
A temporal-logic extension
of role-based access control

covering dynamic separation of duties

Till Mossakowski
BISS, Dept. of Computer Science

University of Bremen
P.O. Box 330 440, 28334 Bremen, Germany

till@tzi.de

Michael Drouineaud
BISS, Dept. of Computer Science

University of Bremen
P.O. Box 330 440, 28334 Bremen, Germany

mdruid@tzi.de

Karsten Sohr
BISS, Dept. of Computer Science

University of Bremen
P.O. Box 330 440, 28334 Bremen, Germany

sohr@tzi.de

Abstract

Security policies play an important role in today’s com-
puter systems. We show some severe limitations of the wide-
spread standard role-based access control (RBAC) model,
namely that object-based dynamic separation of duty as in-
troduced by Nash and Poland cannot be expressed with it.
We suggest to overcome these limitations by extending the
RBAC model with an execution history. The natural next
step is then to add temporal logic for the specification of
execution orders. We show that with this, object-based dy-
namic separation of duty, as well as other policies, can be
adequately specified.

1. The RBAC model/Separation of duty

Role-based access control (RBAC) [18, 1, 2, 9] has
received considerable attention as a promising alternative
to traditional discretionary and mandatory access control.
Moreover, an extensive field study by the National Insti-
tute of Standards and Technology (NIST) pointed out that
in practice permissions are assigned to users according to
their roles/functions in the organization [8]. The explicit
representation of roles greatly simplifies the security man-
agement and makes possible to use security principles like
separation of duty and least privilege [18]. In the follow-
ing, we give an overview of RBAC96, a widespread RBAC

model introduced by Sandhu et al. [18]. In Figures 1 and 2
the entity sets of RBAC96 and the relationships between
them are shown.

A further important concept of the advanced RBAC96
models are constraints on the relations assigned to, auth,
active in, etc. With help of these constraints, separation of
duty (SOD) can be enforced. SOD is a well-known princi-
ple that prevents fraud and error by requiring that at least
two persons are required to complete a task. SOD is often
applied in everyday life, e.g., a paper submitted to a confer-
ence typically is required to be reviewed by three referees
who must be different from the author. There are several at-
tempts to express SOD constraints in the computer security
world, specifically in the area of banking like the Clark-
Wilson model [6] or Sandhu’s Transaction Control Expres-
sions [17]. Usually, it can be differentiated between static
and dynamic SOD. Static SOD means that a user is not per-
mitted to perform certain steps of a task. By contrast, in
dynamic SOD a user may carry out those steps, but only
if he has not done/does not certain other steps of the task.
Thus, dynamic SOD is more flexible than static SOD and
hence better satisfies real-world requirements.

Usually, RBAC is expressed in set-theoretic notation.
When using formal methods, one needs to express RBAC
in some definite formalism (like the Z formalism used in
[5]). We here formalize RBAC in many-sorted first-order
logic, which also is a well-studied and tool-supported for-
malism [14]. In the specification given in Fig. 3, the axiom
states that a session may activate a role only if its user is
assigned to the role.

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

Operations

Permissions

Objects

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

.

.

Constraints

user

Users

assigned_to

Roles

auth

active_in
.

Sessions

Figure 1. The components of RBAC96

Our name [10] [9], [1] Meaning
Users Users Users human being or an autonomous agent
Sessions Subjects Sessions entities through which a user acts
Roles Roles Roles job function or job title
Operations Operations Operations (permitted or non-permitted) actions on objects
Objects Objects Objects passive entities
user subject user user unique user of a session
auth auth PA authorization of roles (to execute operations)
assigned to role members UA static assignment between users and roles
active in subject roles roles dynamic activation of roles in sessions

Figure 2. Table of terminology.

2

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

spec RBAC =
sorts ����� ��������� �� �	���
����
���� �
����
�

op ���� � �������� � ������
preds ��������
� � ����� ���	�� �

��
� � ��	�� �
����
�����
����
� �
��
��� �� � � �	��� �������� �

forall � � � �	��� � � ��������
� � ��
��� �� � � ������� ��������
� �

end

Figure 3. RBAC, formalized within first-order
logic.

