
From Conflict of Interest to Separation of Duties in WS-Policy

for Web Services Matchmaking Process

Patrick C. K. Hung
Commonwealth Scientific and Industrial Research Organization (CSIRO)

ICT Research Centre, GPO Box 664, Canberra, ACT 2601, Australia
Phone: +612 6216 7031 Fax: +612 6216 7111

Patrick.Hung@csiro.au

Abstract
A Web service is defined as an autonomous unit of

application logic that provides either some business

functionality or information to other applications through

an Internet connection. Web services are based on a set of

XML standards such as Simple Object Access Protocol

(SOAP), Universal Description, Discovery and
Integration (UDDI) and Web Services Description

Language (WSDL). Web services architectures are built

on an insecure, unmonitored and shared environment,

which is open to events such as security threats. Security

concerns are the major barrier that prevents many
business organizations from implementing or employing

Web services. Based on the previous research in Conflict

of Interest (CIR), this paper further introduces another

important security concept called Separation of Duties

(SoD) for Web Services Matchmaking Process (WSMP).

Next, this paper discusses the relationships between CIR
and SoD in the context of matchmaking process. The

paper then extends these two concepts into specifying and

implementing CIR and SoD assertions in the newly

developed WS-Policy. WS-Policy is an XML

representation that provides a grammar for expressing

Web services policies, to allow service locators to have a
common interpretation of security requirements in the

matchmaking process. Further, this paper presents a

matchmaking algorithm for maximizing the level of SoD.

Lastly, this paper also describes a prototype framework

with “CIRService” and “SoDService” services for

supporting CIR and SoD assertions in matchmaking
process.

Keywords: Web services, conflict of interest, separation
of duties, WS-Policy, WS-PolicyAttachment,
matchmaking, delegation, security assertion, service
locator.

1. Introduction

A Web service is defined as an autonomous unit of
application logic that provides either some business
functionality or information to other applications through
an Internet connection. Web services are based on a set of
XML standards such as Simple Object Access Protocol

(SOAP), Universal Description, Discovery and
Integration (UDDI) and Web Services Description
Language (WSDL). Some studies [5] show that the Web
services market is expected to grow to USD$28 billion in
sales in the coming three years. In particular, Grid
technologies and infrastructures increase the need for
sharing and coordinating the use of Web services for
different business processes in a loosely coupled
execution environment. A business process contains a set
of activities which represent both business tasks and
interactions between Web services. Web services
applications are growing in popularity. It is believed that
early adopters of Web services may include several
industries that involve a set of diverse trading partners
working closely together in a highly competitive market
such as insurance, financial services and high technology
industries [16].

Traditional business-to-business applications connect
trading partners through a centralised architecture. A
major drawback is that setting up an additional
connection with another trading partner is costly and time
consuming. In contrast, the benefits of adopting Web
services include faster time to production, convergence of
disparate business functionalities, a significant reduction
in total cost of development and easy to deploy business
applications for trading partners [16]. Another difference
between traditional business-to-business applications and
Web Services is a secure environment versus an exposed
environment. Although WSDL and UDDI address the
issues of discovery for trading partners (e.g., Web
services), they do not discuss any approach to detecting
conflicts, dissatisfaction and mistrust among trading
partners [16].

Security concerns are the major barrier that prevents
many business organizations from implementing or
employing Web services. Based on the previous research
in Conflict of Interest (CIR) [7], this paper further
introduces another important security concept called
Separation of Duties (SoD) for Web Services
Matchmaking Process (WSMP). Next, this paper
discusses the relationships between CIR and SoD in the
context of matchmaking process. The paper then extends
these two concepts into specifying and implementing CIR
and SoD assertions in the newly developed WS-Policy.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

WS-Policy is an XML representation that provides a
grammar for expressing Web services policies, to allow
service locators to have a common interpretation of
security requirements in the matchmaking process.
Further, this paper presents a matchmaking algorithm for
maximizing the level of SoD. The remainder of this paper
is organized as follows. The next section gives an
overview of related work and background knowledge.
Section 3 presents the concept of CIR in WSMP. Next,
Section 4 discusses the concept of SoD in WSMP and
also presents an algorithm for WSMP. Then, Section 5
demonstrates specifying CIR and SoD assertions in WS-
Policy and describes a related prototype framework.
Lastly, Section 6 concludes with identification of further
research.

2. Related Work and Background Knowledge

In the past few years, business process or workflow
proposals relevant to Web services are proliferating in the
business and academic world [20]. All of the proposed
XML languages are based on WSDL service descriptions
with extension elements. For example, Thatte [18]
describes XLANG as a notation for the specification of
message exchange behaviors (i.e., interactions) among
participating Web services in business processes.
XLANG describes the behaviour of the Web services as a
part of a business process. In XLANG, the behaviour of
each Web service is specified independently and the
interactions between Web services is only through
message exchanges expressed as operations in WSDL.

Similarity, the Web Services Flow Language (WSFL)
[12] is also an XML language for the description of Web
services interactions. WSFL specifies the appropriate
usage pattern of a collection of Web services in order to
achieve a particular business goal, and WSFL also
specifies the interaction pattern of a collection of Web
services. In addition to WSFL, Leymann [12] also
proposes an XML language called the Web Services
Endpoint Language (WSEL) for describing Web services
endpoint properties such as time and contact information,
where it is used to match the expectations from WSFL to
the promises from WSDL.

Next, the Web Service Choreography Interface (WSCI)
[17] describes the flow of messages exchanged by a Web
service participating in interactions with other Web
services. In particular, WSCI describes the dynamic
interface of the Web service participating in a given
message exchange by means of reusing the operations
defined for a static interface. Further, the Business
Process Execution Language for Web Services
(BPEL4WS) [8] is a formal specification of business
processes and interaction protocols. BPEL4WS defines an
interoperable integration model that facilitates the
expansion of automated process integration in an intra-
corporate and inter-corporate environment. Lastly, WS-

Coordination [10] defines an extensible framework for
coordinating activities using a set of coordination
protocols. Based on WS-Coordination, WS-Transaction
[9] presents an XML language to describe an atomic
transaction that is used to coordinate activities in a short
period of time and also a business activity that is used to
coordinate activities in a long period of time by applying
business logic. In summary, all these XML languages
facilitate defining Web services interacted activities in the
format of a flow model.

