Role-Based Access Control for CORBA Distributed Object Systems

Rafael R. Obelheiro and Joni S. Fraga
Email: rroedas.ufsc.br, fraga@das.ufsc.br
Department of Automation and Systems

Federal University of Santa Catarina
C. P. 476 — 88040-900 — Florian6polis — SC — Brazil

Abstract

This paper shows how role-based access control (RBAC)
models can be implemented in distributed object-based sys-
tems that follow OMG/CORBA standards. We introduce a
novel approach that provides for automatic role activation
by the security components of the middleware, which brings
role-based access control to security-unaware applications.
Key words: security, access control, RBAC, CORBA

1. Introduction

Organizations have become increasingly dependent on
their information systems. As such, they are also becoming
very concerned with ensuring security of the information
managed and stored by these systems. The observed growth
in deployment of large-scale distributed systems, especially
those based on the Internet, brings new challenges to the
task of maintaining data confidentiality, integrity and avail-
ability. This stems from several factors, including the im-
possibility of providing physical security to all components
of the system and also the ease of remote access, which
turn geographical boundaries and regulatory laws (concern-
ing access and use of this information) irrelevant.

At the same time, we notice the dissemination of infor-
mation systems based on Common Object Request Broker
Architecture (CORBA)! technology, a standard for open
distributed object-based systems that has gained worldwide
adoption by the software industry [2].

Among several services specified by OMG for the
CORBA environment is the CORBA Security Service, also
called CORBASec. The CORBA security model was de-
signed to incorporate security features into both small-scale
and large-scale distributed object systems without leav-

'The Object Management Group (OMG), a consortium formed by
more than 800 companies, is the organization responsible for the speci-
fication of the CORBA architecture standards.

ing aside important advantages of CORBA such as trans-
parency, interoperability and portability.

Role-based access control has been being recognized as
an alternative to traditional discretionary (based on an ac-
cess matrix) and mandatory (based on security labels) ac-
cess control models. Studies by the US National Institute
of Standards and Technology (NIST) in the beginning of
the 1990s [6] show that many organizations want the access
to information to be controlled according to a centralized
policy in a flexible way, so that it easily adapts to new re-
quirements that arise naturally as the organization evolves.
Clearly these objectives are difficult to achieve simultane-
ously using either discretionary (flexible but decentralized)
or mandatory (centralized but inflexible) access controls.
Role-based access control, on the other hand, can satisfy
both requirements effectively [11].

This work shows how to integrate role-based ac-
cess control into open distributed systems that follow
OMG/CORBA standards. We introduce a novel strategy
that consists of automatic role activation by the security
components of the middleware. Existing proposals for im-
plementing RBAC require that users or applications inter-
act with the security subsystem to select which roles should
be activated in the system. Our approach, however, allows
users and applications to be isolated from these details so
that security policies can be deployed without changing ex-
isting applications and without modifying the way users in-
teract with these applications.

This paper is organized as follows. Section 2 describes
the RBAC model this work is based on. Section 3 presents
the CORBA security model. Section 4 discusses how
RBAC can be implemented within a CORBASec frame-
work, and section 5 presents some results obtained with an
implementation prototype. Finally, section 6 discusses re-
lated work and section 7 presents our conclusions.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

2. Role-Based Access Control—RBAC

Role-based access control (RBAC) as a concept has
arisen with the first interactive multi-user computing sys-
tems, in the early 1970s. The central idea behind RBAC is
that users are assigned to roles, permissions are assigned to
roles and users acquire permissions by being members of
roles. Roles are created according to the different jobs or
functions within an organization, and users are assigned to
roles according to their responsibilities and qualifications.
Users can be easily reassigned from one role to another.
Changes in the computing environment, such as installation
of new systems and removal of old applications, modify
only the set of permissions assigned to the different roles,
without directly involving the set of users.

The reference model used in this work is shown in fig-
ure 1. This model corresponds to the Symmetric RBAC
model from the unified NIST RBAC family of models [12].
It has four sets of entities: users (U), roles (R), permissions
(P) and sessions (S). A user in this model is a human be-
ing or a process acting on his behalf. A role is a function
or job within an organization with some associated seman-
tics regarding the authority and responsibility conferred on
a member of this role. A permission is an approval of a par-
ticular mode of access to one or more objects in the system.
The unified NIST RBAC model does not define specific per-
missions; this is left to implementors of the model [12]. A
session corresponds to a user accessing the system with a
given set of active roles.