2. Limitations of the RBAC model

Practical applications of RBAC often need dynamic
SOD, see Simon and Zurko [19, 20] and Nash and Poland
[15]. We cite an example of a purchasing department which
processes invoices for received goods from [15]:

Let us assume that there are three types of trans-
action involved in processing an invoice:

1. Recording the arrival of an invoice and the
information recorded on it;

2. Verifying that the goods in question have
been received and that the details of price
etc. match those agreed with the supplier;

3. Authorizing the payment of the supplier.

We can also postulate three distinct types of user:

1. Data entry clerks, who enter the information
on invoices into the system;

2. Purchasing officers, who verify the validity
of invoices;

3. Supervisors, who authorize payments.

If we allocate fixed users to fixed types of trans-
action, then data entry clerks, and only data en-
try clerks, can record the arrival of invoices; pur-
chasing officers, and only purchasing officers, can
perform verification transactions; and supervi-
sors, and only supervisors, can authorize pay-
ments. (. . .) This is not what usually happens
in the real world.

Although some roles are restricted to certain
transactions (for example, a data entry clerk is
never permitted to authorize payments), it would
be normal for an otherwise unoccupied purchas-
ing officer to enter details of invoices if there is a
backlog of unprocessed incoming paper, or for a

supervisor to handle the verification of the details
of a particularly complex invoice. What never
happens is that the same purchasing officer ver-
ifies an invoice that he entered into the system,
or the same supervisor who verifies an invoice is
permitted to authorize payment against it.

Now [18, 2, 9, 16] claim that RBAC covers dynamic
separation of duties. [1] cites [15] when formulating his
security policies using RBAC, but for the object-based
case (which is needed here), he only covers static SOD.
[7] even explicitly introduces an example like the above
one, with a formalization using RBAC. However, the
latter is inadequate since too static. Indeed, an important
observation not having been made in the literature so far is
the following:

Claim For the Nash and Poland example, dynamic
separation of duties cannot be expressed in the standard
RBAC model. This is even not possible if the role structure
may be refined, as long as the number of roles is smaller
than the number of permissions (a practical reasonable
assumption).

The claim can be seen as follows. We refer to the above
practical example, assuming that there are three operations
(enter, verify, authorize) and three roles (clerk, officer, su-
pervisor), such that the clerk role is authorized to execute
the enter operation on any object, while the officer (resp. su-
pervisor) role additionally is authorized to execute the ver-
ify (resp. verify and authorize) operations. Hence, supervi-
sors are authorized to execute (potentially) any operation on
any object. The intended security policy is: No user should
be authorized to execute actually more than one operation
on a given object. Now since authorization is connected to
roles, not users, and roles can be activated in sessions, this
has to be rephrased as: no user should activate roles ��� �� in
sessions ��� �� such that �� and �� can execute two distinct
operations on some object. This is formalized as

����� �� � ������ ��� �� � ������	��
�
�� �
� � �
���
��	�� ��� � �����
� �

�
� �� �
� � �� ��
��� �	 �� � �� ��
��� �	 ��
� �������� � ��������
� ��
����� �
�� ���� � ��
����� �
�� ����

But for the above example, this means that no user could
ever activate the supervisor role in a session �, since this role
(taken for both �� and ��) would authorize him to execute
all three possible operations (taking � � �� � ��).

Now assume that the role structure is refined somehow.
Let � be some supervisor user. Since � is free to exe-
cute (potentially, not actually) any operation on any object,
for each object ���, there must be three roles ���������� ,

3

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

����������	 and �����
��
�����, being assigned to � and au-
thorized to execute the three operations. Since the num-
ber of roles is smaller than the number of permissions,
there must be ������ ���� �� ������ ���� with ��������� �
��������� . If ���� � ����, then ��� �� ���, and � may exe-
cute two distinct operations on ���� � ����. If ���� �� ����,
choose ��� with ��� �� ���. Now � is free to execute (ac-
tually, not only potentially) ��� on ���� and ��� on ����,
and therefore may activate both ����� ���� and ��������� . But
since the latter is equal to ��������� , � may execute both ���
and ��� on ����. Hence, in both cases, the security policy
is violated.

The deeper insight is that the concept of session, while
introducing a certain degree of dynamics (opposed to a for-
mulation using the entirely static ���	
��
 �� predicate), is
still too weak to express the distinction between the poten-
tial to execute an operation and the fact that an operation
is actually executed. Indeed, some further dynamic concept
(beyond the notion of session) is needed to model the lat-
ter. In fact, [17] stresses the importance of history. Gligor
et al. [10] take this point seriously and formalize history via
traces of states, but end up with rather complex formulas
explicitly talking about states. [4] also introduce temporal
aspects into RBAC. Their model has considerably complex-
ity, because it talks about various forms of time intervals and
about events triggering the activation of roles. While this is
an important topic, our main topic, namely separation of
duties, is not treated explicitly.