No matter which specific XML language is used to
define a flow model by a business process modeller, each
of the activities in a flow model must be executed by an
appropriate Web service. In this scenario, the role of
service locators is to assign an appropriate Web service
for each activity. This assignment process is called
matchmaking. Furthermore, value-added Web services
are required to be enacted by long duration multi-step
activities. Thus Web services may also delegate some
sub-activities that are decomposed from the assigned
activities to other Web services. This assignment process
is called delegation [11]. In general, both assignment
processes are expected to use the service registry to find
the most appropriate Web service to satisfy activities’ or
even sub-activities’ requirements.

Web services architectures are built on an insecure,
unmonitored and shared environment, which is open to
events such as security threats. This may result in
conflicts since the open architecture of Web services
makes it available to many parties, who may have
competing interests and goals [16]. For example, a party’s
commercial secrets may be released to another competing
company via the Web services execution. As is the case in
many other applications, the information processed in
Web services might be commercially sensitive so it is
important to protect it from security threats such as
disclosure to unauthorized parties. Since security is an
essential and integral part of many business processes,
Web services have to manage and execute the activities in
a secure way. However, the research area of Web services
security is challenging as it involves many disciplines,
from authentication/encryption to access
management/security policies. Security concerns and the
lack of security conventions are the major barriers that
prevent many business organizations from implementing
or employing Web services. An Evans Data Corporation
survey of 400 enterprise development managers,
conducted in January 2002, showed that 45.5% of the
managers regarded security and authentication issues to
be the biggest obstacle to Web services implementation
[3].

As with the XML languages discussed above, there are
also XML languages proposed for describing security
assertions in Web services. These XML languages restrict
access to Web services to authorized parties only and
protect the integrity and confidentiality of messages

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

exchanged in a loosely coupled execution environment.
For example, ebXML [4] is an XML language used to
enable the global use of electronic business information in
an interoperable, secure and consistent manner by all
parties. Specifically there are two well-known formats for
XML-based security tokens: the Security Assertions
Markup Language (SAML) [14] and the eXtensible rights
Markup Language (XrML) [2]. SAML is used to define
authentication and authorization decisions in Web
services. Web services providers submit SAML tokens to
security servers for making security decisions. In
addition, a Java-based toolkit called JSAML [13] is
developed for supporting SAML in e-business
applications. SAML is an XML-based framework for
exchanging security credentials in the form of assertions
about subjects. Similarity, XrML assists the owners of
Web services to specify the rights of authorized users or
parties and to identify the terms and conditions under
which those rights may be exercised by those authorized
users or parties. Lastly, WS-Security [11] describes
enhancements to SOAP messaging to provide quality of
protection through message integrity, message
confidentiality and single message authentication. From
another point of view, WS-Security is the messaging
language and SAML is the security language. Similar to
ebXML, WS-Security mainly focuses on secure
communication. Though BPEL4WS recommends that
business process implementations use WS-Security for
secure messaging, none of these languages discussed
above provides any security assertion for Web services
endpoint properties.

Based on WS-Security, WS-Policy [11] provides a
grammar for expressing Web services policies. The WS-
Policy includes a set of general messaging-related
assertions defined in WS-PolicyAssertions [11] and a set
of security policy assertions related to supporting the WS-
Security specification defined in WS-SecurityPolicy [11].
In addition to the WS-Policy, WS-PolicyAttachment [11]
defines how to attach these policies to Web services or
other subjects such as service locators. WS-Authorization
[11] defines how Web services manage authorization data
and policies. The eXtensible Access Control Markup
Language (XACML) [15] defines the fine-grained
authorization and entitlement policies between subjects
and resources. WS-Trust [11] defines methods for issuing
and exchanging security tokens for establishing the
presence of trust relationships. Lastly, WS-
SecureConversation [11] defines a security context based
on security tokens for secure communication. In
conclusion, none of these languages proposes any security
assertion for the matchmaking process between activities
and Web services. This is the major motivation of this
paper.

3. Concept of Conflict of Interest

By convention, security threats are usually thought to
come from outsiders. In many cases, however, security
problems arise in a well-control environment from
authorized insiders. This means that a secure environment
must not only ensure that Web services are trusted but
must also deal with other security threats such as conflict
of interest. Webster’s Dictionary defines “conflict of
interest” as a conflict between the private interests and the
official responsibilities of a person in a position of trust.
In fact, the concept of CIR has been studied in other
research fields for some time. In bargaining games, CIR is
a property of the preferences of the participants and the
structure of the situation in which they find themselves.
One of the classical security policies to deal with CIR is
Chinese wall security policy [1] for financial applications.
Chinese wall security policy contains a set of access
control rules such that no person can ever access data on
wrong side of that wall. Some other prior research also
investigates CIR in different situations. For example,
Nyanchama and Osborn [21] study CIR in privilege-
privilege and role-role conflicts in a role graph model.
Further, Ahn and Sandhu [22] describe a framework for
specifying CIR policies in role-based systems. In
addition, they present a RSL99 language for specifying
role-based constraints. However, none of these works
studies the effects of CIR in matchmaking process,
especially in the context of Web services execution
environment.

Though some Web services are capable to execute
certain activities, there may have certain constraints that
prohibit them executing a particular activity in a particular
situation. Thus a matchmaking model with the
consideration of security assertions is required in such a
sophisticated Web services execution environment. To
understand this work, this paper develops an abstract
model for a business process as follows. A business
process is represented into a flow model (FM) that
contains a partially ordered set of activities (A) that is
coordinated by a set of data/control flows. The order of
activity execution is orchestrated by matching the input
and output flow(s) of each activity. Each activity
represents a piece of work (i.e., a sequence of operations)
that needs to be done by a Web service. Each Web service
may have a delegation model that contains a set of Web
services (WS) in a hierarchical or peer-to-peer structure.
Let sets of activities (A), Web services (WS), and flow
models (FM), respectively, be:

• A = {a1, a2, …, am} is the set of m activities.