SOD Constraints

RH
Role
Hierarchy
PA

Permission
Assignment

P

Permissions

Figure 1. Symmetric RBAC reference model

The user-role assignment (UA) and the permission-role
assignment (PA) are many-to-many relations. Set U of users
has a one-to-many relation with set S of sessions (a user can
have many sessions), and set S has a many-to-many relation
with set R of roles (a session can have many roles, and a role
can be active in many sessions).?

2Many-to-many relations are represented in figure 1 by filled arrow-
heads, while one-to-many relations are represented by empty arrowheads.

Role hierarchies, represented by relation RH in figure 1,
are a natural means for structuring roles to reflect an orga-
nization’s lines of authority and responsibility. These hier-
archies are mathematically represented by partial order re-
lations [11].

The RBAC model shown in figure 1 also supports the
concept of separation of duty (SOD), which is an impor-
tant technique for minimizing the occurrence of error and
fraud in information handling. This principle consists of
dividing individual operations in several smaller subtasks
which should be carried out by different people, thus reduc-
ing the individual power of each user. Separation of duty
has had its importance for information security recognized
and discussed in detail by Clark and Wilson [4]. RBAC en-
forces separation of duty by means of mutual exclusion of
roles.

There are two basic forms of separation of duty, static
and dynamic. In static separation of duty (SSD), two roles
R1 and R2 which are mutually exclusive cannot have users
in common; in other words, the same user cannot be as-
signed simultaneously to both R1 and R2. On the other
hand, in dynamic separation of duty (DSD) a mutual ex-
clusion between two roles R1 and R2 means that a user can
be assigned to both roles, provided that only one of them
(either R1 or R2) is active at a given moment [12].

3. CORBA Security Model

The Object Management Group developed a security ref-
erence model for CORBA distributed object systems [10].
The CORBA Security specification defines a set of objects
and their relations in a model that provides functionali-
ties such as principal identification and authentication, ac-
cess control, secure communication between objects, non-
repudiation, audit and security management.

According to the CORBASec specification, a secure dis-
tributed object system can be divided in four levels. The
application level contains application objects (clients and
servers). The middleware level comprises ORB services,
object services (COSS—Common Object Service Specifi-
cation) and the ORB core. ORB services and COSS object
services are built upon the ORB core and extend the basic
functions with additional features, implementing security at
the middleware level. The security technology level cor-
responds to the underlying security services, which define
protocols used for guaranteeing properties such as confi-
dentiality and integrity in client-server communication. The
lower level is the basic protection level, which comprises
the underlying operating system and hardware protection.

The CORBASec specification defines a set of object
services that implement the security controls in a secure
CORBA system. These are PrincipalAuthenticator, Creden-
tials, AccessPolicy, RequiredRights, AccessDecision, Secu-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

rityManager, Current, PolicyCurrent, Vault and SecurityCon-
text.

The CORBA security model uses the concept of princi-
pal to mediate method invocations in the system. A prin-
cipal is a user or system entity that is registered in, and au-
thentic to, the distributed object system [10]. The Princi-
palAuthenticator object is responsible for authentication of
principals in the CORBASec architecture. This authentica-
tion enables a principal to obtain its credentials.

The credential of a principal contains its identity and
privilege attributes; these attributes enable the principal to
perform invocations to server objects in the system. In a se-
cure CORBA system, a credential is represented by a Cre-
dentials object. Usually there is one credential per security
mechanism used in a secure CORBA system. This approach
is used, for instance, in ORBAsec SL2, a secure ORB that
implements the CORBASec specification [1]. ORBAsec
SL2 uses Kerberos and SSL (Secure Sockets Layer) as secu-
rity mechanisms, using a different credential for each mech-
anism.

