
A Financial Institution’s Legacy Mainframe Access Control System in Light of
the Proposed NIST RBAC Standard

Andrew D. Marshall
TD Bank Financial Group

275 Dundas Street
London, Ontario, Canada
andrew.marshall@td.com

Abstract

In this paper we describe a mainframe access control
system (DENT) and its associated delegated administration
tool (DSAS) that were used in a financial institution for over
20 years to control access to banking transaction products.
The fir st part of this paper describes the design and oper-
ation of DENT/DSAS as an example of a long-lived access
control system in a financial institution.

A standard for Role-Based Access Control (RBAC) has
recently been proposed by the United States National Insti-
tute of Standards and Technology (NIST). The second part
of this paper discusses how the functionality of DENT/DSAS
could be achieved by applying its principles of operation
within the NIST model. In so doing we also evaluate the
proposed standard by validating it against the requirements
embodied in a successful access control system.

We conclude with some observations about the design
of DENT/DSAS and suggestions for changes in the pro-
posed RBAC standard to accommodate some features of
DENT/DSAS that it does not appear to support.

1. Introduction

The The Toronto-Dominion Bank (TD) is one of
Canada’s largest financial institutions. On February 1,
2000, it acquired the assets of CT Financial Services (CT),
which operated a trust company and related financial ser-
vices businesses under the name Canada Trust. With the
purchase TD acquired a portfolio of software that consti-
tuted the banking systems of the former Canada Trust. As a
consequence of system integration decisions driven by busi-
ness requirements, much of the CT software portfolio has
been or shortly will be retired, including the access control
system described in this paper.

CT’s mainframe banking software included a number of

“product systems”, each of which implemented a particu-
lar product or family of products. For example, the Savings
system implemented traditional savings accounts, and the
Mortgage system implemented mortgages. All the banking
product systems ran in a common transactional environment
using IBM’s Customer Information Control System (CICS).
Around 1978, an access control system called “Data Entry”
was written as a front end for CICS-based transactional pro-
grams1. Developers of product systems were provided with
code templates which enabled them to wrap each “business
function” (i.e., one or more transaction calls and associated
business rules) with a call to DENT’s access control rou-
tine. DENT thus provided a common access control mech-
anism across all product systems. Each business function
protected by DENT had an associated “keyword”. DENT
made its access control decisions by determining whether
the user requesting access to a business function possessed
the corresponding keyword in his or her “security profile”.
A user’s security profile, then, was a list of products which
the user was allowed to run, and a list of keywords for each
product representing the product-specific business functions
to which the user had been granted access. DENT’s secu-
rity database contained the security profiles for all users, as
well as some related tables (e.g., a list of all products and
all valid keywords).

One of the products controlled by DENT was “Data Se-
curity Administration System” (DSAS), which was the ad-
ministrative tool for DENT’s security database. DSAS was
used most often by retail bank branch managers to grant and
deny access to business functions for their employees with-
out intervention by a central security department. DSAS up-
dated the DENT security database; DENT read its security
database to enforce the access rights set up by the users of
DSAS. The relationships among the DENT/DSAS compo-

1DENT also provided a number of other common functions, including
data presentation, journalling, logging, etc., but we are only concerned here
with its access control component.

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

Figure 1. DENT/DSAS component relationships

nents are shown in Figure 1. The programs and databases in
DENT/DSAS were protected from unauthorized access out-
side of that mediated by DENT/DSAS by the native main-
frame security system, which was Computer Associates’
ACF2 and then IBM’s RACF. In general, the native main-
frame security system was used to guard access to the files
and programs of the product systems; DENT was used to
grant finer -grained access to specific banking functions im-
plemented in these systems.

A proposed standard for Role-Based Access Control
(RBAC) has been put forward by the United States National
Institute of Standards and Technology (NIST). The pro-
posed standard has generated interest within TD and other
large corporations (see, for example, the theme of the Oc-
tober 2001 meeting of the Network Applications Consor-
tium, www.netapps.org) facing the headaches associ-
ated with managing the access rights of thousands of users
to thousands of business functions. The role of a “role” as
an intermediary between users and permissions offers sim-
plified processes for user rights administration. By compar-
ing the proposed RBAC standard against the functionality
embedded in a successful access control system, we believe
we can offer suggestions that will make the RBAC standard
even more appealing and useful within financial institutions.