• WS = {ws1, ws2, …, wsn} is the set of n Web services.

• FM = {fm1, fm2, …, fmp} is the set of p flow models.
The relationships among different entities are the

following:
• C: FM → A gives a partially ordered set of activities

that is contained in a flow model. To illustrate, C(fmi) =

{ai1, ai2, …, aik} is the partially ordered set of k

activities that is contained in the flow model fmi and ∀i,j

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

C(fmi) – C(fmj) ≠ ∅, where C(fmi) ∪ C(fmj) ⊆ A, fmi,

fmj ∈ FM and i ≠ j.

• M: A → WS is a one-to-one mapping that gives a Web
service that is assigned to execute an activity. To
illustrate, M(ai) = wsi is the Web service that is

assigned to execute the activity ai, where M(ai) ∈ WS

and ai ∈ A.

• D: WS → BOOLEAN (i.e., true or false) tells whether
a Web service contains a delegation model or not. To
illustrate, D(wsi) = “true” means that the Web service

wsi contains a delegation model, where wsi ∈ WS.

• DM: WS → WS gives a set of Web services invoked in
a delegation model if and only if the Web service
contains a delegation model. To illustrate, DM(wsi) =

{wsi1, wsi2, …, wsik} is the set of k Web services
invoked in the delegation model of Web service wsi,

where D(wsi) = “true” and DM(wsi) ⊆ WS.

• MM: FM → WS gives a set of Web services invoked in

the FM. To illustrate, MM(fmi) = {wsi1, wsi2, …, wsik}
is the set of k Web services invoked in the
matchmaking model of the flow model fmi. Note that
this set does not include those Web services involved in
the delegation models, i.e., DM. To illustrate, MM(fmi)

= {wsij | ∀ wsij = M(aij) where aij ∈ C(fmi)}, where

MM(fmi) ⊆ WS.
Service locators are required to ensure that the

commercial secrets of clients do not leak via Web
services execution. Figure 1 shows a business process (a
flow model) called “Patient Health Records Integration
Process” that includes three activities “Retrieve Patient
Health Records at Hospital 1,” “Retrieve Patient Health
Records at Hospital 2” and “Integrate Patient Health
Records.” The patient health records often contain
sensitive and identifiable information about patients. The
sensitive or identifiable attributes from those patient
health records should have been protected properly, e.g.,
encrypting the patient identifiers in the dataset. Assume
that there exist two Web services A and B, which can
provide the services to retrieve the patient health records
at hospital 1 and 2 respectively. Also assume that both
Web services, A and B, can provide the services to
integrate the patient health records from both datasets by
a common key such as Social Security Number. Note that
neither Web service A nor B is allowed to release those
patient health records to the other to protect patient’s
privacy. If Web Service A or B can access the aggregate
of patient health records (from both hospital 1 and 2), it
may be possible for Web service A or B to infer a
patient’s identity by using data mining techniques (i.e.,
either patient health records at hospital 1 and 2).
Therefore, neither Web service A nor B is allowed to
execute the consequent “Integrate Patient Health
Records” activity because conflict of interest arises
among these three activities. As a result, a third party is
required, such as Web service C, to execute the “Integrate

Patient Health Records” activity, i.e., (Web service A ≠
Web service C) ∧ (Web service B ≠ Web service C) ∧
(Web service A ≠ Web service B).

R e tr ie v e

P a tie n t H e a lth

R e c o r d s a t

H o s p ita l 1

R e tr ie v e

P a t ie n t H e a lth

R e c o r d s a t

H o s p ita l 2

In te g ra te

P a tie n t H e a lth

R e c o r d s

P a t ie n t H e a lth

R e c o rd s w ith

S o c ia l S e c u r ity

N u m b e r

W e b

S e rv ic e

A

W e b

S e r v ic e

B

W e b

S e r v ic e

C

P a tie n t H e a lth

R e c o r d s w ith

S o c ia l S e c u r ity

N u m b e r

Figure 1. A Patient Health Records Integration Process Example.

In this paper, CIR is represented as a sequence of
notation in the format of first order predicate calculus.
This paper discusses CIR into a multi-lateral relation with
exclusive-or (XOR) logic. Referring to the example of
“Patient Health Records Integration Process” in Figure 1,
the business process modeler can identify CIR in the
matchmaking pattern as follows:

M(“Retrieve Patient Records at Hospital 1”) = wsi ⊕
M(“Retrieve Patient Records at Hospital 2”) = wsi ⊕
M(“Integrate Patient Health Records”) = wsi

where XOR is represented with the symbol “⊕” and this
statement means that if a1 is assigned to wsa, then a2 and
a3 cannot be assigned to wsa and so on. However, the
issues of CIR have not been widely investigated in the
context of matchmaking process for Web services. In the
specification phase, the business process modelers specify
CIR as a set of security assertions in the Web services
endpoint properties. Thus the matchmaking process
should be enhanced with the security assertions in the
Web services endpoint properties. In many situations, a
Web service may be authorized to execute more than one
activity in a flow model.

4. Concept of Separation of Duties

SoD is used as a security principle to formulate multi-
person control policies, requiring that two or more
different people be responsible for the completion of an
activity or set of related activities [23]. The purpose of
this principle is to reduce the possibility for fraud or
significant errors by partitioning of activities and
associated privileges [22]. For example, Nash and Poland
[24] study SoD in the context of data objects within a
system by separating all operations into several sub-parts

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

and requiring that each sub-part be executed by a different
person. Moreover, a number of researchers discuss the
concept of SoD in role-based systems by controlling
membership in, activation of, and use of roles as well as
permission assignment. For example, Kuhn [25] discusses
the mutual exclusive roles in both authorization-time and
run-time situations. In the authorization-time situation,
the roles which have been specified as mutually exclusive
cannot both be included in a user’s set of authorized roles.
In the run-time situation, users may be authorized for two
roles that are mutually exclusive, but cannot have both
roles active at the same time in a session. Next, Simon
and Zurko [23] discuss the static and dynamic SoD. In the
static SoD, no one person is ever allowed to perform two
or more exclusive roles. However, the dynamic SoD
allows users to act in roles that would be strongly
exclusive in static systems, as long as some constraints
for eliminating the possibility of fraud are satisfied.
Similarly, Gligor et al. [26] also discusses a list of static
and dynamic SoD properties. However, none of these
works discusses the relationships between CIR and SoD
in details and also applies these concepts in the context of
Web services.