Security policies are expressed in terms of security at-
tributes of system resources (control attributes) and of prin-
cipals (privilege attributes). Authorization policies are rep-
resented in the CORBASec specification by an AccessPol-
icy object; an example is illustrated in figure 2. This object
contains the rights® granted to principals for invoking oper-
ations in a secure CORBA system, based on their privilege
attributes. Only the rights g (get), s (set), m (manage) e u
(use)—which belong to the predefined family corba—are
defined by the CORBASec specification, although it is pos-
sible to freely define other rights families and types.

Privilege Attribute | Granted Rights
role: client corba: gs--
role: client corba: g---

role: manager
role: manager

corba: g-mu
corba: g--u

Figure 2. AccessPolicy example

The rights required for execution of operations in
server objects (the control attributes) are stored in a Re-
quiredRights object. As figure 3 shows, required rights are
specified per interface (a class according to OMA) and not
per instance (an individual object). In addition, there is also
a combinator, which indicates if a principal needs to have
All required rights to invoke an operation or if having Any
of them is sufficient.

The AccessDecision object is responsible for deciding
if an invocation of an operation of a given server should
be allowed or not. This access decision depends on privi-
lege attributes (represented by the AccessPolicy object) and

3The concept of rights used in the CORBA security model is equivalent
to the concept of permissions used in the RBAC model. Both terms are
used indistinctly in this work.

Required Rights | Combinator Operation Interface
corba: g--- All get_balance | PersAcc
corba: g--- All get_balance | CorpAcc
corba: -sm- Any open PersAcc
corba: g-m- All open CorpAcc

Figure 3. RequiredRights example

on control attributes (represented by RequiredRights). The
logic of this access decision is left open by the CORBASec
specification [2].

Session objects—SecurityManager, PolicyCurrent and
Current—store information about the current security con-
text, such as references to the RequiredRights and Ac-
cessDecision objects (stored in SecurityManager), refer-
ences to policy objects used to establish secure associations
(PolicyCurrent) and the principal’s credentials obtained by
the server (Current). The Vault and SecurityContext objects
take part in the establishment of secure associations, which
guarantee confidentiality and/or integrity of messages ex-
changed between client and server.

The CORBASec specification defines two kinds of in-
terceptors* which are called during an operation invoca-
tion. The first is the access control interceptor, a high-
level interceptor which performs access control functions,
and the second is the secure invocation interceptor, which
is a low-level interceptor that provides confidentality and
integrity to the messages exchanged between client and
server. These interceptors are created when the client binds
to the server, and perform different functions at distinct mo-
ments of a method invocation. At bind time, the control
access interceptor is responsible for instantiating the Ac-
cessDecision object and updating its reference in the Se-
curityManager object. The AccessDecision object should
provide the domain-specific AccessPolicy policy object, in-
serting its reference in the PolicyCurrent object, and also lo-
cate the RequiredRights object, updating its reference in the
SecurityManager object. At access decision time, the access
control interceptor invokes the access_allowed operation
of the AccessDecision object, which is responsible for au-
thorizing or denying the method invocation, obtaining the
granted rights from AccessPolicy and comparing them to
the required rights for the given operation (according to Re-
quiredRights).

4. The RBAC-JACOWEB Proposal

The JACOWEB project, developed at LCMI-DAS—
UFSC, aims to investigate the problem of authorization in

“In the CORBA security model, ORB services are implemented by
means of interceptors, which are objects logically interposed in the se-
quence of an invocation between a client and a server. Each security-
related COSS service is associated to an interceptor, which is transparently
inserted into the invocation path to activate the associated service.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

large-scale distributed systems. The project is focused on
defining and implementing authorization schemes for dis-
tributed applications, using, as a foundation, the CORBA
security model integrated with the Java and Web security
models [14]. In the JACOWEB architecture, access control
is performed by the middleware, in a transparent manner, in
both sides (client and server) of an invocation. Object ser-
vices in the client side verify a request against the defined
security policy, checking if it should or not be authorized. If
the access is authorized, a capability is generated and added
to the CORBA request to be sent to the server; object ser-
vices in the server side extract and validate the capability
before effectively granting access.