The rest of this paper is organized as follows. Section 2
presents an overview of DENT, the legacy access control
system, and DSAS, its delegated administration tool. Sec-
tion 3 outlines the software developer’s view of DENT. We
give a brief overview of the NIST’s proposed RBAC stan-
dard in Section 4. Section 5 demonstrates the power of
the NIST RBAC standard by describing a scheme through
which it could be applied to offer much of the functional-
ity of DENT/DSAS. Finally, in Section 6, we conclude with
some observations on the design of DENT/DSAS and with

some suggestions for changes to the proposed NIST RBAC
standard.

2. Overview of DENT and DSAS

The environment protected by DENT was a collection
of products, each one responsible for one part of the overall
banking functions offered by CT. Each product had a “prod-
uct code”, e.g., SVG for the Savings product, MTG for the
Mortgage product, etc. Each product was associated with a
business unit within CT that was responsible for the strat-
egy, marketing, and business rules for the product. Each
such business unit would designate one or more individuals
within the unit as “product owners” for the product. The
software for each product was designed and maintained by
developers in the Business Systems department.

Associated with each product was a set of keywords
(character strings, chosen where possible to have mnemonic
value). Each keyword was used to protect a “business func-
tion” within a product. By “business function”, we are re-
ferring to a specific CICS transaction and the associated
business rules and context around the transaction. The
designation of business functions that were of a sensitive
enough nature to require access control was the job of the
product’s developer, in concert with the product owner(s).
For example, most products offered an Inquiry function, ac-
cess to which was typically controlled by the presence (or
absence) of an INQ keyword in a user’s security profile .
Note that keywords were product specific: two products
could have the same keyword, with each controlling access
to vastly different business functions in the products.

Keywords were divided into two classes: “normal” and
“restricted”. When a keyword in the normal class was re-
quested for a user’s profile it was automatically added to

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

the profile. A keyword in the restricted class required ap-
proval from the product’s owner before it was added to a
user’s profile. The keyword mechanism was used to denote
product owners: a product owner for product FOO would
have the keyword KYAPFOO in his or her security profil e
for product FOO.

As an example of the distinction between normal and
restricted keywords, consider a simplified version of the
“Deposit” business function of the Savings product. Sup-
pose that for legal reasons the Savings business unit dis-
tinguished between two kinds of deposits: those under
$10,000, and those of $10,000 or more. The logic of the de-
posit business function would be split into two cases, each
depending on a different keyword. The normal keyword,
DEP, would apply to deposits of less than $10,000, and
the restricted keyword, HIDEP, would permit the holder to
process deposits of $10,000 or more. The Savings product
owner would freely grant the DEP keyword to any user, but
would not grant users the HIDEP keyword until it had ver-
ified that the user had met the requirements of the Savings
business unit.

One of the products controlled by DENT was DSAS
(Data Security Administration System), the delegated ad-
ministration tool used by managers to assign product key-
words to the company employees under their direct control.
The philosophy employed by the designers of DENT/DSAS
was one of centralized oversight with decentralized admin-
istration. Keywords were created by a central authority (the
DSAS Administrator; see Section 3) but were assigned to
users by local decision makers. The rationale behind this
philosophy was that local managers were in the best posi-
tion to determine the access needs of their employees, but
the keyword creation and deletion process required central
coordination.

To be able to run DSAS, a user had to have the DSAS
product in his or her security profile and the profile had to
include the appropriate DSAS keywords. The DSAS key-
word, BRAUTH, permitted its holder to create security pro-
files within the holder’s branch (a branch number was an
attribute of each user’s identity). Someone holding this key-
word could automatically add normal keywords to a user’s
profile and generate a request (to a product owner) to add a
restricted keyword to a user’s profile.

3. The Developer’s View of DENT

We now describe the steps involved in developing prod-
ucts that ran under the DENT system.

1. The product owner, in cooperation with the developer
assigned to the product, developed a plan for adding a
new business function to the product (or changing an
existing business function).

MOVE LOW-VALUES TO DE059-INTERFACE.
MOVE DTE-TRANS-COMP-A TO DE059-PRODUCT.
MOVE ’KEYUPDT ’ TO DE059-KEYWORD.
MOVE SPACE TO DE059-INTERBR-IND.
MOVE SPACE TO DE059-BYPASS-ABEND-IND.
MOVE ’OPER’ TO DE059-REQUEST-CODE.

EXEC CICS LINK
PROGRAM(’DE059O’)
COMMAREA(DE059-COMMON-AREA)
LENGTH(DE059-COMM-LENGTH)
RESP(W-CICS-RESPONSE)

END-EXEC

EVALUATE W-CICS-RESPONSE
WHEN DFHRESP(NORMAL) <--- executed ok

IF DE059-KEYWORD-MATCHED
PERFORM ...