To minimize the level of security risk [27], a good
WSMP process should try to constrain the number of
activities executed by a Web service. SoD is one of the
important concepts of fraud and error control in these
situations [28]. Increasing the level of SoD in
matchmaking process means that several Web services
have to be involved in performing a flow model
independently and no individual Web service can misuse
privileges by acting alone. In a flow model, the level of
SoD increases as the number of Web services involved
increases. In general, the level of SoD can be simply

defined as
|)(|

|)(|

fmC

fmMM
. The best case is each activity

involved in the flow model is executed by a Web service

separately, i.e., ∀i,j M(ai) ≠ M(aj), where ai, aj ∈ C(fm). In
this case, the level of SoD is 1 because the maximum

value of |MM(fm)| is |C(fm)| , i.e.,
|)(|

|)(|

fmC

fmC
. If there

exists any Web service that is matched with more than
one activity in the flow model, the level of SoD is less

than 1 because of |MM(fm)| < |C(fm)|, i.e., ∃i,j M(ai) =

M(aj), where ai, aj ∈ C(fm). Because of the issues of
incomplete information discussed above, this model does
not consider the Web services involved in the delegation
models. In fact, SoD is enacted whenever CIR arises in
matchmaking models between Web services and activities
[26]. Here is an example to demonstrate a situation where
the level of SoD may increase or decrease while the
instances of CIR increases. For simplicity, there is a Web
service, say wsorg, that is assigned for two activities, say

ac1 and ac2 in a flow model fm, i.e., M-1(wsorg) ∩ C(fm)
= 2. There always exists a Web service wsi, where wsi ∈

MM(fm) or wsi ∉ MM(fm), that is available and capable
for those two conflicting activities. In this case, there are
two effective options that a service locator can perform:

• Option I: Assign one of the activities to another new
appropriate Web service, either M(ac1) = wsi or M(ac2)

= wsi, where wsi ∉ MM(fm) and wsi ∈ WS.

• Option II: Assign one of the activities to another
existing appropriate Web service, either M(ac1) = wsi or

M(ac2) = wsi, where wsi ∈ MM(fm).

fm

ag
1

A Flow Model Group of Activities with Similiar Requirements

ag
2

ag
3

wsg
1ws

1

ws
2

ws
3

ws
4

ws
6

ws
5

wsg
2

ws
19

ws
20

ws
17

ws
18

wsg
3
ws

10

ws
9

ws
11

ws
7

ws
8

ws
16

ws
22

ws
21

ws
15

wsg
4

ws
14

ws
12ws

13

ws
22

a
3

a
7

a
11

a
4

a
12

a
5

a
10

a
6

a
8

a
9

Group of Web Services with Similiar Capabilities

capable of executing

ws
10

ws
10

ws
16

ag
4

a
1 a

2

Figure 2. A Matchmaking Pattern Example.

Here an appropriate Web service means that its
capabilities can satisfy the activity’s requirements. In the
first option, as long as the new appropriate Web service
does not belong to the existing MM(fm), it will definitely
increase the level of SoD. It is obvious that the number of
Web services invoked will be increased by one, i.e.,

MM(fm)′ = MM(fm) ∪ wsi and MM(fm)′ >
MM(fm). However, it is also obvious that Option II
does no effect on the level of SoD because the number of
Web services would be the same as before, i.e.,

MM(fm)′ = MM(fm). For a further example in more
than two activities, say n activities, the above two options
can also be applied on a bilateral basis. For example,
three conflicting activities ac1, ac2 and ac3 can be handled
in a pattern of (ac1 and ac2) and then ((ac1 or ac2) and ac3).
To maximize the level of SoD, the service locator should
assign (n - 1) conflicting activities to other (n - 1) new
appropriate Web services.

Figure 2 shows an example of matchmaking pattern for
a flow model. In this case, there are many possible
matchmaking patterns of assigning Web services to
activities. Besides those individual Web services and
activities, there are two types of groups in a flow model:

• AG = {ag1, ag2, …, agm} is the set of m activity groups
and each activity group contains a set of activities with

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

similar requirements, where ∀i,j agi ∩ agj = ∅, |agi| > 1,

|agj| > 1, agi ⊆ C(fm), agj ⊆ C(fm) and agi, agj ∈ AG.

• WSG = {wsg1, wsg2, …, wsgn} is the set of n Web
services groups and each Web services group contains a
set of Web services with similar capabilities, where

wsgi ∩ wsgj ≠ ∅ or wsgi ∩ wsgj = ∅, |wsgi| > 1, |wsgj|

> 1, wsgi ⊆ WS, wsgj ⊆ WS and wsgi, wsgj ∈ WSG.
Though the issues of grouping Web services and

activities are out of scope in this paper, there exist certain
emergent technologies such as Business Explorer for Web
Services (BE4WS) [29] for searching Web services that
can be further extended to incorporate these features.
Figure 2 shows the flow model that contains 12 activities,

i.e., C(fm) = {a1, a2, …, a12}, and also it shows a set of 22

Web services, i.e., WS = {ws1, ws2, …, ws22}. Note that
the Web services groups 2, 3 and 4 have a common Web

service, i.e., wsg2 ∩ wsg3 ∩ wsg4 = {ws10}. On the other
hand, a Web service can stand individually and also

belong to a Web services group, i.e., ws16 ∈ wsg4. In the
flow model, the Capable of Executing (CoE) is
represented in dashed arrows (Figure 2) between a Web
service and an activity (Case I), a Web service and an
activity group (Case II), a Web services group and an
activity (Case III), and a Web services group and an
activity group (Case IV), if and only if:

(∃ wsgi ∈ WSG)(∃ agi ∈ AG)(∃ wsi ∈ WS)

(∃ ai ∈C(fm)):-

((∃ CoECase_I(wsi, ai) (∃ wsi → ai)) ∨
(∃ CoECase_II(wsi, agi) (∀j aij ∈ agi)(∃ wsi → aij)) ∨
(∃ CoECase_III(wsgi, ai) (∀j wsij ∈ wsgi)(∃ wsij → ai)) ∨
(∃ CoECase_IV(wsgi, agi) (∀j wsij ∈ wsgi)(∀j aij ∈ agi)

(∃ wsij → aij)))

where “capable of executing” is represented with the

symbol “→.” Referring to Figure 2, these four cases can
be illustrated as follows:

• Case I: CoECase_I(ws8, a9) and CoECase_I(ws16, a10). This
means that the Web service ws8 and ws16 is capable of
executing the activity a9 and a10, respectively.

• Case II: CoECase_II(ws22, ag4). This means that the Web
service ws22 is capable of executing the activities a1 and
a2 in the activity group ag4.

• Case III: CoECase_III(wsg4, a5). This means that all Web
services ws10, ws12, ws13, ws14 and ws16 in the Web
services group wsg4 are capable of executing the
activity a5.

• Case IV: CoECase_IV(wsg1, ag1), CoECase_IV(wsg2, ag2)
and CoECase_IV(wsg3, ag3). This means that any Web
service ws1i, ws2i and ws3i in the Web services groups
wsg1, wsg2 and wsg3 is capable of executing any
activity a1j, a2j and a3j in the activity groups ag1, ag2 and

ag3, respectively, i.e., ∀ ws1i ∈ wsg1, ∀ ws2i ∈ wsg2, ∀
ws3i ∈ wsg3, ∀ a1j ∈ ag1, ∀ a2j ∈ ag2 and ∀ a3j ∈ ag3.

Figure 3 shows a WSMP algorithm for maximizing the
level of SoD in the flow model fm with a set of Web
services. In the initialization section, the functions
“CoECase_I(C(fm), WS),” “CoECase_II(C(fm), WS),”
“CoECase_III(C(fm), WS)” and “CoECase_IV(C(fm), WS)” are
used to classify the set of activities involved in the flow
model (i.e., C(fm)) and the set of Web services (i.e., WS)
into those four cases “Case_I,” “Case_II,” “Case_III” and
“Case_IV” in the format of tuples (wsi, ai), (wsi, agi),
(wsgi, ai) and (wsgi, agi), respectively. For all cases, the
function “CONFLICT(wsi, ai)” is used to check whether
there exists any CIR for each activity in the flow model

fm, i.e., ai ∈ C(fm). If there exists CIR, this algorithm will
call the function “CONFLICT_RESOLUTION(wsi, ai)” as
an exceptional handler to tackle the issues. The details of
these two functions are out of scope of this paper. Hence
in order to maximize the level of SoD one needs to assign
the set of activities across as many appropriate Web
services as possible. In Case III and Case IV, this
algorithm is trying to assign the activity to the Web
service with the least number of activities already

assigned to it, i.e., MIN(|M
-1

(ws)|). Note that the
algorithm does not always generate an optimal solution.
However, to generate an optimal solution, e out of the l

links (i.e., “→”) need to be selected in such a way that the
level of SoD is maximized, where e = |C(fm)| and l =

|Case_I| + (i |agi| where ∀i (wsi, agi) ∈ Case_II) + (i

|wsgi| where ∀i (wsgi, ai) ∈ Case_III) + (i |wsgi| × |agi|

where ∀i (wsgi, agi) ∈ Case_IV). An exhaustive search for

the optimal assignment would search through
l

e

possible assignments with the constraints of security
assertions at each activity, which, in the worst case, has
exponential complexity.

Algorithm WSMP-Algorithm(fm, WS):M;

INPUT:

C(fm) = {a1, a2, …, am}; - the group of m activities involved in the flow
model fm.

WS = {ws1, ws2, …, wsn}; - the group of n Web services.

INITIALIZATION:

Case_I = CoECaseI(C(fm), WS); - gives a set of tuples (wsi, ai).

Case_II = CoECaseII(C(fm), WS); - gives a set of tuples (wsi, agi).

Case_III = CoECaseIII(C(fm), WS); - gives a set of tuples (wsgi, ai).

Case_IV = CoECaseIV(C(fm), WS); - gives a set of tuples (wsgi, agi).

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

FOR i FROM 1 to m DO

M(ai) = nil;

END;

ALGORITHM:

FOR ALL (wsi, ai) ∈ Case_I DO – First Loop for Case I

 IF NOT CONFLICT(wsi, ai) THEN;

 M(ai) = wsi;

 ELSE

 CONFLICT_RESOLUTION(wsi, ai);

 ENDIF;

ENDFOR;

FOR ALL (wsi, agi) ∈ Case_II DO – Second Loop for Case II

 FOR ALL aij ∈ agi DO

 IF NOT CONFLICT(wsi, aij) THEN;

 M(aij) = wsi;

 ELSE

 CONFLICT_RESOLUTION(wsi, aij);

 ENDIF;

 ENDFOR;

ENDFOR;

FOR ALL (wsgi, ai) ∈ Case_III DO – Third Loop for Case III

 DO SELECT wsij ∈ wsgi WHERE ∀j MIN(|M-1(wsij)|);

 - the Web service with the least number of activities already assigned
to it;

 IF NOT CONFLICT(wsij, ai) THEN;

 M(ai) = wsij;

 ELSE

 CONFLICT_RESOLUTION(wsij, ai);

 ENDIF;

ENDFOR;

FOR ALL (wsgi, agi) ∈ Case_IV DO – Forth Loop for Case IV

 DO SELECT aij ∈ agi;

 DO SELECT wsij ∈ wsgi WHERE ∀j MIN(|M-1(wsij)|);

 IF NOT CONFLICT(wsij, aij) THEN;

 M(aij) = wsij;

 ELSE

 CONFLICT_RESOLUTION(wsij, aij);

 ENDIF;

 UNTIL agi == ∅;

ENDFOR;

OUTPUT:

FOR ALL ai ∈ C(fm) OUTPUT M(ai) = wsi; – the Web service wsi that
is assigned to execute the activity ai.