This paper introduces the RBAC-JACOWEB proposal,
whose goal is to incorporate a role-based access control
model into the JACOWEB authorization scheme. The
RBAC model used is the Symmetric RBAC from the uni-
fied NIST RBAC model, presented in section 2. The idea
here is to extend the PoliCap policy service defined in [15]
so that this service becomes responsible for managing the
RBAC configuration in a CORBASec context.

4.1. The PoliCap Policy Service

PoliCap is a policy service for distributed objects whose
invocations are regulated according to the CORBA security
model [15]. It has been developed in the context of project
JACOWEB and corresponds to a first level of access control
in the authorization scheme.

PoliCap allows for centralized management of policy ob-
jects within a distributed objects security domain, filling
a void in the CORBASec specification regarding manage-
ment of policy objects. According to the specification, se-
curity policies are made available by the AccessPolicy and
RequiredRights objects. With PoliCap, administrative appli-
cations interact with the policy service in order to manage
these objects. On the other hand, operational applications
or COSS services interact with PoliCap to obtain, at bind
time, the policies and rights needed to control method invo-
cations at run time. The idea here is that, at bind time, the
policy service provides local versions of the AccessPolicy
and RequiredRights objects that contain the privilege and
control attributes which are appropriate to the given invoca-
tion. Access decisions are then performed based on these
local instances of AccessPolicy and RequiredRights. Fur-
ther detail on PoliCap can be found in [15].

4.2. Integrating RBAC Models with CORBASec

In the RBAC-JACOWEB proposal, each principal has
only one credential (since SSL is the only security tech-
nology supported by JACOWEB). The roles assigned to
a principal are represented, in his credential, by privilege

attributes of type Role. After a principal is authenticated,
his credential contains only his Accessld, which is a privi-
lege attribute that represents the principal’s identity for ac-
cess control purposes, and that can be extracted from his
SSL certificate (used for establishing a secure association).
Roles are added to the credential as they are activated in the
system. Therefore, a principal’s credential represents, in our
proposal, his access identification and his set of active roles.

Security interceptors remain with the same functionality
described in section 3. The modifications to incorporate the
role-based access control are made to the AccessDecision
object, which verifies if the rights granted to the principal
allow him to invoke a given operation. As an invocation is
authorized, the client access control interceptor generates a
capability which will be added to the CORBA request.

PoliCap contains all data concerning security policies
within a domain, including users, roles, user-role and role-
permission assignments, role hierarchy relations and sep-
aration of duty constraints. The role-based access control
is performed by the operation role access of PoliCap,
whose IDL interface is shown in figure 4.

boolean role_access
(inout SecurityLevel2::CredentialsList cred list,
in CORBA::Identifier operation name,
in CORBA::Identifier target interface name,
inout SecurityAdmin::AccessPolicy local_ap);

Figure 4. IDL interface for
role access of PoliCap

operation

Based on the client’s credentials and on the invoked op-
eration, PoliCap decides if the access should be authorized
or not. If the user is assigned to one or more roles that
grant him the permissions needed to perform the invocation
and if these roles can be activated (that is, such activation
does not violate any constraints), then access is granted, and
role_access returns true. If it is not possible to activate
roles that grant the necessary permissions, the operation re-
turns false.

When access is authorized, the principal’s credentials are
augmented with the newly activated roles, and argument
local ap (which represents the local AccessPolicy object)
is modified to incorporate the new rights granted by these
roles.

Static separation of duty constraints are verified by the
operation of PoliCap that assigns users to roles: a user can-
not be assigned to a role that has a static SOD constraint
with another one which he is already assigned to. On the
other hand, dynamic SOD constraints are handled by the
role access operation. A role can only be activated if
there are no dynamic constraints between such role and any
of the active roles (contained in the user’s credential). Do-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

ing this we ensure that an automatic role activation will not
violate the defined security policy.

4.3. The Dynamics of Role-Based Access Control

4.3.1. Binding. The binding happens whenever a client
makes an invocation to a server he has not invoked before.
In the first place, the access control interceptor uses the
role access operation to perform a global policy check,
that is, PoliCap verifies if the principal’s rights are sufficient
for her to invoke the designated operation. If the rights are
insufficient, access is denied, the invocation is interrupted
with an exception being returned to the client and the event
should be recorded by the CORBASec audit service. If, on
the other hand, her rights are sufficient, her credentials and
the local AccessPolicy object are updated, and the binding
proceeds with the interceptor retrieving the required rights
for the target interface and subsequently updating the local
RequiredRights object. Furthermore, as discussed in sec-
tion 3, the AccessDecision object is instantiated and its ref-
erence is updated in SecurityManager.

