
Administration of an RBAC system
Fredj Dridi, Björn Muschall and Günther Pernul

Department of Information Systems
University of Regensburg

Universitätsstrasse 31, D-93053 Regensburg, Germany
Email: {fredj.dridi,bjoern.muschall,guenther.pernul}@wiwi.uni-regensburg.de

Abstract— Recently RBAC (role-based access controls) was
found to be among the most attractive solutions for provid-
ing acess control in web-based e-commerce and e-government
applications. Usually, such systems involve a huge number of
heterogeneous users working with the systems under different
rights and obligations. In an RBAC authorization and access
control system the users are assigned to roles which are derived
from the organizational structure. Because of the huge amount
of users and the diversity of their requirments the administration
of a RBAC system becomes crucial. Our group is involved
in the European funded Webocracy project in which we have
designed and implemented an RBAC system based on the Core
RBAC model as defined in a proposed NIST standard. Based
on the functional specification of the proposed NIST standard
we specified administration requirements for managing roles,
users and permissions we specified. In this paper we will present
an administration console, which we designed to implement this
requirements.

I. INTRODUCTION AND MOTIVATION

RBAC models have matured to the point where they are now
being prescribed as a generalized approach to access control.
For instance, recently RBAC was found to be among the
most attractive solution for providing access control in web-
based e-commerce and e-government applications [1]. Such
an e-government system is the Webocrat-System, which is
designed and implemented as part of the Webocracy project
[2], [3]. Webocracy is an ongoing research project funded
by the European Union under contract IST-1999-20364. Its
full title is ”Web Technologies Supporting Direct Participation
in Democratic Process” and is an example of innovative
use of state-of-the-art web technologies in order to support
direct participation of citizens in democratic processes. The
goal of the Webocracy project is to use new technologies to
provide citizens, businesses, and government agencies with
more convenient access to government information and ser-
vices, to improve the quality of the services and to provide
greater opportunities to participate in democratic institutions
and processes. The Webocrat system is modularly designed
and composed of several modules implementing the following
functions: discussion management, publishing on the Web,
opinion polling, reporting, intelligent retrieval of information,
and knowledge management. An integral module within the
e-government system Webocrat is CSAP (Communciation, Se-
curity, Authentication and Privacy). The design and implemen-
tation of CSAP is described in [4]. The purpose of CSAP is to
provide the other modules with appropriate security services
in order to reduce or eliminate the potential damage that may

be produced when security violations are exploited. Part of
these services is the authorization and access control facility of
CSAP. Currently we have provided RBAC-based authorization,
however, CSAP is designed in a way that existing components
can be replaced by new ones (plug-and-play architecture). In
this work we are concerned with the administration of the
RBAC-based access control and authorization facility. We will
further describe an administration tool with graphical user
interface, called CAC (CSAP Administration Console), that
has been build to administrate the CSAP system. We will
concentrate on the RBAC related administrative requirements
for the implementation of the CAC.

The remainder of this work is structured as follows: Sec-
tion 2 presents the RBAC models given by the proposed
NIST standard [1] and explains the functional requirements
of the Core RBAC model, which forms the basis of our
implementation. Section 3 introduces CSAP, its architecture
and how applications can use the provided security services.
In Section 4 we will describe RBAC related administrative
requirements, which are important for the implementation of
the administration console. A description of the CAC follows.
In the remainder of Section 4 we describe how we meet the
discussed administrative requirements.

II. THE NIST RBAC-MODEL

In [1] a standard for role-based access control is proposed,
which is organized into the RBAC Reference Model and the
RBAC System and Administrative Functional Specification.
The reference model defines the scope of features that com-
prise the standard and provides a consistent vocabulary in sup-
port of the specification. The reference model is furthermore
divided into several submodels as depicted in figure 1, which
comprises different sets of functionality and are described as
follows:

Core RBAC embodies the essential aspects of RBAC that
users are assigned to roles, permissions are assigned to
roles and users acquire permissions by being members
of roles. RBAC comprises five basic element sets as
depicted in figure 2: Users are active elements that can
be human beings as well as software processes, agents,
etc. Roles correspond to fields of activities of human
beeings in an organisational context. These activities are
bound to the corresponding permissions to carry out these
activities. The permissions assigned to a role should be
the minimum set required for fulfilling all necessary

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

SSD (Static Separation of Duty)

statical restriction of user
membership in roles

Core RBAC
basic features: roles, user, permissions, sessions
user-role membership, role-permission assigment,
 assignment of sessions to roles and users

Hierarchical RBAC
role hierarchy and inheritance

Constrained RBAC DSD (Dynamic Separation of Duty)

dynamic contraint on
role activation by user

Fig. 1. Overview of different RBAC models

activities. A permission concerns the combination of a
certain operation that can be executed on a certain object.
A session concerns the context in which a sequence of
activities are excecuted. There must be at minimum one
activated role, of which the assigned permissions can be
used during the session. A user can be assigned several
roles, to which the assigned permissions may not be used
at the same time. The session enables to seperate role
assignment from the context of execution and use of
the assigned role’s permissions. Objects and Operations
can be arbitrary reflect system objects and methods at
different levels of granularity.