Figure 3. A WSMP Algorithm for Maximizing the Level of Separation
of Duties.

Using the example in Figure 2, let’s assume that there is
no CIR occurred in this example, i.e., CONFLICT(wsi, aj)
= false. Applying the algorithm in Figure 3 generates the
following assignments. In the initialization section, all the
Web services do not have any activity assigned, i.e.,

∀i=1,…,n |M
-1(wsi)| = 0. After the first loop for Case I, the

results would be M(a9) = ws8 and M(a10) = ws16 with |M-

1(ws8)| = 1 and |M-1(ws16)| = 1. Next, after the second loop
for Case II, the results would be M(a1) = ws22, M(a2) =
ws22, M(a9) = ws8 and M(a10) = ws16 with |M-1(ws22)| = 2,
|M-1(ws8)| = 1 and |M-1(ws16)| = 1. Then, after the third
loop for Case III, the results would be M(a5) = ws10, M(a1)
= ws22, M(a2) = ws22, M(a9) = ws8 and M(a10) = ws16 with
|M-1(ws10)| = 1, |M-1(ws22)| = 2, |M-1(ws8)| = 1 and |M-

1(ws16)| = 1.

In the forth loop for Case IV, there are three sub-loops
in it. In the first sub-loop for the tuple (wsg1, ag1), the
results would be M(a3) = ws1, M(a7) = ws2, M(a11) = ws3,
M(a5) = ws10, M(a1) = ws22, M(a2) = ws22, M(a9) = ws8 and
M(a10) = ws16 with |M-1(ws1)| = 1, |M-1(ws2)| = 1, |M-

1(ws3)| = 1, |M-1(ws10)| = 1, |M-1(ws22)| = 2, |M-1(ws8)| = 1
and |M-1(ws16)| = 1. In the second sub-loop for the tuple
(wsg2, ag2), the results would be M(a4) = ws17, M(a12) =
ws18, M(a3) = ws1, M(a7) = ws2, M(a11) = ws3, M(a5) =
ws10, M(a1) = ws22, M(a2) = ws22, M(a9) = ws8 and M(a10)
= ws16 with |M-1(ws17)| = 1, |M-1(ws18)| = 1, |M-1(ws1)| = 1,
|M-1(ws2)| = 1, |M-1(ws3)| = 1, |M-1(ws10)| = 1, |M-1(ws22)| =
2, |M-1(ws8)| = 1 and |M-1(ws16)| = 1. In the third sub-loop
for the tuple (wsg3, ag3), the results would be M(a6) = ws9,
M(a8) = ws11, M(a4) = ws17, M(a12) = ws18, M(a3) = ws1,

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

M(a7) = ws2, M(a11) = ws3, M(a5) = ws10, M(a1) = ws22,
M(a2) = ws22, M(a9) = ws8 and M(a10) = ws16 with |M-

1(ws9)| = 1, |M-1(ws11)| = 1, |M-1(ws17)| = 1, |M-1(ws18)| = 1,
|M-1(ws1)| = 1, |M-1(ws2)| = 1, |M-1(ws3)| = 1, |M-1(ws10)| =
1, |M-1(ws22)| = 2, |M-1(ws8)| = 1 and |M-1(ws16)| = 1. In

conclusion, the level of SoD is
12

11
, where MM(fm) =

{ws1, ws2, ws3, ws8, ws9, ws10, ws11, ws16, ws17, ws18,
ws22} and C(fm) = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11,
a12}. In running the algorithm from Figure 3, all other
factors being equal, the service locator in this paper
assigned activities to Web services in the order of wsi

first, then wsj, then wsk, and so on, where i < j < k.

5. Implementation

A Web service security model must support protocol-
independent, declarative security policies that the service
locator can enforce, and descriptive security policies
attached to the service locator that it can use in order to
securely assign activities to Web services. A security
policy is a set of rules and practices that specify or
regulate how a system or organization provides security
services to protected resources. A security assertion is
typically scrutinized in the context of security policy [6].
In general, the engineering of a security policy starts with
risk analysis and ends with a set of security assertions that
is ready for integration into the security architecture of a
subject such as a service locator. Risk analysis identifies
security threats in a business process and forms a set of
security assertions, which refer to rules and practices to
regulate how sensitive or activity information is managed
and protected within a loosely coupled execution
environment. A security policy is often formalized or
semi-formalized in a security model that provides a basis
for a formal analysis of security properties.

Figure 4 demonstrates specifying CIR and SoD
assertions into WS-Policy. Beside those standard Web
services utility (wsu) and policy (wsp) namespaces
defined at http://schemas.xmlsoap.org/ws/2002/07/utility
and http://schemas.xmlsoap.org/ws/2002/12/policy [11],
this paper assumes that there is a schema for a Web
services matchmaking process (wsmp) located at
http://schemas.xmlwsmp.org/wsmp/2003/06/matchmakin
g, as well as a schema for the flow model of the “Patient
Health Records Integration Process” stored at the
http://schemas.xmlfm.org/fm/2003/06/hdi. Then, the
<wsp: Policy/> element (lines 1, 2, 3, 4 and 14) is the top-
level container for a policy expression with all the
namespaces. In addition, the wsu:id attribute is used to
indicate a fragment ID in arbitrary containing elements.

