IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003 841

Integrated Access Control and
Intrusion Detection for Web Servers

Tatyana Ryutov, Clifford Neuman, Senior Member, IEEE, Dongho Kim, Member, IEEE, and Li Zhou

Abstract—Current intrusion detection systems work in isolation from access control for the application the systems aim to protect. The
lack of coordination and interoperation between these components prevents detecting and responding to ongoing attacks in real-time
before they cause damage. To address this, we apply dynamic authorization techniques to support fine-grained access control and
application level intrusion detection and response capabilities. This paper describes our experience with integration of the Generic

Authorization and Access Control APl (GAA-API) to provide dynamic intrusion detection and response for the Apache Web server. The
GAA-API is a generic interface which may be used to enable such dynamic authorization and intrusion response capabilities for many

applications.

Index Terms—Access control, authorization, security policy, intrusion detection, Apache Web server.

1 INTRODUCTION AND MOTIVATION

WEB servers continue to be attractive targets for attackers
seeking to steal or destroy data, deny user access, or
embarrass organizations by changing Web site contents. The
Web servers are an easy target for outside intruders because
the servers must be publicly available around the clock. In
order to penetrate their targets, attackers may exploit well-
known service vulnerabilities. A Web server can be subverted
through vulnerable CGI scripts, which may be exploited by
metacharacters or buffer overflow attacks. These vulnerabil-
ities may be related to the default installation of the server, or
may be introduced by careless writing of custom scripts.

Web servers are also popular targets for Denial of Service
(DoS) attacks. An attacker sends a stream of connection
requests to a server in an attempt to crash or slow down the
service. Launching a DoS attack against a Web server can be
accomplished in many ways, including ill-formed HTTP
requests (e.g., alarge number of HTTP headers). As the server
tries to process such requests, it slows down and becomes
unable to process other requests. In addition, Web servers
exhibit susceptibility to password guessing attacks.

To address these risks, Web servers require increased
security protection. Effective system security starts with
security policies that are supported by an access control
mechanism. The access control policy to be enforced should
depend on the current state of the system (e.g., time of day,
system load, or system threat level). More restrictive
organizational policies may be enforced after hours when
the system is busy or if suspicious activity has been
detected.

Unfortunately, many Web servers (e.g., Apache and IIS)
support only limited identity and host-based policies that
deny/allow access to protected resources. The policies are
checked only when an access request is received to
determine whether the request should be permitted or

o The authors are with USC Information Sciences Institute, 4676 Admiralty
Way, Suite 1001, Marina del Rey, CA 90292.
E-mail: {tryutov, ben, dongho, zhou |@isi.edu.

Manuscript received 24 Feb. 2003; accepted 15 May 2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 118642.

1045-9219/03/$17.00 © 2003 |IEEE

forbidden. These policies do not support observing and
reporting suspicious activity (e.g., embedding hexadecimal
characters in a query) and modifying system protection as a
result.

Thus, the security policies must not only specify
legitimate user privileges, but also aid in the detection of
threats and adapt their behavior based on perceived system
threat conditions. Even a single instance of a request for a
vulnerable CGI script or malformed request should be
reported immediately and countermeasures should be
applied. Such countermeasures may include:

e generating audit records;

e notifying network servers that are monitoring
security relevant events in the system;

e tightening local policies (e.g., restricting access to
local users only or requesting extra credentials); and

e modifying overall system protection. Examples
include terminating the session, logging the user
off the system, disabling local account or blocking
connections from particular parts of the network,
or stopping selected services (e.g., disable ssh
connections).

These actions would be followed by an alert to the
security administrator, who can then assess the situation
and take the appropriate corrective actions. This step is
important since an automated response to attacks can be
used by an intruder in order to stage a DoS attack (the
intruder could have impersonated a host or a user).

Traditional access control mechanisms were not de-
signed to aid the detection of threats or to adjust their
behavior based on perceived threat conditions. Common
countermeasures to Web server threats depend on separate
components like firewalls, Intrusion Detection Systems
(IDSs), and code integrity checkers. While these compo-
nents are useful in detecting some kinds of attacks, they do
not fully address a Web server’s security needs. For
example, firewalls can deny access to unauthorized net-
work connections; however, they cannot stop attacks
coming in via authorized ports. In the general case, IDSs
provide only incomplete coverage, leaving sophisticated
attacks undetected. Other disadvantages include a large

Published by the IEEE Computer Society

842 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.9, SEPTEMBER 2003

number of false positives and the inability to preemptively
respond to attacks. Integrity checkers can detect unauthor-
ized changes to files on a Web site, but only after the
damage has been done.

Motivated by the multitude of Web server vulnerabilities
and generally unsatisfactory server protection, we propose
an integrated approach to Web server security—the Generic
Authorization and Access-control API (GAA-API) that
supports fine-grained access control and application level
intrusion detection and response.

The API evaluates HTTP requests and determines
whether the requests are allowed and if they represent a
threat according to a policy. Our approach differs from
other work done in this area by supporting access control
policies extended with the capability to identify intrusions
and respond to the intrusions in real-time. The policy
enforcement takes three phases:

1. Before the requested operation (e.g., display an
HTML file or run a CGI program) starts—to decide
whether this operation is authorized.

2. During the execution of the authorized operation—to
detect malicious behavior in real-time (e.g., a process
consumes excessive system resources).

3. After the operation is completed—to activate post
execution actions, such as logging and notification
whether the operation succeeds or fails (e.g., alerting
that a particular critical file was written can trigger a
process to check the contents of the file).