4.3.2. Access Decision. At access decision time, the ac-
cess control interceptor in the client side calls operation
role access of AccessDecision, which checks if the rights
granted to the principal allow her to invoke the desired
method. If the access is authorized, the invocation sequence
proceeds normally, with a capability being generated and
sent to the server.

On the other hand, if the granted rights are not sufficient,
AccessDecision invokes role access so that the policy
service can verify if it is possible to activate new roles that
grant the rights needed to perform the invocation desired. If
access is granted with the activation of one or more roles,
the access control interceptor should then generate a capa-
bility and proceed with the invocation. If the RBAC con-
figuration does not allow the access, the invocation is termi-
nated with denial of access and the event should be recorded
by the audit service.

4.4. Example

We shall consider an example of the proposed role-based
access control in a banking application. The set of roles in
the system is R = {cust,cpers,ccorp,man}, representing,
respectively, bank customers, clerks for personal accounts,
clerks for corporate accounts and managers. RBAC con-
figuration is shown in figure 5. There are no static separa-
tion of duty constraints. Dynamic separation of duty con-

Figure 5(c) shows the user-role assignment (set UA). The
RequiredRights object is represented by figure 5(d).

Figure 6 shows an example scenario for the proposed
role-based access control, focusing on the evolution of the
set of active roles in the system. In this example, princi-
pal bob invokes the operations in the first column in the
order shown by the figure. Columns AR Before and AR Af-
ter represent the set of active roles—stored in the client’s
credential—before and after the access decision for the cor-
responding operation.

Next, we show in details how the CORBA security
model objects and PoliCap interact to enforce access con-
trol, using the scenario in figure 6 as a basis.

4.4.1. Execution of the scenario in figure 6. When the
secure CORBA system is initialized, principal bob is au-
thenticated through PrincipalAuthenticator. His credential
(represented by the Credentials object) contains only his Ac-
cessld, extracted from his SSL certificate:

Attribute Type | Attribute Value
Accessld bob

> Invocation of operation PersAcc: :open:

To invoke this operation, the client has to bind itself to
the PersAcc server object. At this moment, PoliCap is used
to retrieve the required rights for interface PersAcc and the
rights that are granted to principal bob and which autho-
rize him to perform the open operation. This is also when
AccessDecision is instantiated and its reference updated on
SecurityManager.

The permissions needed to invoke PersAcc: :open are
corba: -s-- or corba: --m-, as the combinator is Any. In
this case, role cpers is activated during the binding, since
it gives the permissions corba: gs--, and the access is au-
thorized. The principal’s Credentials object now becomes
the following:

Attribute Type | Attribute Value
Accessld bob
Role cpers

The local version of AccessPolicy contains the data be-
low:

Privilege Attribute
role: cpers

Granted Rights
corba: gs--

The local RequiredRights object, after the binding, is
constituted by:

straints are given by figure 5(a), where (/) denotes that the Required Rights | Combinator | Operation | Interface
. . . corba: g--- All get balance | PersAcc
line and column represent mutually exclusive roles. Fig- =
. . . corba: -s-- All deposit PersAcc
ure 5(b) represents the AccessPolicy object for the domain. corba: -siu- Any open PersAcc
YF]‘,F‘.
Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002) COMPUTER