 (01) <wsp:Policy wsu:Id="Policy1"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

(02) xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"

(03)
xmlns:wsmp="http://schemas.xmlwsmp.org/wsmp/2003/06/matchmakin
g"

(04) xmlns:fm="http://schemas.xmlfm.org/fm/2003/06/hdi" >

(05) <wsp:All wsp:Usage="wsp:Required" wsp:Preference="100">

(06) <wsmp:ConflictOfInterest wsmp:GroupID="Group1"

(07)
wsmp:ActivityName="fm:RetrievePatientHealthRecordsatHospital1" />

(08) <wsmp:ConflictOfInterest wsmp:GroupID="Group1"

(09)
wsmp:ActivityName="fm:RetrievePatientHealthRecordsatHospital2" />

(10) <wsmp:ConflictOfInterest wsmp:GroupID="Group1"

(11) wsmp:ActivityName="fm:IntegratePatientHealthRecords" />

(12) <wsmp:SeparationOfDuties wsmp:Maximize="True" />

(13) </wsp:All>

(14) </wsp:Policy>

Figure 4. An Example of CIR and SoD Assertions in WS-Policy.

The primary operator in this policy expression is
<wsp:All/> (lines 5 and 13), which indicates that all of its
child assertions are combined to form a policy statement.
The <wsp:All/> element indicates that all of the contained
security assertions must be met. The wsp:Usage attribute
is used to qualify the semantics of the leaf elements as
applied to a policy subject such as the service locator. In
this example, the value wsp:Required means that the
assertion must be applied to the service locator. If the
service locator does not meet the criteria expressed in the
assertion, a fault or error will occur. The wsp:preference
attribute is to specify the preference of this policy
statement. The higher the value of the preference is, and
the greater the weighting of the expressed preference is.

This paper proposes the security assertions for
specifying conflict of interest in the leaf elements (lines 6,
7, 8, 9, 10 and 11). The security assertions
<wsmp:ConflictOfInterest/> are used to specify those
three conflicting activities in the Group1:

• wsmp:ActivityName="fm:RetrievePatientHealthRecord
satHospital1" (lines 6 and 7)

• wsmp:ActivityName="fm:RetrievePatientHealthRecord
satHospital2" (lines 8 and 9)

• wsmp:ActivityName="fm:IntegratePatientHealthRecor
ds" (lines 10 and 11)

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

The security assertion <wsmp:SeparationOfDuties/>
(line 12) is used to indicate whether to maximize the level
of SoD or not (e.g., wsmp:Maximize="True" or "False").

(01) <wsp:PolicyAttachment>

(02) <wsp:AppliesTo>

(03) <wsp:EndpointReference xmlns:services="
http://www.xmlservices123.com">

(04) <wsp:ServiceName Name="services:LocatorService" />

(05) <wsp:PortType Name="services:LocatorPortType" />

(06) <wsp:Address
URI="http://www.xmlservices123.com/servicelocator" />

(07) </wsp:EndpointReference>

(08) </wsp:AppliesTo>

(09) <wsp:PolicyReference
wsp:URI="http://www.xmlpolicies123.com/wsmp#Policy1" />

(10) </wsp:PolicyAttachment>

Figure 5. An Example of Related WS-Policy Attachment to Figure 4.

This paper assumes that the policy expression is stored
at http://www.xmlpolicies123.com/wsmp#Policy1. The
mechanism for associating policy with one or more
subjects (e.g., service locators) is referred to as policy
attachment. Figure 5 now demonstrates how to attach the
policy to the service locator. Figure 5 shows a policy
expression to be associated with a resource independent
of its definition and representation, using a
<wsp:PolicyAttachment/> element (lines 1 and 10). The
<wsp:AppliesTo/> element (lines 2 and 8) defines one
domain expression by the <wsp:EndpointReference/>
(lines 3 and 7) element. In this example, this paper
assumes that the service locator is located at
http://www.xmlservices123.com. Then, the child
assertions contain three elements:

• <wsp:ServiceName/> (line 4) indicates the name of the
service locator.

• <wsp:PortType/> (line 5) indicates the type of the
service locator.

• <wsp:Address/> (line 6) indicates the Uniform
Resource Identifier (URI) of the service locator.
The <wsp:PolicyReference/> element (line 9)

references the policy expression that is being applied to
the service locator. The wsp:URI attribute references a
policy using its URI.

Figure 6 presents a technical framework for supporting
the matchmaking process in a loosely coupled Web
services execution environment. The Web service “WS-

Policy and WS-PolicyAttachment Editor” is used to
specify related XML documents for the matchmaking
process. The WS-Policy document is submitted to the
Web service “WS-Policy Parser” and then the WS-
PolicyAttachment document is used to bind the WS-
Policy document to a particular entity, i.e., the service
locator. The Web service “WS-Policy Parser” classifies
different policy assertions from the WS-Policy document
into different groups and then distributes each group to
the relevant Web services such as the Web service
“Conflict of Interest Service (CIRService)” and
“Separation of Duties Service (SoDService).” On the
other side, the Web service “Service Locator” interacts
with the Web services “Flow Model Generator” (e.g.,
BPEL4WS) and “Service Registry” (e.g., UDDI) for
matching each activity from the flow model to an
appropriate Web service. During the matchmaking
process, the “Service Locator” has to consult those
services such as the “CIRService” and “SoDService.” As
a result, the “Service Locator” returns an appropriate
matchmaking pattern for each flow model. A
matchmaking pattern is defined as a set of assignments
between activities and Web services. Note that all the
interactions between Web services are driven by SOAP
messages. The first version of a prototype Web service
“CIRService” has been implemented and the
‘SoDService” is currently under development by using C#
on .NET framework.

WS-Policy and

WS-PolicyAttachment

Editor

WS-Policy Parser

CIRService

Service Locator

SoDService

Business Process

Generator

(e.g., BPEL4WS)

Service Registry

(e.g., UDDI)

Web Service

W
S

-P
o

li
c

y
 D

o
c
u

m
e

n
t

C
onfli

ct O
f In

te
re

st A
ssert

io
ns

Separation of Duties Assertions

Consult

C
o
n
su

lt

S
ea

rc
h

W
eb

S
erv

ic
es

A
ctivities

WS-PolicyAttachment Document

SOAP Interactions

Matchmaking Pattern

G
enerate

Figure 6. A Technical Framework for WSMP.