By being integrated with the Web server and having the
ability to control the three processing steps of the requested
operation, the GAA-API can respond to suspected intrusion
in real-time before it causes damage, whether it is site
defacement, data theft, or a DoS attack.

A Web server has to be modified in order to utilize the
GAA-APIL However, once the relatively easy integration is
completed, it becomes possible to handle access control
decisions and application level intrusion detection simulta-
neously. Furthermore, since the GAA-API is a generic tool,
it can be used by a number of different applications with no
modifications to the API code. In this paper, we focus on the
Web server. However, the API can provide enhanced
security for applications with different security require-
ments. We have integrated the GAA-API with the Apache
Web server, SOCKS5, sshd, and FreeS/WAN IPsec for
Linux.

2 PoLicy REPRESENTATION

The Extended Access Control List (EACL) is a simple
language that we implemented to describe security policies
that govern access to protected resources and identify
threats that may occur within application and specify
intrusion response actions [5]. An EACL is associated with
an object to be protected. It specifies positive and negative
access rights with an optional set of associated conditions
that describe the context in which each access right is
granted or denied.

An EACL describes more than one set of disjoint policies.
The policy evaluation mechanism is extended with the
ability to read and write system state. The implementation
is based on conditions that provide support for monitoring
and updating internal system structures and their runtime
behaviors.

A condition may either explicitly list the value of a
constraint or specify where the value can be obtained at
runtime. The latter allows for adaptive constraint specifica-
tion since allowable times, locations, and thresholds can
change in the event of possible security attacks. The value of
condition can be supplied by other services, e.g., an IDS. All
conditions are classified as:

e Preconditions specify what must be true in order to
grant the request (e.g., access identity, time, location,
and system threat level).

e Request-result conditions must be activated
whether the authorization request is granted or
whether the request is denied (e.g., audit, notifica-
tion, and threshold).

e Midconditions specify what must be true during the
execution of the requested operation (e.g., a CPU
usage threshold that must hold during the operation
execution).

e Postconditions are used to activate post execution
actions, such as logging and notification whether the
operation succeeds or fails.

A condition block defines a conjunction of a totally
ordered set of conditions. Conditions are evaluated in the
order they appear within a condition block. An EACL entry
consists of a positive or negative access right and four
optional condition blocks: a set of preconditions, a set of
request-result conditions, a set of midconditions, and a set
of postconditions. An EACL consists of an ordered set of
disjunctive EACL entries. An EACL representation sup-
ports disjunction and conjunction of conditions to activate
different control modes. A transition between the disjoint
EACL entries is regulated automatically by reading the
system state (e.g., time of day or the system threat level).

In the current framework, the evaluation of entries within
an EACL and evaluation of conditions within an EACL entry
is totally ordered. Evaluation of an EACL starts from the first
to the last in the list of EACL entries. The resolution of
inconsistent authorizations is based on ordering. The entries
which have already been examined take precedence over new
entries. The order has to be assessed before EACL evaluation
starts. Determining the evaluation order is currently done by
apolicy officer. We recognize that the function of defining the
order of EACL entries and conditions within an entry can be
best served by an automated tool to ensure policy correctness
and consistency and to ease the policy specification burden
on the policy officer. We plan to design and implement such
tool in the future. The GAA-API provides a general-purpose
execution environment in which EACLs are evaluated.

2.1 Policy Composition

Policy composition is a process of relating separately
specified policies. Our framework supports system-wide
and local policies. This separation is useful for efficient policy
management. Instead of repeating policies that apply to all
applications in individual application policies, we define
these policies as a separate system-wide policy that is applied
globally and is consulted on all the accesses to all applications.
Local policies allow users and applications to define their own
policy in addition to the global one. The composed policy is
constructed by merging the system-wide and local policies.
First, system-wide policies are retrieved and placed at the
beginning of the list of policies. Then, the local policies are
retrieved and added to the list. Thus, system-wide policies
implicitly have higher priority than the local policies.

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS

843

operation control
reconfigure
Application
access
reguest § g
authorized staue . ~
operation (8 o s g ©
L | O o 5
start i £
status < 7] Q = c
tn kT ™
o Q M —
> >
< 3]
q o
finish
response
attack 3ignatures \recommendations
Security pre-conditions | pre-, rgquest-rlgsult- and request-result-,lm\d-
mid-conditions and post-conditions
Database

e ——

Fig. 1. Generic Intrusion Detection and response.

A system-wide policy specifies a composition mode that
describes how local policies are to be composed with the
system-wide policy. The framework supports three compo-
sition modes:

e Expand. A system-wide policy broadens the access
rights beyond those granted by local policies. It is the
equivalent of a disjunction of the rights. The access is
allowed if either the system-wide or the local policy
allows the access. This is useful to ensure that a
request permitted by the system-wide policy cannot
fail due to access rejection at the local level.
Narrow. A system-wide policy narrows the access
rights so that objects cannot be accessed under
particular conditions regardless of the local policies.
The policy that controls access to an object may have
mandatory and discretionary components. Generally,
mandatory policy is set by the domain administrator,
while discretionary policy is set by individuals or
applications. The mandatory policies must always
hold. The discretionary policies must be satisfied in
addition to the mandatory policies. Thus, the resulting
policy represents the conjunction of the mandatory
and discretionary policies.

Stop. If a system-wide policy exists, that policy is
applied and local policies are ignored. An adminis-
trator may require complete overriding of the local
policies with the system-wide policies. This is useful
in order to react quickly to an attack. One might use
the stop mode to shut down certain component
systems. This is also useful when the administrator
wants to, for example, allow access to a document
only to himself. If he specifies a policy using the
expand mode, then additional access can be granted
at the local level. If he uses narrow mode, the local
policies could add additional restrictions that can
deny the access.