1530-1443/02 $17.00 © 2002 IEEE SOCIETY

cust | cpers | ccor man Privilege Granted
oy — P 7 7 P 7 Attributes Rights Principal | Roles
cpers \/ e \/ role: cust corba: g--- anna cust, ccorp, man
cgor v o v role: cpers | corba: gs-- bob cust, cpers, ccorp
manp v N N o role: ccorp | corba: g--u chris cust, cpers
role: man corba: g-m-
. (c) Set UA
D SOD
(2) Dynamic (b) AccessPolicy
Required . .
Rights Combinator Operation Interface
corba: g--- All get_balance | PersAcc
corba: g--- All get_balance CorpAcc
corba: -s-- All deposit PersAcc
corba: ---u All deposit CorpAcc
corba: -sm- Any open PersAcc
corba: g-m- All open CorpAcc
(d) RequiredRights
Figure 5. RBAC configuration managed by PoliCap
Operation AR Before AR After Notes
PersAcc: :open 2] {cpers} This operation requires one of the rights -sm-, and role cpers
grants the rights gs--. Access is granted, with activation of
role cpers.
PersAcc: :deposit {cpers} {cpers} This operation requires the right -s--, already conferred by
role cpers. Access granted.
CorpAcc: :deposit {cpers} {cpers,ccorp} This operation requires right - - -u, granted by role ccorp. Ac-
cess granted, with activation of role ccorp.
CorpAcc: :open {cpers,ccorp} {cpers,ccorp} This operation requires the rights g-m-, but - -m- is not granted
by any role assigned to principal bob. Access denied.

Figure 6. Example scenario for principal bob

> Invocation of operation PersAcc: :deposit:

As the client is already bound to PersAcc, the
checks regarding PersAcc::deposit are limited to the
access decision procedure shown in section 4.3.2. For
this purpose, the access control interceptor invokes
AccessDecision::access_allowed. The deposit oper-
ation requires the right corba: -s--, already in the local
AccessPolicy object. Thus, the access is authorized, with-
out changing Credentials and the local AccessPolicy.

> Invocation of operation CorpAcc: :deposit:

For this invocation it is necessary another binding, this
time between the client and CorpAcc. Once again, the
required rights (this time for interface CorpAcc) and the
granted rights which authorize the invocation of deposit
are obtained from PoliCap.

The right needed to invoke CorpAcc::deposit is
corba: ---u, conferred by role ccorp, which is activated.
The access is authorized and object Credentials is modified,

and its new contents are the following:

Attribute Type | Attribute Value
Accessld bob

Role cpers

Role ccorp

The local AccessPolicy object is also updated:

Privilege Attribute | Granted Rights
role: cpers corba: gs--
role: ccorp corba: ---u

The local RequiredRights is now constituted by:

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

Required Rights | Combinator Operation Interface
corba: g--- All get_balance | PersAcc
corba: -s-- All deposit PersAcc
corba: -sm- Any open PersAcc
corba: g--- All get_balance | CorpAcc
corba: ---u All deposit CorpAcc
corba: g-m- All open CorpAcc
IF]‘,F.
COMPUTER

SOCIETY

> Invocation of operation CorpAcc: :open:

The client is already bound to server CorpAcc, so
the access control verification goes straight to the ac-
cess decision procedure. Operation CorpAcc: :open re-
quires the rights corba: g-m-, which are not present
in the local AccessPolicy object. Therefore, oper-
ation AccessDecision::access_allowed invokes the
role access operation to verify if the required rights can
be granted by a role activation. However, principal bob is
not assigned to any role that grants the necessary rights,
so access is denied, without modifications neither in the
client’s credentials nor in the local AccessPolicy object.

It should be noticed that the local versions of AccessPol-
icy and RequiredRights are accessed through references
stored in the SecurityManager session object; these refer-
ences are valid for all bindings established between a client
and one or more servers during a session (that is, while the
client is active in the system). This explains the fact that
AccessPolicy and RequiredRights are simply updated (and
not re-instantiated) as the system evolves.

S. Implementation Results

A prototype of the RBAC-JACOWEB proposal has been
developed in our laboratories. To test and refine this proto-
type, we used a banking application as an example. This
application comprises two CORBA server objects and a
Java client applet. The CORBA servers were developed
with JacORB [3], a free Java ORB, and the applet was
developed with Java 2 SDK, version 1.2.1. The browser
used for testing was Netscape Communicator 4.76 with Java
plug-in. The goal of this implementation was to determine
the effectiveness of the proposed role-based access control
scheme. The same system architecture had been used previ-
ously to successfully implement a discretionary authoriza-
tion scheme [15]. The structures already developed were
reviewed and adapted, serving as a basis for the new role-
based authorization scheme.