ELSE
MOVE DE059-RETURN-MESSAGE

END-IF
WHEN OTHER <--- other error

.....
END-EVALUATE

Figure 2. Keyword check library call template.

2. The developer determined whether it would be appro-
priate to protect the new business function with an ex-
isting product keyword. If so, step 3 was skipped.

3. The developer sent a request to the DSAS
Administrator—the person within the company’s
Data Security team responsible for maintaining the
DENT/DSAS security database—for a new product
keyword. The request included the name of the
product, the name of the new keyword, a short
description, an indication whether the keyword was
normal or restricted, and guidelines for its assignment
to users. Normally, the DSAS Administrator granted
the request and added the keyword to the list of
keywords for the product maintained in the DENT
security database.

4. The developer wrote (or modified) the COBOL code
needed to implement the desired new or changed busi-
ness function. The code included a call to a library
routine to check whether the user executing the code
had the designated keyword in his or her profile. The
general form of the library routine calling sequence is
given in Figure 2.

The business rules around some business functions re-
quired a slightly more complicated approach. For various
reasons (e.g., the sensitivity of the transaction, the user’s
transaction limits or job level) some business functions re-
quired a Dual Control security policy to be applied to them.
As an example, consider the “Correction” business function
in the Savings product. This function allowed transactions
made in error to be reversed. Because of its power, the Cor-
rection function required the participation of two people: an

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

initiator and an approver. The code implementing the Cor-
rection function was structured as follows:

1. Is the keyword for the Correction function of the Sav-
ings product (e.g., SVG, COR) in the initiator’s security
profile? 2

2. A routine was then called to pop up a request for a
supervisor override on the initiator’s display. At this
point, the initiator would call an approver (supervisor)
to the initiator’s terminal, who would authenticate to
the system by supplying his or her logon id and pass-
word.

3. The approver’s profile was then checked for the pres-
ence of a Correction override keyword for the Savings
product (say, COROVR). If the approver held the key-
word, then the transaction continued, otherwise, it was
aborted.

4. Overview of the NIST Proposed RBAC Stan-
dard

Space limitations do not permit a full exposition of the
RBAC standard proposed by NIST. The diagram in Fig-
ure 3 shows the entities and relationships and each of them
is briefly described in the chart below. For more details, the
reader is directed to the standard [2].

Entity Description

USERS Set denoting the users whose access privileges are
to be managed.

ROLES Set of roles defined for the organization.

PRMS Set of Permissions. Permissions are defined as ab-
stract operations on objects.

OBS Set of objects used to construct PRMS.

OPS Set of abstract operations used to construct PRMS.

UA (User Assignment) A many-to-many mapping between
Users and Roles: one user may be assigned many roles,
and one role may be assigned to many users.

PA (Permission Assignment) A many-to-many mapping
between ROLES and PRMS. A given role may have
(is likely to have) more than one permission, and one
permission may be assigned to multiple roles.

2Note that, strictly speaking, the initiator could not have made it this
far without possessing the COR keyword, as the screen display routines
generated by DENT—another of its functions—used the user’s security
profile to generate the list of transaction codes available to the user. The
display routine only displayed transaction codes for which the user had
permission (i.e., possessed the corresponding keyword).

SESSIONS Set denoting all the active sessions. A session
is a mapping of one user to one or more roles. Each
session is associated with only one user; a user may
have more than one active session.

user sessions Mapping of a user, u, onto a set of sessions.

session roles Mapping of a session, s, onto a set of roles.

The entities described above are those of “Core RBAC”.
The standard also offers “Hierarchical RBAC”, which in-
troduces role hierarchies, and “Constrained RBAC”, which
adds constructs to support Static and Dynamic Separation
of Duty relations.

5. Modelling DENT/DSAS in the RBAC Model

In this section we demonstrate how most features of
DENT/DSAS’s operation could be modelled in the pro-
posed NIST RBAC standard. The presentation is structured
from the point of view of an organization migrating from a
a legacy access control system to one based on the proposed
NIST RBAC standard. We define the new entities, those in
the RBAC standard, in terms of those in the legacy system.
We also identify where it is not possible within the RBAC-
based system to completely implement concepts or func-
tionality from the legacy system. As an example through-
out this section, we will be referring to the sample DENT
security database in Table 1. We begin by formalizing what
we have so far referred to as the DENT security database.