To evaluate several separately specified local (or system-
wide) policies, we take a conjunction of the policies.

EACL

3 GENERIC APPLICATION LEVEL INTRUSION
DETECTION FRAMEWORK

The system detects intrusions by comparing access request
patterns against the security policies and taking some
actions if the request is judged to be suspicious. Because this
applies to any application, this portion of the system can be
fairly generic and used for a number of applications.
However, the database of known intrusion scenarios, attack
patterns, and responses should be customized for different
applications. The customization is done through specifica-
tion of policies expressed in EACL format. Fig. 1 shows a
high-level view of our framework.

The access control module mediates access requests
generated by applications and forwarded to the GAA-API
for approval. The detector examines access requests and
determines the presence of an attack based on the policies.
If the detector determines the request to be suspicious, the
countermeasure handler will take the corrective actions to
prevent malicious actions from being executed. The
Security Database provides information collected from
various sources including: user activity, misuse signatures
and intrusion scenarios, application audit records, etc. The
Security policy (EACL) contains:

e DPositive and negative authorizations checked by the
access control module.

The information to be analyzed by the detector (e.g.,
database of attacks, user activity profiles, parameters
of an access request and information obtained from
monitoring the execution of the requested operation,
and a status (success or failure) of the completed
operation).

Actions to be performed by the countermeasure
handler for incident response—the system may deny
requested access, affect execution of the requested
operation (e.g., suspend or kill a process), generate
alarms and audit records, update firewall rules, and
SO on.

844 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.9, SEPTEMBER 2003

4 GAA-API AND IDS INTERACTIONS

The data extracted from an application at the access control
time can be supplemented with data from a network and
host-based IDSs to detect attacks not visible at the
application level and reduce the false alarm rate. The
current GAA-API interaction with IDS is limited to
determining the current system threat profile and adapting
the security policy to respond to changing security
requirements. Our next task is to support closer interaction
between the GAA-API and different IDSs.

41 “GAA-API to IDS” Interactions
Here are the kinds of information that the GAA-API can
report to an IDS:

1. Ill-formed access requests. Because the GAA-API
processes access control requests by applications, the
API can apply application-level knowledge to deter-
mine whether the request is properly formed. Ill-
formed access requests may signal an attack. For
example, consider an application thatissues queries to
a database. It is assumed that the application makes
bug-free database queries. If there are errors in the
access request, it may indicate that someone has
compromised the application server and is perform-
ing ad hoc queries against the database.

2. Accesses requests with abnormal parameters. The
API can report accesses requests with parameters
that violate site policy or are abnormally large.

3. Denied access. The API can report even a single
instance of access denial to sensitive system objects.
The API can report attempts to access nonexistent
hosts on a network, which could indicate network
scanning or mapping activity and attempts to use
critical commands.

4. Exceeding thresholds. Examples of types of events
that can be controlled by the threshold detectors and
reported by the GAA-API include the number of
failed login attempts within a given period of time.

5. Incidents. The GAA-API can report detected appli-
cation-level attacks.

6. Suspicious application behavior. The API can
report unusual application behavior such as read
only application creating files.

7. Legitimate activity. The GAA-API can communicate
access request information to IDS. This information
can be used to derive profiles that describe the
typical behavior of users working with different
applications. An automatically developed profile can
be created by an IDS module that collects and
processes the information about granted access
rights over time and forms a statistically valid
sample of user behavior that can be used for
anomaly detection.

4.2 “IDS to GAA-API” Interactions

The GAA-API can request a network-based IDS to report,
for example, indications of address spoofing. This informa-
tion can be used in addition to the application-level attack
signatures to further reduce the false positive rate and avoid
DoS attacks. This is particularly important for applying
proactive countermeasures, such as updating firewall rules
and dropping connections.

The API can request information for adjusting policies,
such as values for thresholds, times, and locations. When
implementing a threshold detector, the obvious difficulty is
choosing the threshold number and a time interval of the
analysis for a particular event. The values may depend on
many factors and can be determined by a host-based IDS
and communicated to the GAA-APL

5 GAA-APACHE INTEGRATION

5.1 Apache Access Control

Apache’s access control system [6] provides a method for
Web masters to allow or deny access to certain URL paths,
files, or directories. Access can be controlled by requiring
username and password information or by restricting the
originating IP address of the client request.

Access control is usually confined to specific directories
of the document tree. When processing client’s request to
access a document, Apache looks for an access control file
called .htaccess in every directory of the path to the
document.

Here is a sample .htaccess file:

Order Deny, Allow

Deny from All

Allow from 10.0.0.0/255.0.0.0

AuthType Basic

AuthUserFile /usr/local/apache2/.htpasswd-isi-staff
Require valid-user

Satisfy All

The “Allow from 10.0.0.0/255.0.0.0" allows
connections only from hosts within the specified IP range.
All other hosts will get a “Permission Denied” message. The
“Require valid-user” requires that the user enter a
username and password. These username/password pairs
are stored in a separate file specified by the AuthUserFile
directive.

After receiving an access request, the Apache core
modules call the check_dir_access function in mod_access or
the authenticate_basic_user, check_user_access routines in mod_
auth to check access control policies. A structured parameter
request_recis provided to the routines, containing information
about the request. Finally, every routine returns the decision
to the core modules. Three output values are defined:
HTTP_OK—the request is granted; HTTP_DECLINED—the
request is rejected; and HTTP_AUTHREQUIRED—user
authentication is required to make further decision.