The key components of the prototype are the access con-
trol interceptors presented in section 3 and a version of the
PoliCap policy service augmented with RBAC support (as
described in section 4.2). A version of the AccessDeci-
sion object which interacts with PoliCap, which is central
to the RBAC-JACOWEB proposal, was developed. The
client’s credentials—containing only an Accessld privilege
attribute—are generated as the secure system is initialized,
based on the client’s SSL certificate. A graphical interface
for managing the RBAC configuration has also been imple-
mented. It gives a security administrator the ability to man-
age users, roles and permissions as well as role hierarchies
and separation of duty constraints.

The scenario shown in figure 6 was used as a test

case. The server objects PersAcc and CorpAcc were im-
plemented, as well as an applet that repeats the sequence of
operations shown in that figure. The role-based authoriza-
tion scheme implemented was able to cope with this and
other scenarios, demonstrating the viability and adequacy
of the RBAC-JACOWEB proposal.

The current version of the prototype does not perform
authentication of principals through PrincipalAuthenticator
yet. The client’s credential is initialized with the Acces-
sld extracted from her SSL certificate, but this client does
not go through a process of authentication. There are en-
hancements to be made to the management interface, such
as presenting role hierarchies in a graphical manner. The
role selection mechanism embedded in the role access
operation is not as sophisticated as it can be; the algorithm
is being refined to make better choices as for which roles
should be activated for a given operation, with the objec-
tive of minimizing the permissions acquired by the user by
means of a role activation.

6. Related Work

Although the basic concept of role has been used for
decades as a mechanism for permission management, for-
mal RBAC models have only recently arisen. The first
RBAC model formalized in literature is due to Ferraiolo
and Kuhn [7], both from NIST. Sandhu’s work [11] was
the first one to recognize the impossibility of capturing all
the nuances of RBAC in a single model, which led to the
definition of the RBAC96 family of models. The original
NIST model was subsequently revised, and some of its con-
cepts have been updated over time [5]. All these models
share a common core of concepts, but each one has its own
peculiarities which make them different. There are, how-
ever, visibly more similarities than differences. This fact
led NIST and the group headed by Sandhu to propose a uni-
fied model that standardized RBAC concepts, in an attempt
to establish consensus and also to serve as a starting point
for new developments. This model, largely based on the
NIST model and on the RBAC96 family, is known as the
unified NIST RBAC model [12]. Even though some aspects
of the unified model have been contested [9], the proposal
was well received by the RBAC community, and the model
is currently undergoing revision.

RBAC/Web [5] is an intranet application where RBAC is
used as an authorization scheme to control access to pages
in a Web server. The RBAC model used as reference is
the NIST model. Users in RBAC/Web correspond to user
logins in the Web servers, and the HTTP transactions that
can be performed by users (through their roles) on RBAC-
protected pages represent permissions. The user is respon-
sible for choosing, among the roles assigned to him, which
ones should be activated during a session. SSL is not part

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

of the application itself, but it is considered to be a part of
its operational context.

The JRBAC-Web proposal [8] also concerns Web server
security, but it differs from RBAC/Web for being focused
on the Java security model. RBAC is implemented as a
Java Authorization and Authentication Service (JAAS) ex-
tension, and it is based on its own reference model. As in
RBAC/Web, permissions are represented by HTTP trans-
actions, but there is no connection between RBAC users
and external entities (such as a user login). In this pro-
posal, applications (which are Java servlets) are responsi-
ble for role activation. The main advantages of the RBAC-
JACOWEB proposal in comparison with these two experi-
ences are its greater flexibility (RBAC-JACOWEB can be
used with any CORBA application), its transparency (roles
are automatically activated by the system) andk its adher-
ence to standards such as the unified NIST RBAC model
and the CORBA Security specification.

Beznosov and Deng [2] define a framework for imple-
menting RBAC using the CORBA Security service. The
main differences between our proposal and this framework
are transparency to applications and users and the RBAC
model used as reference. In Beznosov and Deng’s pro-
posal, the user interacts with a PrincipalAuthenticator object
(through a UserSponsor) to select the active roles in a ses-
sion, and the RBAC model used is the RBAC96 family [11].
On the other hand, in the RBAC-JACOWEB proposal roles
are automatically activated by PoliCap as needed, in a trans-
parent manner, and the reference RBAC model used is the
unified NIST model [12].