3. Extended RBAC

We now introduce extended RBAC as a rather simple,
first-order based extension of the RBAC model that allows
expressing realistic dynamic separation of duties policies.
Surprisingly, this can be done without introducing a notion
of state. We overcome the abovementioned limitations of
RBAC by adding, besides the sessions, a further dynamic
component tracking the actually executed operations. Ex-
tended RBAC will thus allow a correct specification of dy-
namic separation of duties while still being as concise as
RBAC (and thus avoiding the complexity of the formaliza-
tion in [10]).

The new component of extended RBAC is the predicate
���� tracing the operations performed: ������� ��� ����
means that session � executes (or has executed, or will exe-
cute) operation �� on object ���. Of course, since FOL is a
static logic, the ���� predicate does not depend on time, but
it just collects all the executions performed during a session.
(Temporal aspects will be covered in Section 5 below).

The axiom states that a session � may execute an opera-
tion (on an object) only if some role � that is authorized to
perform the operation is active in �.

Fig. 5 contains definitions of some derived notions that

spec EXTENDEDRBAC = RBAC then
pred ���� � �������� ��	�
������ ��
�����

forall � � �������� � �	 � �	�
������ � �
� �
�
�����

� ��� ��� � �	� �
� � �
�
 � ����� �
 ������ �� �

������
 � �	� �
� �
end

Figure 4. Extended RBAC, formalized within
first-order logic.

spec RICHRBAC = RBAC then
preds ������ ��
 � � ��������
� �

���� � ���
� ��	�
��������
�����

forall
 � � ����� � � ���
� �
�	 � �	�
������� �
� � �
�����

�
 ������ ��
 � �

�� � �������� � ���
��� � �

�
 ������ �� �

� ��� ���� �	� �
� � �
�� � �������� � ���
��� � �

���� ��� � �	� �
� �
end

Figure 5. Derived predicates for extended
RBAC.

4

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

will lead to more succinct formulations of security policies
in some cases. If needed, the derived notions can be elimi-
nated by replacing them with their definitions.

4. Separation of duty in extended RBAC

We now specify a bunch of security policies, following
the formalizations in [1] and [10]. We overcome the prob-
lems of [1] who uses ordinary RBAC and thus fails to spec-
ify truly dynamic RBAC (as argued above). While the for-
malizations in [10] do not have this problem, they add con-
siderable complexity since they explicitly talk about states
and execution history. We here remain in a stateless world,
but still can capture most of the policies of [10] quite ade-
quately. Still, states may be needed when the order of exe-
cution is important. This will be subject of Section 5.

We follow [10] in relativizing all the security policies
w.r.t. a given set ������� of roles (regarded as conflicting
roles), and given sets ����� and ��	��� of operations and
objects, resp. We freely will use these as sorts for variables.
This can be understood as syntactic sugar for membership
in a predicate on the sorts ����
, ������
��
 or ��	���
,
respectively. An alternative (though more complicated) way
is to use subsorts, e.g. as in CASL [3].

Static Separation of Duties (SSoD) At most one conflict-
ing role can be assigned to a given user.

���� ���� �

����� �� � � ������� � � ����� � �� �� �� �

��� �

���� �� �� � � �

���� �� ����

It is also possible to express this equivalently in a pos-
itive way:

���� ���� �

����� �� � � ������� � � ����� �

� �

���� �� �� � � �

���� �� �� � �� � ���

Nevertheless, in the sequel we will stick to the negative
way, since this conforms with [10].

Simple Dynamic Separation of Duties (SDSoD) Two
distinct conflicting roles cannot be activated for one
and the same user (although they can be assigned to
one and the same user).

���� ���� �

����� �� � � ������� � � �
��
 � �� �� �� �

���� ���
�� ��� � � �� ���
�� ��� ���

Object-based Dynamic Separation of Duty (ObjDSoD)
For a given object, a user may perform at most one
operation on it.

Note that while the policies discussed so far can also
be formalized in ordinary RBAC, the present policy
cannot: it inherently needs the execution predicate (cf.
the discussion in section 2).

���� ��	���� �

��� � �
��
� ��� ��� � ������ ��	 � ��	��� �

�� �� ��� � ������� ��� ��	��
�������� ���� ��	��

This also is the policy needed for the invoice example
mentioned in section 2.