5.2 Adding GAA-API to Enhance the Access Control
of the Apache Server
The preexisting version of Apache does not support flexible
fine-grained policies that can control not only which users
or groups and from which locations are allowed access, but
also support other conditions, including time, system load,
or system treat level. Within the Apache configuration file,
the directive Satisfy All specifies that both of the
constraints on IP address and user authentication should
be satisfied to authorize an access request. Satisfy Any
means that the request will be granted if either of the two
constraints is met. However, these directives cannot express
a policy with logical relations among three or more
constraints. With our integration of the GAA-API, these

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS 845

|System and Local
configuration

—~
per request phases

System State

Syste e s .
kpfui? ¥ 1. Initialization phase
request \
] 2. Access Control Phase
2 Local L
> Palicy I_ 2.a Build list of EACLs Ll
3
2.b Build list of rights
=
2.t Check authorization
Q
ﬁ 2.d Translate 8m
(3]
[} HTTP_OK,
< HTTP_DECLINED, .
HTTP_AUTHREQUIRED 3. Execution Control
Sm
4. Post-execution Actions
Sp
’ GAA-API
[

Fig. 2. GAA-Apache integration.

limitations are eliminated. Here are the major advantages of
the GAA-Apache integration:

o The GAA-API standard libraries provide routines
that evaluate conditions on time, location, token-
matching, etc. They can be used to check the access
control parameters for Apache. For instance, server,
client, and proxy IP address can be evaluated by the
location routine. Client request time, creation time,
and last modified time of requested resource can be
evaluated by the time routine. Protocol version
number and browser type can be evaluated by the
token-matching routine.

e Besides making decisions of whether a request is
accepted or rejected, the GAA-API libraries provide
routines that can execute certain actions, such as
logging information, notifying the administrator, etc.
Furthermore, the routines can be activated whether
the request succeeds or fails (when defined as
request-result conditions) or whether the requested
operation succeeds or fails (when defined as post-
conditions). Thus, the GAA-API supports fine-
tuning of the notification and audit services.

o The GAA-API is structured to support the addition
of modules for evaluation of new conditions. Web
masters can write their own routines to evaluate
conditions or execute actions and register them with
the GAA-APIL Moreover, the routines can be loaded
dynamically so that one does not need to recompile
the whole Apache package to add new routines.

e The semantics of EACL format supported by the
GAA-API can represent all logical combinations of
security constraints.

o The GAA-API supports adaptive security policies,
which detect security breaches and respond to attacks
by modifying security measures automatically.

5.3 GAA-Apache Access Control
The GAA-API is integrated into Apache by modifying the

check_dir_access function. The “glue” code extracts the

information about requests from the Apache core modules,
initializes the GAA-AP], calls the API functions to evaluate
policies and, finally, returns access control decision and
status values to the modules. The GAA-Apache integration
is shown in Fig. 2.

The GAA-API makes use of system-wide and local
configuration and policy files. The configuration files list
routines and parameters for evaluating conditions specified
in the policy files. The system-wide policy applies to all
applications in the system. The local policy file describes
security requirements of Apache. The GAA-API returns
three status values (GAA_YES/GAA_NO/GAA_MAYBE) to de-
scribe policy enforcement process:

1. Authorization status Sa indicates whether the
request is authorized (GAA_YES), not authorized
(GAA_NO), or uncertain (GAA_MAYBE).

2. Midcondition enforcement status Sm indicates the
evaluation status of the midconditions.

3. Postcondition enforcement status Sp indicates the
evaluation status of the postconditions.

The status values are obtained during the evaluation of
conditions in the relevant EACL entries: GAA_YES—all
conditions are met; Gaa_No—at least one of the conditions
fails; caAa_MAYBE—none of the conditions fail, but there is at
least one condition that is left unevaluated because the
corresponding condition evaluation function is not regis-
tered with the APIL. Here are the three policy evaluation
phases:

1. Initialization phase. When the server daemon of
Apache starts, the GAA-API is initialized by calling
gaa_initialze and gaa_new_sc to extract and register
condition evaluation and policy retrieval routines
from the system and local configuration files, fetch
the system policy file, and generate internal struc-
tures for later use.

2. The access control phase starts with receiving a
request to access an object (e.g.,, HTML file).

846 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.9, SEPTEMBER 2003

a. The gaa_get_object_policy_info function is called
to obtain the security policies associated with
the requested object. The function reads the
system-wide policy file, converts it to the
internal EACL representation, and places it at
the beginning of the list of EACLs. Next, the
function retrieves and translates the local policy
file and adds it to the list. The system and local
policies are composed as described in Section 2.

b. The request is converted into a list of requested
rights. The context information (e.g., system
configuration, server status, client status, and
the details of access request) that may be used
by the condition evaluation routines is extracted
from the request_rec structure and is added to
requested right structure as a list of parameters.

c. Next, the gaa_check_authorization function is
called to check whether the requested right is
authorized by the ordered list of EACLs. This
function finds the EACL entries where the
requested right appears and calls the registered
routines to evaluate pre and request-result
conditions in the entries. If there are no
preconditions, the authorization status is set to
GAA_YES. Otherwise, the preconditions are eval-
uated and the result is stored in the authoriza-
tion status Sa. If the request-result conditions are
present in the entry, the conditions are evalu-
ated and the intermediate result is calculated.
The conjunction of the intermediate result and
Sa is stored in the authorization status Sa.

d. Finally, the status Sa is translated to the Apache
format and is passed to the Apache core modules
as a return value of the check_dir_access function.
GAA_YES is translated to HTTP_OK (Apache can
grant the request). GAA_NO is translated to
HTTP_DECLINED (Apache should reject the re-
quest). In some cases, the GAA_MAYBE is trans-
lated to HTTP_AUTHREQUIRED, in other cases, to
HTTP_DECLINED.