• U , a set of users.

• P , a set of product codes.

• We represent a keyword k, associated with product
p, as a tuple (p, k). K = KN ∪ KR, is the set of
keywords, where KN is the set of all normal key-
words, KR is the set of all restricted keywords, and
KN ∩KR = ∅.

• S represents the users’ security profiles. S =
{(u, Nu, Au)} ∀u ∈ U , where Nu ⊆ P is the set
of product codes for which user u is authorized, and
Au ⊆ K, is the set of keywords which user u has been
assigned.

For the example in Table 1, we have the following sets
(only the first entry of set S is shown):

U = {Bob, Carol, Ted, Alice}
P = {SVG, DSAS}

KN = {(SVG, INQ), (SVG, DEP),
(DSAS, INQ)}

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

Figure 3. Core RBAC (adapted from Ferraiolo et al. [2]).

KR = {(SVG, COR), (SVG, COROVR),
(SVG, KYAPSVG), (DSAS, BRAUTH)}

S = {(Alice, {SVG, DSAS},
{(SVG, INQ), (SVG, DEP), (SVG, COR),
(DSAS, INQ)}), . . .}

We now look at mapping from the DENT/DSAS “world”
into the RBAC “world”. Our approach is to develop the
mapping as a design exercise, structured as a series of ques-
tions and answers.

5.1. Who are the users of our system?

The users of DENT/DSAS will be the users of the new
RBAC system, so USERS = U . Note that the proposed
NIST RBAC standard allows only people to be represented
in its USERS set, which conflicts with the DENT/DSAS
definition of a user. In the DENT/DSAS world, a user is
most often a person—an employee—but may also be a ma-
chine: an application server or Automated Banking Ma-
chine (a “tin teller”) operating like a human teller on behalf
of a customer.

5.2. What are the roles to which users can be as-
signed?

The set of roles we define is the union of three kinds of
roles: user roles, product owner roles (one for each prod-
uct), and the Brauth role, i.e., ROLES = ROLESU ∪
ROLESO ∪ {Brauth}.

As we have mentioned, DENT/DSAS was not a role-
based system. We can still view it as role-oriented if we
consider that every user in the organization has, by defi-
nition, his or her own role, which has the same permis-
sions in the RBAC world as the keywords permitted in
the DENT/DSAS world. In other words, ROLESU = U.

We assume that every product has a product owner, so
ROLESO = P .

5.3. What are the objects we are protecting?

The basic objects we are protecting are business func-
tions as represented by keywords. So the keywords in bank-
ing product systems become the “user” objects (as with
the keywords themselves, we separate “normal” objects and
“restricted” objects). We also need objects to represent roles
in the RBAC system so that we can assign, for example,
permissions to managers to permit them to change the per-
missions assigned to their employees’ roles, and to product
owners so that they can fulfill requests for restricted key-
words. We refer to these objects as “admin” objects. More
formally: OBS = OBSU ∪OBSA where

OBSU = OBSN ∪OBSR

OBSN = {k = (p, w) ∈ KN}
OBSR = {k = (p, w) ∈ KR}
OBSA = ROLESU

5.4. What are the operations on the objects?

We divide the operations into two kinds: user (those used
to construct end user permissions) and administrative (those
used to manage roles and permissions). OPS = OPSU ∪
OPSA, where

OPSU = {exec}
OPSA = {assign, request, approve, change}

5.5. How are the objects and operations combined
into permissions?

PRMS = PRMSU ∪ PRMSA where

PRMSU = {(exec, o)∀o ∈ OBSU}

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

User Security Profiles
User Branch Product Keyword (Implicit Role)

