t : User) -+ 2

Role
: rcpresents any subset of the Rolc.

A [t] : thesubset of the Role, every element of

the subset is a currcnt active role for user t;

(1 0) P : user x Priviledge -+ boolean

P[t, U] : true if and only if user t can execute

privilcdge U.

(1 1) Priviledge Authorization :

a user can execute a priviledgeonly if the priviledge

is authorizedfor a role

which theuser activated

(Vt : Clser)(Vu : Pr iviledge)(31 : Role)

(I E A [f] A U E T [4) 3 P [t , u] = true

(1 2) Role Assignment :

A user can execute a priviledge only

if he/she has selected an active role for the priviledge.

(Vt : User)(Vu : Priviledge)(31 : Role)

((A[t] # 0) A (I E A[t) A U E T[I]))* P[t, U] = True

(13) Role Authorization :

Role authorization :a user's active role must be i n the

set of authorized roles for the user.

(b't : User)(Vn : Role)(n E A[t] 3 n E S[tJ)

(14) Dynamic seperation of duties :

With dynamicseperation of duties, an organization

can address potential conflict - of - interest

issues at thetime a user's membershipis authorized

for a role. A pair of roles may be designated as

mutual exclusive regarding role activation.

That is a user may be active in only one of the two

distinct roles :

(Vt : User)(Vl, m : Role) E[1, m] a 7(A[1] A A[m])

29

(15) Role hiearchy :Roles are organized into a ordered

set so that if a role is included in the authorized or

Message User Roles Authorized
id id required priviledges

active role sets for user t, roles below it are also

Valid
Time

included:

(Vl,m :Role)(Vt :User)(l E A[t] A (I > m) 3 m E

A[t]) A (I E S[t]) A (I > m) * (m E S[t]))

5. The general method for ORBAC
implementation

The proposed ORBAC implementation diagram is
shown in Fig 5. Each user can implement multiple
tasks so he/she can create multiple sessions. In the
meantime, each session can activate many different
roles. In order to prevent the problem of seperation of
duties, UR will monitor all the active roles of each user
on his sessions so that there is no mutual exclusive
roles are activated simultaneously. The user object is
issued to indicate all the roles (static and dynamic
roles) assigned to each user by the domain security
manager. The role object defines role hiearchy and
constraints to present the relationship between roles
and their constraints. Priviledge object defines the
relationships between roles and their priviledges.
The detail implementation on ORBAC can be
described as follows (see Fig 5) :

Local user access local server

Assume user K wants to access sever C
(1) User K logs in client A with his priviledge
requirements.
(2) User K opens an application and creates a session
number and sents it with his username to domain
security manager B.
(3) B got it and creates a UR object such as URI to
check user object and returns all K’s allocated roles (
static and dynamic roles) back to K, in the meantime,
UR will create a session for K with his session id and
username.
(4) K chooses suitable roles for his current application
and sends them back to B.
(5) U R checks role hiearchy in the role object, search
all chosen roles’ child roles and their constraints,
furthermore, get all the child roles which satisfy the
constraints, . After checking every priviledge of the
authorized child roles in priviledge object, authorized
priviledges will be assigned to user K.
If there exists mutual exclusive constraints, object U R
will check the session objects of K to see if there exists

mutual exclusive problem after adding the chosen child
roles to his session, if not, the authorized roles will be
added , otherwise, this role application will be refused.
(6) After priviledges were authorized, a priviledge
certificate D will be created (its format shown in fig 4)
and sent to C alone with K’spriviledge requirements.
(7) In server C, a proxy object will be create after the
priviledge certificate and K’s priviledges requirement
is received, the main function of proxy is to judge
whether every required priviledge is corresponded with
D, if yes the required priviledge will be granted,
otherwise, i t will be refused.
(8) results return to K

After the application finished, session will be closed
and the application session item on the session object
will be deleted, also, UR and RP object will be
destroyed.

Local User Access Foreign domain Server

Assume user K intend to access foreign domain server
P.
(9) User K provides a foreign role and priviledge
requirement to its foreign security manager E.
(I O) A Fout object was created and the role and
priviledge requirement are sent to foreign security
manager M.
(1 1) M create a foreign certificate R according to its

security policy and sent to server P .
(12) P returns result to user K.

0 Foreign domain User access Local domain
Server

Assume user S want to access server C.
(13) User S accesses its foreign security manager M

and provides role and priviledge requirement.
(14) M access to E and a Fin object is created.
(15) Fin checks constraints for foreign roles and

creates a priviledge certificate T based on its
security policy.

(16) T will be sent to server C along with the
priviledge requirements of user S.

(17) C returns results to user S

Fig 4 priviledge certificate Message

30

Local Domain Domain Security Manager (B)

User object

/'

Priviledge object _---__

Server (C)
I I

Client (A) n
User K ie-

......................................
Foreign Security Manager (E)

f 1
Foreign
Pri vi ledge
Certificate (RI

J

--__-_---

Domain Security
Manager (Q)

n
Fig 5. ORBAC implementation diagram

31

6. Conclusion:

In this paper we have presented an objected-oriented
RBAC model (ORBAC). The driving motivation of it
is to simplify security policy administration. We also
proposed a decentralized security management
architecture, based on it, we have realized multiple-
domain access control. A new method is presented to
prevent the problem of seperation of duty, and it
provides a way to prevent the domain security manager
assign multiple exclusive role to a user at one time.
Moreover, this paper also discussed some ORBAC and
duty seperation of duty specifications.

Reference:

[I] Sandhu,R.S, Coyne, E.J., Feinseein, H.L., and
Younman C. E., Proceedings of the first ACM
Workshop on Role-Based-Access Control , ACM,
1996.
[2] Ravi Sandhu and Venkata Bhamidipati. The
URA97 model for Role-based administration of user-
role assignment. In T.Y. Lin and Xiaolei Qian, editor,
Databuse Security : Status and prospects. North-
Holland, 1997.

[3] Ravi sandhu and Venkata Bhamidipati, The
ARBAC97 Model for Role-Based Administration of
Roles: Preliminary Description and outline, Second
A CM workshop on Role-Based-Access-Control ,
Fairfax, Virginia, USA, November, 6-7, 1997.
[4] Trent Jaeger, Frederquegiraud, A Role-Based
Access Control Model for Protection domain
Derivation and Management, Second ACM Workshop
on Role-Based-Access-Control, Fairfax, Virginia,
USA, November 6-7, 1997.
[5] R.S. Sandhu, Lattice-based access control .
Computer, 26: 9-19, Nov 1993.
[6] D.Ferraiolo, J. Cugini, and D.R. Kulin. Role based
access control: Features and motivacation. In annual
Computer security applications conference. IEEE
Computer Society Press, 1995.
[7] Sylvia sborn, Yuxiao Guo, Modeling users in role-
based access control, Fifth ACM workshop on Role -
based Access Control, Berlin, Germany, July 26-
27,2000.
[8] Ravi sandhu, David Ferraiodo and Richard Kulin,
The NIST Model for Role-Based Access Control:
Towards a unified Standard, Fifth ACM Workshop on
Role-Based Access Control, Berlin, Germany, July 26-
27,2000.

32