In particular, the Gaa_MAYBE is used to enforce adaptive
redirection policies. Apache may use the redirection for
minimizing the network delay, load balancing, or security
reason (e.g., redirect to a replica server that is closest to the
client in terms of network distance). The redirection policies
encoded in the preconditions specify, characteristics of a
client, current system state, and URL that must serve the
client. With this setup, the GAA-API first checks the
preconditions that encode client’s information and system
state. The condition of type pre_cond_redirect encodes the
URL and is returned unevaluated. When Apache receives
the HTTP_AUTHREQUIRED, the server checks whether there
is only one unevaluated condition of the type pre_cond_re-
direct and creates a redirected request using the URL from
the condition value.

3. The execution control phase consists of starting
the operation execution process and calling the
gaa_execution_control function, which checks if the
midconditions associated with the granted access
right are met. The result is returned in Sm. The
implementation of this phase has not been com-
pleted yet.

4. During the postexecution action phase, the gaa_
post_execution_actions function is called to enforce
the postconditions associated with the granted
rights. This function performs policy enforcement
after the operation completes by executing actions
such as notifying by email, modifying system
variables, writing log file, etc. The operation
execution status (indicating whether the operation
succeeded/failed) is passed to the gaa_post_execu-
tion_actions. If no postconditions are found,
GAA_YES is returned; otherwise, the postconditions
are evaluated and the result is returned in Sp.

6 DEPLOYMENTS

In this section, we describe several examples to illustrate
how our framework can be deployed to enable fine-grained
access control and intrusion detection and response.

6.1 Network Lockdown

We first show how our system adapts the applied
authentication policies to require more information from a
user when system threat level changes. Consider an
organization with the mixed access to Web services. Access
to some Web resources require user authentication, some do
not. An IDS supplies a system threat level. For example, low
threat level means normal system operational state,
medium threat level indicates suspicious behavior, and
high threat level means that the system is under attack.
Policy: When system threat level is higher than low, lock down
the system and require user authentication for all accesses within
the network.

System-wide policy:
eacl mode 1 # composition mode narrow
EACL entry 1
neg_access_right * *

pre_cond_system_threat_level local = high

Local policy:

EACL entry 1
pos_access_right apache
pre_cond_system_threat_level local > low

pre_cond_accessID_USER apache

The system-wide policy specifies the mandatory require-
ment: “No access is allowed when system threat level is
high” that cannot be bypassed by a local policy. The local
policy specifies that all Apache accesses have to be
authenticated if the system threat level is higher than
“low.” For example, if password authentication is required,
a user will be asked for a username and a password.

6.2 Application-Level Intrusion Detection

We next show how the system supports prevention of
penetration and/or surveillance attacks by detecting a
CGI script abuse.

System-wide policy:
eacl mode 1 # composition mode narrow
EACL entry 1

neg_access_right * *

pre_cond_accessID_GROUP local BadGuys

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS 847

Local policy:

EACL entry 1

neg_access_right apache x*

pre_cond regex gnu "' % phf ¥ ' xtest — cgir’ "

rr_cond notify local on:failure/email:

sysadmin/info : CGIexploit

rr_cond update_log local on:failure/BadGuys/info:IP

EACL entry 2

pos_access_right apache *

Entry 1 in the system-wide policy specifies the
mandatory requirement that members of the group
BadGuys are denied access. Evaluation of the precondi-
tion pre_cond_group includes reading a log file of the
suspicious IP addresses and trying to find an IP address
that matches the address from which the request was
sent. Entry 1 in the local policy contains a precondition
pre_cond_regex that examines the request for occur-
rence of regular expressions phf* and *test-cgix. If
no match is found, the GAA-API proceeds to the next
EACL entry that grants the request. If this condition is
met, the request is rejected. The rr_cond_notify
condition sends e-mail to the system administrator
reporting time, IP address, URL attempted, and a threat
type. Next, the rr_cond_update_log updates the
group BadGuys to include new suspicious IP address
from the request.

New signatures can be specified using regular expres-
sions and numeric comparison. For example, the follow-
ing precondition detects a particular DoS attack:
pre_cond_regex gnu *///////////////////* Eva-
luation of this condition includes checking the request for
presence of a large number of “/” characters that most
likely indicates an attempt to exploit a well-known
apache bug that slows down Apache and fills up the
logs fast.

The precondition pre_cond_regex gnu “*%* detects
malformed URLs (part of the URL contains the percent
character). This may indicate ongoing attack, such as
NIMDA. NIMDA exploits Microsoft IIS vulnerabilities by
sending a malformed GET request. The precondition
pre_cond_expr local > 1,000 checks that the length of
input to a CGI script is no longer than 1,000 characters. This
condition detects a buffer overflow attacks (e.g., Code Red
IIS attack).

Adding suspicious hosts to the BadGuys may allow our
system to stop attacks with unknown signatures. Often,
vulnerabilities are tested by scripts that generate a number of
requests. Each request exploits a particular bug. If the system
identifies requests from an address as matching known attack
signature, then subsequent requests from that host initiated
by the same script, which checks for vulnerabilities not yet
known, can still be blocked. Further, since this blacklist is
specified in a system-wide policy, the listis shared by many of
the hosts that improves the overall security of the system.

7 PERFORMANCE EVALUATION

The performance of GAA-APIl integrated Apache server was
evaluated by using four different types of policy files. Policy I
does not have any conditions and always grants access.