Alice 1
SVG

INQ

Teller
DEP
COR

DSAS INQ

Bob 1
SVG

INQ

Supervising Teller
DEP
COR
COROVR

DSAS INQ

Carol 1
SVG

INQ

Manager

DEP
COR
COROVR

DSAS
INQ
BRAUTH

Ted 2
SVG KYAPSVG

Product Owner
DSAS INQ

Product and Keyword Table
Product Keyword Normal/Restricted Guidelines

SVG

INQ N Any employee
DEP N Any Teller
COR R Any Teller

COROVR R Supervising Teller
KYAPSVG R Product Owner

DSAS
INQ N Any employee

BRAUTH R Branch Manager

Table 1. A sample DENT/DSAS security database

PRMSA = PRMSR ∪ PRMSM ∪ PRMSO

and where

PRMSR = {(change, k) ∀k ∈ OBSA}
PRMSM = {(assign, k) ∀k ∈ OBSN} ∪

{(request, k) ∀k ∈ OBSR}
PRMSO = {(approve, k) ∀k ∈ OBSR}

Each permission in PRMSU conveys the right to exe-
cute the business function represented by the permission’s
object. These are the permissions that constitute the ma-
jority of a normal user’s role’s permissions. Each permis-
sion in PRMSR conveys the right to change the role whose
name is the object of the permission. These permissions are
assigned to the Brauth role and to all product owner roles.
Permissions in PRMSM are attached to the Brauth role:
an “assign” operation on object k conveys the right to add
the (exec, k) permission to a role; a “request” operation on
object k conveys the right to request of a product owner that
the (exec, k) permission be added to a role. Finally, the per-
missions in PRMSO are assigned to product owner roles:

an “approve” operation on object k conveys the right to add
the (exec, k) permission to a role.

5.6. What is the Permission Assignment (PA) rela-
tion?

This relation, the mapping between roles and permis-
sions, is given in Table 2. We use the notation, fooP , to
refer to the permissions assigned to role foo.

Note that the permissions assigned to the Brauth role
do not capture the constraint of the corresponding keyword
semantics in the DENT/DSAS system. In DENT/DSAS,
someone holding the Brauth keyword could only change
or create profiles for employees with the same branch num-
ber. The NIST RBAC model offers no obvious way to en-
force this constraint. Note also that a product owner can add
the keyword(s) it owns to any user’s role without a preced-
ing “request” from a user in the Brauth role. Within the
proposed NIST RBAC standard there appears to be no way
to prevent this situation. We will return to these issues in
Section 6.2.

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

Role Permissions
∀u ∈ ROLESU uP = {(exec, (p, w)) | (u, Nu, Au) ∈ S ∧ p ∈ Nu ∧ (p, w) ∈ Au ∧ p 6= DSAS}
Brauth BrauthP = PRMSR ∪ PRMSM

∀r ∈ ROLESO rP = PRMSR ∪ {(approve, (p, w)) | p = r}

Table 2. The Permission Assignment (PA) relation

Role Users assigned to the role
∀r ∈ ROLESU rU = r
Brauth BrauthU = {u ∈ USERS | (u, Nu, Au) ∈ S ∧ (DSAS,BRAUTH) ∈ Au}
∀o ∈ ROLESO oU = {u ∈ USERS | (u, Nu, Au) ∈ S ∧ (o,KY APo) ∈ Au}

Table 3. The User Assignment (UA) Relation

5.7. What is the User Assignment (UA) relation?

This relation, the mapping between roles and users, is
given in Table 5.4. We use the notation, fooU , to refer to
the users assigned to role foo.

We complete our mapping by referring the reader to Fig-
ure 4 which illustrates the UA and PA relations for each of
the users in our sample database.

6. Conclusions

The major contribution of this paper is to demonstrate
the power of the proposed NIST RBAC standard by us-
ing it to model a legacy mainframe access control system.
DENT and DSAS, although successful, were not perfect.
Section 6.1 describes some improvements that would be in-
cluded if a redesign were to be undertaken now. Similarly,
NIST’s proposed RBAC standard is a creature of compro-
mise and constraint; for example, the authors required that
each feature be supported by a a proven implementation.
Our experience with DENT/DSAS suggest, however, that
the proposed model is missing some features that are impor-
tant in the financial industry, as evidenced by their support
by DENT/DSAS. Section 6.2 describes these features.

6.1. DENT/DSAS: A Retrospective Redesign

DENT/DSAS was in service for 22 years before being
decommissioned, and the decommissioning was triggered
by system integration activities, not by some inherent fla w
in the system. However, taking advantage of hindsight, a
number of issues have been identified with it that were not
completely solved in the initial design.

Employment practices within CT, common also to TD,
raise issues with role activation. It is not uncommon for
one person to work in two different branches at different

times and to take on different roles in each branch. Ideally,
their profile would be automatically adjusted according to
their location or time of day or some other external clue.
DENT/DSAS essentially side-stepped this issue by mandat-
ing that a user in this situation would have two different lo-
gon ids: one for each branch, each with its own security
profile. Similar issues arise in health care, as location—the
notion of a “floor”—is important in determining access to a
patient’s records [1].