7. Conclusions

This paper presented the RBAC-JACOWEB proposal
that shows how role-based access control can be integrated
into CORBA distributed object-based systems using stan-
dards such as the CORBA Security specification and the
unified NIST RBAC model. Our main contribution, how-
ever, is the introduction of automatic role activation by the
security subsystem, an innovative approach according to the
known literature about RBAC.

The prototype developed within project JACOWEB
shows the effectiveness of our proposal and also of RBAC
as an access control model that is both flexible (in the defi-
nition of security policies) and rigorous (in the enforcement
of defined policies).

As RBAC-JACOWEB evolves, we intend to add an ad-
ministrative RBAC model such as ARBAC99 [13] to our
framework. The graphical management interface for Poli-
Cap will be enhanced and extended with new features that
might become useful.

References

(1]
(2]

(3]
(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

Proceedings of the Seventh International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2002)
1530-1443/02 $17.00 © 2002 IEEE

Adiron. ORBAsec SL2 User Guide, version 2.1.4. Syracuse,
NY, July 2000.

K. Beznosov and Y. Deng. A Framework for Implement-
ing Role-Based Access Control Using CORBA Security Ser-
vice. In Proceedings of the 4th ACM Workshop on Role-
Based Access Control (RBAC’99), pages 19-30, Fairfax,
VA, 1999.

G. Brose. JacORB—Design and Implementation of a Java
ORB. In Proc. DAIS’97, pages 143-154, Sept. 1997.

D. Clark and D. Wilson. A Comparison of Commercial and
Military Computer Security Policies. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 184-194,
Oakland, CA, 1987.

D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A Role-
Based Access Control Model and Reference Implementation
Within a Corporate Intranet. ACM Transactions on Informa-
tion and Systems Security, 2(1):34—64, Feb. 1999.

D. F. Ferraiolo, D. M. Gilbert, and N. Lynch. Assessing
Federal and Commercial Information Security Needs. NIS-
TIR 4976, National Institute of Standards and Technology,
Gaithersburg, MD, Nov. 1992.

D. F. Ferraiolo and D. R. Kuhn. Role-Based Access Con-
trols. In Proceedings of the 15th NIST-NCSC National Com-
puter Security Conference, pages 554-563, Baltimore, MD,
1992.

L. Giuri. Role-Based Access Control on the Web Using Java.
In Proceedings of the 4th ACM Workshop on Role-Based Ac-
cess Control (RBAC’99), pages 11-18, Fairfax, VA, 1999.
T. Jaeger. Rebuttal to the NIST RBAC Model Proposal. In
Proceedings of the 5th ACM Workshop on Role-Based Ac-
cess Control (RBAC’2000), pages 65-66, Berlin, Germany,
2000.

Object Management Group. Security Service Specification,
version 1.7. OMG Document 99-12-02, Dec. 1999.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE Com-
puter, 29(2):38-47, Feb. 1996.

R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The NIST
Model for Role-Based Access Control: Towards a Unified
Standard. In Proceedings of the 5th ACM Workshop on
Role-Based Access Control (RBAC’2000), Berlin, Germany,
2000.

R. S. Sandhu and Q. Munawer. The ARBAC99 Model for
Administration of Roles. In Proceedings of the 15th Annual
Computer Security Application Conference, Scottsdale, AZ,
Dec. 1999.

C. M. Westphall and J. S. Fraga. Authorization Schemes
for Large-Scale Systems Based on Java, CORBA and Web
Security Models. In Proceedings of the IEEE International
Conference on Networks (ICON’99), pages 327-334, Bris-
bane, Australia, Sept. 1999.

C. M. Westphall, J. S. Fraga, and M. S. Wangham.
PoliCap—A Policy Service for CORBA Security Model. In
Proceedings of the 18th Brazilian Symposium on Computer
Netorks, pages 355-370, May 2000. (in Portuguese).

YF]',F.

COMPUTER
SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