Operational Dynamic Separation of Duty (OpDSoD)
The roles active for (and not just assigned to) a user
are not allowed to perform all the operations of �����

(if more than one), regardless of the target object.
Again, we have found a first-order equivalent to the
second-order description in [10].

���� ������� �

������� ��� � ����� � ��� �� ���� �
�� � �
��
 � ��� � ����� �

�� � �������� ��	 � ��	��� �

��� ���
�� ��� � � ������� ��� ��	�� �

History-Based Dynamic Separation of Duty (HDSoD)
One and the same user cannot perform all the opera-
tions in ����� on the same object of ��	���. This
is another policy that cannot be expressed in RBAC
without the execution predicate.

���� ������

������� ��� � ����� � ��� �� ���� �
�� � �
��
� � � �������� ��	 � ��	��� �

��� � ����� � �������� ��� ��	� �

5. Temporal-logic RBAC

The approach of the previous section has two shortcom-
ings. Firstly, it is not possible to talk about the order of ex-
ecutions. For example, a supervisor should authorize pay-
ment only after the invoice has been entered and verified.
Secondly, separation of duties is only formulated in terms
of actual executions, but not in terms of authorization. That
is, actual execution of operations is not only constrained by
authorization, but also by the security policy. The approach

5

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

in [10] has the same drawback. We propose instead to let
the policy influence the authorization directly, and the ac-
tual execution only indirectly via the authorization.

We now introduce temporal RBAC as a formalism that
combines RBAC with states. This allows for talking about
things such as the execution history or order of execu-
tions, as in [10], while still being much simpler than
[10]. Temporal-logic RBAC is based on temporal first-order
logic, a logic that has been intensively studied in the litera-
ture [12, 13] and comes with standard tools, e.g. [11].

A temporal first-order signature consists of a set of sorts,
a set of function symbols and a set of predicate symbols
(each symbol coming with a string of argument sorts and,
for function symbols, a result sort). Function and predi-
cate symbols are partitioned into rigid and flexible symbols:
the former do not change over time, while the latter may
vary. Models live over discrete time, indexed by the nat-
ural numbers as time steps. They interpret the sorts with
(time-independent) carrier sets, rigid function and predicate
symbols with time-independent functions and predicates of
appropriate types, and flexible function and predicate sym-
bols with families of functions and predicates, where the
families are indexed by natural numbers.

Sentences are the usual first-order sentences built from
equations, predicate applications and logical connectives
and quantifiers �, �. Additionally, we have the modalities
� (always in the future), � (sometimes in the future) and
� (in the next step). The corresponding past modalities are
�- , �- and�- . Satisfaction is defined inductively for a given
time step, where the modalities allow referring to other time
steps. A sentence is satisfied in a model if it is satisfied in
the time step zero.

In Fig. 6, we extend the specification of Fig. 3 to the
temporal case. The function ���� and the static predicate
���� (applicable to roles) are rigid (i.e. do not depend on
the state), while the dynamic predicate ���� (applicable to
users), as well as the predicates ����	� �
 and ���� are flex-
ible (i.e. do depend on the state). Hence, ���� now traces
the operations performed: �������
��
��� means that ses-
sion � executes operation
� on object
�� in the present
(implicit) state. The flexible ���� for users expresses which
operation the user is authorized to perform; indeed, this de-
pends both on the static authorizations of the user’s roles
as well as on dynamic security policies such as SOD. The
axioms of the specification constrain the user behaviour as
expressed by the predicates ����	� �
 and ����: their hold-
ing must imply the holding of appropriate role assignment
and authorization predicates. Also, the flexible authoriza-
tion predicate ���� is constrained, and it is expected that
domain-specific security policies like SOD, when added
to the specification, constrain ���� even further (cf. the
next section). Once this is done, it might be useful to add
a non-monotonic “closed world assumption” stating that

spec TEMPORALRBAC =
sorts �������������� ���	�� �
����
���� �
����
�

rigid op ���� � �������� � ����� �
rigid pred ��
� � ��	�� �
����
���� �
����
�

flexible preds ��������
� � ����� ���	�� �
��
� � ����� �
����
�����
����
� �
��
��� �� � ��	�� � �������� �

��� � � �������� �
����
���� �
����
�

forall � � � �	��� � � �������� �
�� �
����
����� ��� �
����
�

� ����� ��
��� �� ���
������� ��������
� ��

� ����
���� ��� ��� � �
�� � �������� � � � ��	�� � ������� � �

�� ��
��� �� � � ��
��� � ��� ��� ��

� ����� ��� � ��� ��� � �
��
���������� ��� ��� ��

end

spec RICHTEMPORALRBAC = TEMPORALRBAC
then
flexible preds ��
��� ��� � � �	�������� �

��� � � ����� �
����
���� �
����
�

forall � � � �	��� � � ����� �
�� �
����
����� ��� �
����
�

� ��� ��
��� ��� � �

�� � �������� � ������� � �

� � ��
��� �� ��

� ����� ���� ��� ��� � �
�� � �������� � ������� � �

� ������ � ��� ��� ��
end

Figure 6. Temporal-logic RBAC, formalized
within temporal first-order logic.

6

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

���� holds as much as possible without sacrificing the con-
straints. While this in general would go beyond temporal
first-order logic, for specific policies, it does not.

6. Separation of duty in Temporal-logic RBAC

We can now reformulate some security policies from
Section 4 for the state-based case. Besides inserting the ap-
propriate temporal modalities, we also have replaced ����

with ���� at several places.

Dynamic Separation of Duties (DSoD)

������	� �

��
��
� � � ������� � � �
�

 �
� ��
� �

���
� ������ �	
 � �
� ������ �	
 ���

Object-based Dynamic Separation of Duty (ObjDSoD)
We now can reformulate Object-based Dynamic Sep-
aration of Duty (ObjDSoD) in terms of authorization,
not just execution:

���� �����	� �

��� � �
�

� 	�� 	�� � ������ 	�� � ������ �

��	� �� 	�� � ������� 	�� 	����
��������� 	��� 	�����

Operational Dynamic Separation of Duty (OpDSoD)

���� �����	� �

���	��� 	�� � ����� � 	�� �� 	��� �
�� � �
�

 � �	� � ����� �

�
 � �	������ 	�� � ������ �

� ��
 ������ �	
 � � �����
� 	�� 	���� �

History-Based Dynamic Separation of Duty (HDSoD)

���� ���	� �

���� � �
�

� 	�� � ������� 	� � ����� �

�� ��	�� � ����� � 	�� �� 	��

�- ������� 	��� 	����
� �������� 	�� 	��� � �

7. The Nash and Poland Example in Temporal-
logic RBAC

The invoice example can now be refined such that a cer-
tain order of execution of the operations is imposed (cf.
Fig. 7).

The axioms state that a ����	
 operation can only hap-
pen after an ����
 operation, and an ����	
��� operation
can only happen after a ����	
 operation. Thus we have en-
forced ObjDSoD and the consecutive execution of the given
operations in the desired chronological order (enter, verify,
authorize) by the means of our logic. From this example we
see that sometimes the greater expressiveness of temporal-
logic RBAC is needed.

spec INVOICE = TEMPORALRBAC then
rigid ops ����� �
Æ��� ����������� � � �����

����� � ����	
 � ��������� �
���������

forall � � ����� � ��� � ��� �
����������
������ ��
�����

� ���������� � ����� � ��������
� �����
Æ��� � ����� � ��������
� ��������������� � ����� � ��������
� �����
Æ��� � ����	
 � ��������
� ��������������� � ����	
 � ��������
� ��������������� � ���������� ��������
� ����� �� ��� � ������� ��� � ��������

� ��������� ��� � ���������

� ��������� ����	
 � ��������
� �� � �������� �
�- �- ��� ��� � ����� � ������ ���

� ��������� ���������� ������ ��
� �� � �������� �
�- �- ��� ��� � ����	
 � ���������

end

Figure 7. The invoice example with execution
orders specified.

8. Conclusion

We have argued that the standard formalisms for role-
based access control (RBAC) are not adequate to express re-
alistic dynamic separation of duty (SOD) policies. The for-
malisms proposed in the literature [10] that can handle this
properly add considerable complexity to the RBAC model.
We have shown how to eat the cake and have it, too: with a
rather simple extension, many realistic SOD policies can be
expressed. In a first step, we have added an execution pred-
icate to the RBAC model. This uses standard many-sorted
first-order logic as background formalism, easing the formal
verification of systems using standard tools. However, for
realistic practical examples, often the order of executions is
crucial. Here, temporal logic can be used. We show how to
formulate dynamic separation of duties with temporal logic
and illustrate this with an example coming from a standard
practical application. We claim that our formalization is the
first one that is both adequate to the problem domain and
simple in the technical details.