10

9

8 B
R B - ——
1 | | wCechkAuth
P | | mGetPolicy
31 | N Init

2 +— —

14— —

0

Policy | Policy Il Policy Il Policy IV

Fig. 3. Performance evaluation results.

Policy II includes simpleconditions that do not need any file
access. Policy Ill includes conditions that require reading and
writing variable files and log files. Policy IV contains more
expensive conditions that check user authentication and
perform asynchronous e-mail notification to the system
administrator. The sample policy files can be found in the
Appendix.

GAA-API function calls consist of three major phases:
1) “Initialization” phase that reads the configuration and
system policy files for GAA-API, 2) “GetPolicy” phase that
reads the local policy file associated with the object for which
the access request is submitted, and 3) “CheckAuthorization”
phase that returns authorization decision.

This experiment was conducted on a PC with an Intel
Pentium 4, 1.8GHz, running RedHat Linux 7.3. Fig. 3 shows
the result of the experiment. The values on the table are
average values of 10 runs. The entry “Apache” is the
execution time the original Apache modules incurred. The
“Overhead” percentage was calculated based on the values in
“Apache.”

As shown in the figure, “Initialization” is the most
expensive phase. However, for each GAA-Apache process,
initialization needs to be executed only once at the first time
GAA-API is called. The figure shows the overheads that
GAA-API introduces with the first request (Overhead with
Init), and the overheads for the subsequent requests in each
process (Overhead w/o Init).

The “Get Policy” phase is almost constant with low
values because it just reads the local policy files. The only
phase whose performance is affected by having different
types of policies is the “Check Authorization” phase.

From Table 1, for the first call of GAA-API in a GAA-
Apache process, GAA-API incurs an overhead of more than
400 percent because of the initialization phase. However, for
the subsequentcalls of GAA-API in the same process, GAA-
APIskips the initialization phase and significantly reduces its
overhead. For the policies with conditions that do not require
file access (e.g., Policy II), the overhead from GAA-API
function calls to the Apache Web server is lower than
20 percent. For more expensive policies with conditions that
require file access, encryption, or process forking (e.g.,
Policies Il and IV), the GAA-API’s overhead was more than
50 percent.

The sample policy files used for the evaluation are fairly
short in length, but we believe that they represent most of
the possible cases. The individual policy files cannot grow
huge because a local policy file is associated with an object
or a group of objects. This means that, even if the system-
wide policy could become complex, the performance of the
system will not degrade linearly because the system will

848 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.9, SEPTEMBER 2003

TABLE 1
Performance Evaluation Results
Policy I Policy I Policy III Policy IV
Init Phase 5.8432 ms 5.8469 ms 5.9445 ms 6.0472 ms
GetPolicy Phase | 0.0805 ms 0.0919 ms 0.0957 ms 0.1051 ms
CheckAuth 0.0241 ms 0.1332 ms 0.6401 ms 0.9731 ms
Phase
Apache 1.2348 ms 1.2779 ms 1.2960 ms 1.8570 ms *
Overhead with 481.68% 475.15% 515.46% 383.70%
Init
Overhead w/o 8.47% 17.61% 56.77% 58.06%
Init

*In Policy IV, GAA- API forks a new process that sends email asynchronously. Thus, the Apache process took around 50%

more time (1.86 ms vs. 1.25 ms on the average) to run because of the child process for e-mail running in parallel.

evaluate only the policy file that is specifically associated
with the object for which the access request is submitted.

8 RELATED WORK

AppShield [7] is a proprietary policy-based system that
protects Web servers. The AppShield intercepts and
analyzes all requests and dynamically adjusts its security
policy to prevent attackers from exploiting application-level
vulnerabilities. It uses dynamic policy not by looking for the
signatures of suspicious behavior, but by knowing the
intended behavior of the site and rejecting all other uses of
the system. Emerald architecture [2] includes a data-
collection module integrated with Apache Web server.
The module extracts the request information internal to the
Apache server and forwards it to an intrusion detection
component that analyzes HTTP traffic. Both AppShield and
Emerald systems are designed specifically for Web servers
and cannot be used for other types of applications. In
contrast, the GAA-API provides a generic policy evaluation
and an application-level intrusion detection environment
that can be used by different applications.

Almgren et. al. [1] provide an overview of the occur-
rences of Web server attacks and describe an intrusion
detection tool that analyzes the CLF logs. The tool finds and
reports intrusions by looking for attack signatures in the log
entries. However, the monitor cannot directly interact with
a Web server and, thus, cannot stop the ongoing attacks.

9 DISCUSSION

Our application-level, policy-based approach to intrusion
detection and response offers several important advantages
over traditional host and network-based approaches:

1. Customization. Instead of having an IDS look for a
restricted set of predefined signatures or time-
variant statistical profiles, this approach allows each
organization to define suspicious events in terms of
policies for accessing application-level objects. The
policies take into account the organization’s and
application’s security requirements.

2. Flexibility. Security policies supported in our system
can be defined in terms of acceptable and unaccep-
table access patterns to protected resources. For
example: A Closed World policy states that every-
thing that is not explicitly authorized is unacceptable
and may indicate suspicious behavior. It might be

possible to define a minimum set of ssh commands
that are allowed and then define the presence of all
other commands as a violation of the policy. An
Open World policy defines that everything that is
explicitly denied is unacceptable and may indicate
suspicious behavior. A Mixed World policy may
recognize some explicitly authorized access patterns
as suspicious.