6. Conclusions and Future Research

In comparison to traditional business-to-business
applications that connect trading partners through a
centralised architecture, Web services have the
advantages of faster time to production, convergence of
disparate business functionalities, a significant reduction
in total cost of development and easy to deploy business
applications for trading partners. Despite the numerous
benefits attainable after adopting Web services, a major
concern is the lack of security conventions after changing
from a secure environment to an open and exposed

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9

environment. Many security problems do arise in well-
controlled environments from authorized parties. This
means that security is achieved not only by ensuring that
Web services are trusted but also by the clearance of other
security threats such as conflict of interest and separation
of duties. Therefore, this paper discussed the concept of
conflict of interest and separation of duties in the Web
services matchmaking process. Further, based on the WS-
Policy, this paper demonstrated how to specify security
assertions for preventing conflict of interest and
maximizing separation of duties in the Web services
matchmaking process. Furthermore, we are currently
investigating the cost factor and coordination efforts when
executing the WSMP algorithm in the context of dynamic
composite Web services.

7. References

[1] David F. C. Brewer, and Michael J. Nash, “Chinese
Wall Security Policy,” Proceedings of the Symposium on
Security and Privacy, 1989, pp. 206-214.
[2] Contentguard, “eXtensible rights Markup Language
(XrML),” Version 2.0, 2001.
[3] J. Fontana, “Top Web Services Worry: Security,”
NetworkWorldFusion, January 2002.
[4] B. Hofreiter, C. Huemer, and W. Klas, “ebXML:
Status, Research Issues, and Obstacles,” Proceedings of
Twelfth International Workshop on Research Issues in
Data Engineering: Engineering E-Commerce/E-Business
Systems, 2002, pp. 7-16.
[5] P. Holland, “Building Web Services From Existing
Application,” eAI Journal, September 2002, pp. 45-47.
[6] Maryann Hondo, Nataraj Nagaratnam, and Anthony
Nadalin, “Securing Web Services,” IBM Systems Journal,
vol. 41, no. 2, 2002, pp. 228-241.
[7] Patrick C. K. Hung, “Specifying Conflict of Interest in
Web Services Endpoint Language (WSEL),” ACM
SIGecom Exchanges, vol. 3.3, 2002, pp. 1-8.
[8] IBM Corporation, “Business Process Execution
Language for Web Services (BPEL4WS),” Version 1.0,
2002.
[9] IBM Corporation, “Web Services Transaction (WS-
Transaction),” 2002.
[10] IBM Corporation, “Web Services Coordination (WS-
Coordination),” 2002.
[11] IBM Corporation, “Security in a Web Services
World: A Proposed Architecture and Roadmap,” White
Paper, Version 1.0, 2002.
[12] F. Leymann, “Web Services Flow Language (WSFL
1.0),” IBM Corporation, 2001.
[13] Netegrity, “JSAML Toolkit: Netegrity’s Java
Implementation of the Security Assertions Markup
Language (SAML) Specification,” White Paper, 2001.
[14] OASIS, “SAML 1.0 Specification Set: Committee
Specifications,” 2002.

[15] OASIS, “OASIS eXtensible Access Control Markup
Language (XACML),” OASIS Standard 1.0, 2002.
[16] P. Ratnasingam, “The Importance of Technology
Trust in Web Services Security,” Information
Management & Computer Security, vol. 10, no. 5, 2002,
pp. 255-260.
[17] Sun Microsystems, “Web Service Choreography
Interface (WSCI),” Version 1.0, 2002.
[18] S. Thatte, “XLANG - Web Services for Business
Process Design,” Microsoft Corporation, 2001.
[19] UDDI Organization, “UDDI Specification,” Version
3.0, Published Specification, 2002.
[20] World Wide Web Consortium (W3C). Online:
www.w3c.org
[21] Matunda Nyanchama and Sylvia Osborn, “The Role
Graph Model and Conflict of Interest,” ACM
Transactions on Information and System Security, vol. 2,
no. 1, 1999, pp. 3-33.
[22] Gail-Joon Ahn and Ravi Sandhu, “The RSL99
Language for Role-based Separation of Duty
Constraints,” Proceedings of the ACM Workshop on
Role-Based Access Control, 1999, pp. 43-54.
[23] Richard T. Simon and Mary Ellen Zurko,
“Separation of Duty in Role-based Environments,”
Proceedings of the 10th Computer Security Foundations
Workshop, 1997, pp. 183-194.
[24] Michael J. Nash and Keith R. Poland, “Some
Conundrums Concerning Separation of Duty,”
Proceedings of the 1990 IEEE Computer Society
Symposium on Research in Security and Privacy, 1990,
pp. 201-207.
[25] D. Richard Kuhn, “Mutual Exclusion of Roles as a
Means of Implementing Separation of Duty in Role-based
Access Control Systems,” Proceedings of the Second
ACM Workshop on Role-based Access Control, 1997, pp.
23-30.
[26] Virgil D. Gligor, Serban I. Gavrila and David
Ferraiolo, “On the Formal Definition of Separation-of-
duty Policies and Their Composition,” Proceedings of
1998 IEEE Symposium on Security and Privacy, 1998,
pp. 172 -183.
[27] Patrick C. K. Hung, Kamalakar Karlapalem and
James Gray III, “Least Privilege Security in CapBasED-
AMS,” The International Journal of Cooperative
Information Systems, vol. 8, no. 2 & 3, 1999, pp. 139-
168.
[28] David D. Clark and David R. Wilson, “A
Comparison of Commercial and Military Computer
Security Policies,” Proceedings of 1987 IEEE Symposium
on Security and Privacy, 1987, pp. 184-194.
[29] Liang-Jie Zhang and Tian Chao, “Business Explorer
for Web Services (BE4WS),” IBM AlphaWorks, 2001.
Online: www.alphaworks.ibm.com/tech/be4ws

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