This simplicity should also ease the use of standard tools,
as e.g. the Stanford Temporal Prover STeP ([11]). We in-
tend to use this tool for a task that surprisingly has not been
tackled so far to our knowledge: the verification of algo-
rithms against dynamic separation of duty security policies.

7

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

References

[1] G.-J. Ahn. The RCL 2000 language for specifying role-
based authorization constraints. PhD thesis, George Mason
University, Fairfax, Virginia, 1999.

[2] G.-J. Ahn and R. Sandhu. Role-based authorization con-
straints specification. ACM Transactions on Information and
System Security, 3(4):207–226, Nov. 2000.

[3] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner,
P. D. Mosses, D. Sannella, and A. Tarlecki. CASL: the Com-
mon Algebraic Specification Language. Theoret. Comput.
Sci., 286:153–196, 2002.

[4] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A tempo-
ral role-based access control model. ACM Transactions on
Information and System Security, 4(3):191–223, Aug. 2001.

[5] A. D. Brucker, F. Rittinger, and B. Wolff. The CVS-
server case study: A formalized security architecture. In
D. Haneberg, G. Schellhorn, and W. Reif, editors, FM-
TOOLS 2002, number 2002–11 in Technical Report, pages
47–52. Augsburg, July 2002.

[6] D. D. Clark and D. R. Wilson. A comparison of commercial
and military computer security policies. Proceedings of the
1987 IEEE Symposium on Security and Privacy, pages 184–
194, 1987.

[7] C. Eckert. IT-Sicherheit: Konzepte, Verfahren, Protokolle.
R. Oldenbourg Verlag, 2001.

[8] D. Ferraiolo, D. Gilbert, and N. Lynch. An examination of
federal and commercial access control policy needs. In Proc.
of the NIST-NCSC Nat. (U.S.) Comp. Security Conference,
pages 107–116, 1993.

[9] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramoli. Proposed NIST standard for role-based ac-
cess control. ACM Transactions on Information and System
Security, 4(3):224–274, 2001.

[10] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo. On the formal
definition of separation-of-duty policies and their composi-
tion. In 1998 IEEE Symposium on Security and Privacy (SSP
’98), pages 172–185, Washington - Brussels - Tokyo, May
1998. IEEE.

[11] Z. Manna, N. Bjørner, A. Browne, E. Chang, M. Colón,
L. de Alfaro, H. Devarajan, A. Kapur, J. Lee, H. Sipma, and
T. E. Uribe. STeP: The stanford temporal prover. In P. D.
Mosses, M. Nielsen, and M. I. Schwartzbach, editors, TAP-
SOFT ’95: Theory and Practice of Software Development,
volume 915 of Lecture Notes in Computer Science, pages
793–794. Springer-Verlag, 1995.

[12] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems, Specification. Springer-Verlag,
1992.

[13] Z. Manna and A. Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer-Verlag, New York, 1995.

[14] K. Meinke and J. V. T. (eds.). Many-sorted logic and its
applications. Wiley, Chichester, 1993.

[15] M. J. Nash and K. R. Poland. Some conundrums concerning
separation of duty. In Proc. IEEE Symposium on Research
in Security and Privacy, pages 201–207, 1990.

[16] M. Nyanchama and S. Osborn. The role graph model and
conflict of interest. ACM Transactions on Information and
System Security, 2(1):3–33, Feb. 1999.

[17] R. Sandhu. Transaction control expressions for separation
of duties. Fourth Aerospace Computer Security Applications
Conference, Orlando, pages 282–286, 1988.

[18] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. Computer,
29(2):38–47, Feb. 1996.

[19] R. Simon and M. Zurko. Separation of duty in role-based en-
vironments. In 10th IEEE Computer Security Foundations
Workshop (CSFW ’97), pages 183–194, Washington - Brus-
sels - Tokyo, June 1997. IEEE.

[20] M. E. Zurko, R. Simon, and T. Sanfilippo. A user-centered,
modular authorization service built on an RBAC foundation.
In Proceedings of the IEEE Symposium on Research in Se-
curity and Privacy, pages 57–71, Oakland, CA, May 1999.
IEEE Computer Society, Technical Committee on Security
and Privacy, IEEE Computer Society Press.

8

Proceedings of the 10th International Symposium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic (TIME-ICTL’03) 1530-1311/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