Preemptive response. By being integrated with the
application and having the ability to control the
three processing steps of a requested operation, the
system can respond to suspected intrusion in real-
time. For example, the system can deny the opera-
tion, suspend the operation execution, and notify
about the success or failure of the completed
operation.

Elimination of several IDS vulnerabilities. Traditional
IDS is susceptible to desynchronization attacks since
usually the IDS does not actively participate in the
connection it monitors. With the proposed approach,
the attempts to desynchronize the Detection engine
from application will fail because the application is
able to pass information to the engine through the
GAA-APL As the system monitors events at the user
level of abstraction, it is not vulnerable to traffic
tampering attacks such as insertion and evasion. Fast
attacks on IDS (that seek to exploit application’s
vulnerability before the IDS can apply counter
measures) will not succeed because the system
processes access requests by applications, and the
application waits for the result.

Reduction of false negatives and false positives. The
advantages of looking for the attacks at the application
level include the ability to access decrypted informa-
tion about a request. A request transported to the
application through an encrypted channel is not
visible to a network based IDS. The ability to interface
with the application directly, with significant applica-
tion-specific knowledge, allows application-based
intrusion monitoring to detect suspicious behavior
due to authorized users exceeding their authorization
or exploitation of application-specific vulnerabilities.
Using this approach could potentially result in
detecting a custom attack that has never been
observed in the past, thus reducing the number of
false negatives. Another advantage is thatinformation
on how the request is handled by the server is
available at the application level (e.g., whether the

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS 849

requested file is interpreted as a CGI script or HTML
file). Both network and host-based IDSs could not
make this distinction and if configured to look for
strings matching “phf.cgi” and “test-cgi,” they may
produce false positives.

10 FuTURE WORK

To improve efficiency of the GAA-Apache integration, we
will add support for caching of the retrieved and translated
policies for later reuse by subsequent requests. We will
investigate a possibility of implementing a simple profile
building module and anomaly detector to support anomaly-
based intrusion detection in addition to the signature-based.
We plan to implement the execution control phase for
Apache. We will explore the utility of midconditions for
protection from compromised or badly written CGI scripts
processed at the server. We plan to design a policy-
controlled interface for establishing a subscription-based
communication channels to extend the GAA-API and IDSs
communication.

In this paper, we have considered simple attacks that
require a single action (malicious request) in order to
achieve the attacker’s goal. More complex and stealthy
attacks require a series of actions that constitute an attack
scenario. In order to detect such attacks, we will extend our
system with the support for attack signatures that describe a
sequence of access requests and system state conditions that
represent an attack. To implement detection of such
complex signatures, we will use hypothesis generation
techniques. In particular, we will study the application of
Bayesian methods [4] to classify observed events into attack
scenarios.

In the current framework, we assume that conditions are
evaluated consecutively and that authorization requests do
not overlap. These two assumptions enable us to concen-
trate on a single condition evaluation per each time interval
and, therefore, avoid the problem of coordination of
multiple condition evaluation processes. However, this
approach results in inefficient policy evaluation process
and leads to systems that cannot scale to large numbers of
objects. The future directions for this research include
exploring extensions to the framework to support: con-
current requests, replication of the evaluation mechanism,
concurrent evaluation of conditions within the same
request, and distributed policy enforcement. At this point,
the issues of spatial and temporal relationships among the
policy computations become critical. Policies that govern
the same object may have nontrivial interdependencies
which must be carefully analyzed and understood.

Another limitation of the current framework is reliance
on a policy administrator for defining condition evaluation
order, which is then enforced by the framework. The
limited awareness of the spatial and temporal dependencies
among security policies may cause inconsistencies and
undesirable system behavior. In many cases, administrators
may not have a clear picture of the ramifications of policy
enforcement actions; therefore, enforcing these policies
might have unexpected interactive or concurrent behavior.
Automation is essential to minimize human error, and it can
only be used safely when there is a formal model that

explicitly addresses both the spatial and the temporal
aspects of dynamic authorization. Much research has been
done in the area of integration of active mechanisms into
relational and object-oriented DBMSs. We plan to test the
applicability of methods and concepts from the field of
active database systems to develop static and dynamic
analysis techniques for adaptive policies. The reuse of
techniques developed in the database community is
necessary to apply best practices and to avoid repeating
mistakes.

Finally, in order to put the developed formalism into
practice, the researchers will implement a set of tools that
provide graphical interfaces supporting both static activities
such as:

e A specialized interactive policy analyzer/editor—a
development tool that provides compile-time exam-
ining and detection of policy rule problems. The tool
will be used to create policies with strong security
guarantees, eliminating guesswork in the design,
and deployment of dynamic authorization.

e A runtime monitor that provides runtime support
for the execution rules derived from the semantic
restrictions to maintain the policy processing auto-
matically, asynchronously, and correctly.

11 CONCLUSIONS

Traditional access control mechanisms have little ability to
support or respond to the detection of attacks. In this paper,
we presented a generic authorization framework that sup-
ports security policies that can detect attempted and actual
security breaches and which can actively respond by
modifying security policies dynamically. The GAA-API
combines policy enforcement with application-level intru-
sion detection and response, allowing countermeasures to be
applied to ongoing attacks before they cause damage.
Because the API processes access control request by applica-
tions, it is ideally placed to apply application-level knowl-
edge about policies and activities to identify suspicious
activity and apply appropriate responses. The GAA-API
implementation is available at http:/ /gaaapi.sysproject.info.
The API has been integrated with several applications,
including Apache, SOCKS5, sshd, and FreeS/WAN IPsec
for Linux.