A related issue is dealing with the privileges assigned to
internal auditors. This class of employees is not assigned to
any one branch but has access to the records of any branch.
Their access rights are somewhat contradictory: they have
complete access, much greater than that afforded to normal
employees, to transaction log files, but simultaneously have
no access to the transactional applications themselves. The
designers of DENT/DSAS were unable to integrate access
control for internal auditors into DENT/DSAS in a way that
they found satisfying.

6.2. Suggestions for the Proposed RBAC Standard

As noted in Section 5.1, the proposed RBAC standard
requires its USERS set to denote only human users, a re-
striction which appears to be unnecessarily restrictive.

As described in Section 5.6, there is no obvious simple
solution to permit us to constrain a holder of the Brauth
role only to changing the roles of the employees in the same
branch. However, there do appear to be two options:

1. Create one Brauth role for each branch, one change
permission for each branch, and assign each man-
ager to a branch-specific Brauth role rather than
the generic Brauth role. This creates administrative
complications that seem at odds with the goal of RBAC
to simplify access control administration.

2. A more aesthetically pleasing solution would be to en-

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

(a) User and permission assignments for Alice (Teller) (b) User and permission assignments for Bob (Supervising Teller)

(c) User and permission assignments for Carol (Manager) (d) User and permission assignments for Ted (Product
Owner)

Figure 4. Mapping of the sample security database from Table 1 into the RBAC world

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

courage NIST to modify its RBAC model to support
general constraints. Constraints are well-understood
and useful (e.g., see the RBAC2 model in Sandhu’s dis-
cussion of RBAC96 in [5]): in this context a constraint
would be a rule attached to a role which indicates that
it only applies if the holder of the role and the target
object have the same value in their “branch” attributes.

The Dual Control policy presented in Section 3 requires
two users, an initiator and an approver, to cooperate to com-
plete a transaction. The proposed NIST RBAC standard
does not appear to support this policy since it does not allow
more than one user to be connected to a single session. The
most obvious way to adjust the standard to support Dual
Control would be to relax this restriction, and allow more
than one user to be attached to a session.

Alternatively, is could be supported by adding a work-
flo w or temporal ordering constraint on permissions. This
would also help with the issue of product owners being able
to make arbitrary changes to any user’s profile, discussed in
Section 5.6.

The bulk of the permissions and roles we created in map-
ping DENT/DSAS to RBAC were concerned with admin-
istration of the RBAC system itself. The absence of ad-
ministrative roles and permissions from the proposed NIST
RBAC standard is a surprising omission. Administrative
role hierarchies are a familiar notion in the RBAC literature
(see, again, Sandhu’s RBAC96 article [5]). In their paper
demonstrating how RBAC can simulate other access con-
trol models, Osborn, Sandhu and Munawer note that, “The
Administrative Role Hierarchy is essential in the enforce-
ment of DAC policies” [4]. Finally, in their critique [3] of
an earlier version of the standard, Jaeger and Tidswell re-
mark on the “surprising omission” of administrative roles
in the standard.

7. Acknowledgements

Chuck Burns was the principal architect of
DENT/DSAS. He provided many details of its history
and development. Discussions with Val Woodward, Ron
Brubacher, and Barb Edwards provided additional useful
information.

The author would like to thank Sylvia Osborn for review-
ing early drafts of this paper and for providing expert guid-
ance to the RBAC literature; the anonymous reviewers for
their valuable comments; and, finally , Cristina Scassa and
Frank Coletti for supporting RBAC research within the TD
Bank Financial Group.

References

[1] K. Beznosov. Requirements for access control: US healthcare
domain. In Proceedings of the 3rd ACM Workshop on Role-

Based Access Control (RBAC-98), pages 43–46, New York,
Oct. 22–23 1998. ACM Press.

[2] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based ac-
cess control. ACM Transactions on Information and System
Security, 4(3):224–274, Aug. 2001.

[3] T. Jaeger and J. E. Tidswell. Rebuttal to the NIST RBAC
model proposal. In Proceedings of the 5th ACM Workshop on
Role-Based Access Control (RBAC-00), pages 65–66, N.Y.,
July 26–27 2000. ACM Press.

[4] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-
based access control to enforce mandatory and discretionary
access control policies. ACM Transactions on Information
and System Security, 3(2):85–106, May 2000.

[5] R. Sandhu. Role-based access control. In M. V. Zelkowitz,
editor, The Engineering of Large Systems, volume 46 of Ad-
vances in Computers, pages 238–286. Academic Press, 1998.

Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC�02)
1063-9527/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