APPENDIX

The four different types of policies used in the Section 7.
Policy 1

pos_access_right apache x

Policy I

pos_access_right apache x*

127.0.0.1 OR 128.9.0.0/16
OR usc.edu”

”01/01/03-12/31/05
MON-FRI”

"#apache.uri =" *.html

pre_cond_access_host apache

pre_cond_access_time apache

rn

pre_cond _check regex apache

850 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO.9, SEPTEMBER 2003

Policy III
neg_access_right apache x
pre_cond_check_equal apache "%(#remote_ip,threat

level) = HIGH"

rr_cond_inc_variable apache ”%(#remote_ip.rej ect
count)”
rr_cond_append_log apache "%LogMsgReject”
Policy IV
pos_access_right apache x

pre_cond_access_user apache "%InspectedUser

List”

rr_cond_async_email notify apache ”“root@localhost”

ACKNOWLEDGMENTS

This effort was sponsored by the US Defense Advanced
Research Projects Agency (DARPA) and Air Force Research
Laboratory, US Air Force Materiel Command, USAF, and
the Xerox Corporation under the following agreements:
1) F30602-00-2-0595, Dynamic Policy Evaluation of Contain-
ing Network Attacks Project (DEFCN); 2) DABT63-94-C-
0034, Security Infrastructure for Large Distributed Systems
Project (SILDS); 3) J-FBI-95-204, Global Operating System
Technologies Project (GOST); 4) DE-FC03-99ER25397, Dip-
lomat project; and 5) HE1254-97, XAUTH Project. The US
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the US
Defense Advanced Research Projects Agency (DARPA), the
US Air Force Research Laboratory, US Department of
Energy, the US Government, or the Xerox Corporation.
Figures and descriptions are provided by the authors and
are used with permission.

REFERENCES

[1] M. Almgren, H. Debar, and M. Dacier, “A Lightweight Tool for
Detecting Web Server Attacks,” Proc. Network and Distributed
System Security Symp., 2000.

[2] M. Almgren and U. Lindqvist, “Application-Integrated Data
Collection for Security Monitoring,” Proc. Fourth Int’l Symp. Recent
Advances in Intrusion Detection, pp. 22-36, 2001.

[3] R. Bace and P. Mell, “Intrusion Detection Systems,” NIST Special
Publication on Intrusion Detection Systems, Nat'l Inst. of Standards
and Technology, 2001.

[4] D.J. Burroughs, L.F. Wilson, and G.V. Cybenko, “Analysis of
Distributed Intrusion Detection Systems Using Bayesian Meth-
ods,” Proc. IEEE Int’l Performance Computing and Comm. Conf., Apr.
2002.

[5] T.V. Ryutov and B.C. Neuman, “The Specification and Enforce-
ment of Advanced Security Policies,” Proc. Conf. Policies for
Distributed Systems and Networks, 2002.

[6] R. Thau, “Design Considerations for the Apache Server APIL”
Proc. Fifth Int’l World Wide Web Conf., 1996.

[7] Sanctum, Inc., http://www.sanctuminc.com, 2003.

Tatyana Ryutov received the MS degree in
applied mathematics from Moscow State Uni-
versity, Russia, in 1991, and the MS and PhD
degrees in computer science from the University
of Southern California, USC, in 1999 and 2002,
respectively. She joined USC/ISI in 1996 work-
ing as a graduate research assistant, and
focused on the development and implementa-
tion of the access control framework for dis-
tributed systems that supports active policies,
policy composition, and is sensitive to network threat conditions.
Currently, Dr. Ryutov is working as a computer scientist at the University
of Southern California’s Information Sciences Institute with Dr. Clifford
Neuman on the Dynamic Policy Evaluation for Containing Network
Attacks (DEFCN) project.

Clifford Neuman received the bachelors degree
from the Massachusetts Institute of Technology
and, subsequently, worked at Project Athena.
He received the MS and PhD degrees from the
University of Washington. He is the director of
the Center for Computer Systems Security at
The Information Sciences Institute (ISI) of the
University of Southern California (USC), associ-
ate division director of the Computer Networks
Division at ISI, and a faculty member in the
Computer Science Department at USC. Dr. Neuman conducts research
in distributed systems, computer security, and electronic commerce. He
is the principal designer of Kerberos authentication system, which,
among other deployments, provides user authentication for Microsoft’s
Windows 2000 and Windows XP. He also developed the NetCheque®
and NetCash systems, and the Prospero Directory Service. His current
research focuses on the use of dynamic security policies in distributed
systems that can support the formation of dynamic coalitions of
cooperating organizations while adapting and responding to perceived
network threats. He is a senior member of the IEEE.

Dongho Kim received the BS degree in
computer engineering from Seoul National Uni-
versity in 1990, the MS degree in computer
science from the University of Southern Califor-
nia (USC) in 1992, and the PhD degree in
computer science from USC in 2002. He is a
computer scientist at the University of Southern
California’s Information Sciences Institute (USC/
ISI). He has been working on the Dynamic Policy
Evaluation for Containing Network Attacks
(DEFCN) project for three years as a member of Global Operating
Systems Technology (GOST) group in Computer Networks Division of
USC/ISI. He has been an instructor for the graduate-level Advanced
Operating Systems course at the USC during Fall semesters since
2001. He is a member of the IEEE and the IEEE Computer Society.

Li Zhou received the BS degree in computer
science from Beijing University in 2001. He is a
PhD student in the Computer Science Depart-
ment, University of Southern California (USC).
Currently, he is working in the Generic Operating
System Technology (GOST) Group, Information
Science Institute, USC, as a graduate research-
ing assistant.

> For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