Hierarchical RBAC enlarges core RBAC by a partial order
between roles, which describes an inheritance relation,
whereby senior roles acquire the permissions of their
juniors, and junior roles acquire the user membership
of their seniors. Roles can have overlapping capabilities.
There may be a number of general permissions that are
performed by a large number of users and consequently
may be assigned to a more general role that is inherited
by these users.

Constraint RBAC assumes that there are, contrary to the core
RBAC, existing relations or existing exclusions between
some fields of activity and allows to define separation
of duty relations to enforce conflict of interest policies.
Constraint RBAC let impose restrictions statically (SSD,
static seperation of duty) or dynamically (DSD, dynamic
separation of duty). SSD-relations can be defined to
avoid a user to be assigned to mutual exclusive roles
and consequently accumulate more permissions than the
minimal permissions just necessary to carry out the duties
corresponding to the fields of activity. DSD-relations take
effect in respect to the activation of roles. For example,
it can be avoided, that the role of a superuser can be
activated by more than one user at the same time.

The RBAC functional specification specifies administrative
operations for the creation, maintenance and review of RBAC
element sets and the relations between those elements. Fur-
thermore the RBAC functional specification defines functional
requirements for system level functionality in support of

USERS ROLES OBJECTS

(URA)
User Role

Assignment

(PRA)
Permission Role

Assignment

user_
session

session_roles
PERMISSIONS

SESS-
IONS

SSD

DSD

(RRA)
 Role Role Assignment

OPER-
ATIONS

Fig. 2. The elements of the NIST RBAC reference models

session attribute management and an access control decision
process. The functional requirements are organized corre-
sponding to the submodels of the RBAC Reference Model.
Concerning the Core RBAC model the requirements comprise
administrative commands, system functions, review functions
and more advanced review functions, which are all depicted
in figure 3. As we will describe later on, the whole extent
of the depicted functions is necessary to administrate RBAC.
Moreover for some administrative tasks the different functions
must be used in combination. For example, if you want to
deassign a user from a role (DeassignUser) you must first find
out, which users are still assigned (AssignedUser) to select
one of the resulting set. The opposite way, to assign a user
(AssignUser) that is not yet assigned must also be possible.
Although the existing functions seem to be sufficient, we found
out that some practical useful functions are missing. During
the implementation of CSAP and CAC we added the new
functions of significant practical value. (see Section IV-B).

Core RBAC
System

System
Functions

AddUser
DeleteUser
AddRole
DeleteRole
AssignUser
DeassignUser
GrantPermisson
RevokePermission

Administrative
Commands

Review
Functions

AssignedUser
AssignedRoles
RolePermissions
UserPermissions
SessionRoles
SessionPermissions

CreateSession
DeleteSession
AddActiveRole
DropActiveRole
CheckAccess

Fig. 3. Functional requirements of core RBAC

III. CSAP

The webocrat system involves a large number of different
users (citizens, politicians, government employees, business
members, etc.), who want to share and grant access to a
huge number of security objects (i.e. in Webocracy documents)
in a controlled way. Some documents may contain sensitive
information and consequently must not be disclosed to ev-
ery user. Basic security requirements have been determined:
confidentiality, integrity, availability, authenticity of data, non-

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

repudiation of messages, proof of originality, proof of iden-
tification. Security services addressing the above mentioned
security objectives are essential issues within the Webocrat
system. The purpose of CSAP is to form the basis for trust for
the whole Webocrat system offering practical and consistent
security by providing security services for:

• Identification and authentication - is needed in order
to get and verify the identity of the users attempting
to access the system or its modules. CSAP authenti-
cation mechanism range from simple authentication by
password to more sophisticated models based on signed
certificates.

• Access control and authorization - is needed in order to
verify what actions the users are able to perform and
what information the users are able to access. The access
control mechanism is implemented based on a role-based
access control model.

• Auditing - is needed to log all security relevant actions
in order to make users accountable for their transactions.
Audit trails are used to find patterns of abnormal use
which are often a sign of (attempted) compromise.

• Session management - is needed to keep track of global
security information used throughout the Webocrat sys-
tem and to authenticate users only once during a session.

During the design of CSAP the overall goal was to de-
velop a general, flexible and extensible architecture in which
applications can selectively and dynamically access security
services (see [4]). In figure 4 the conceptual architecture
in conjunction with a web-based use-scenario is described.
CSAP should be able to anticipate new security requirements
and allow the integration of new security services or the
enhancement of the existing ones without the need of mod-
ification, recompilation, or even notification of client code
unless there would be a significant change in the specification.
Furthermore it was required that the way how the security
information is stored has to remain configurable and storage
mediums and mechanisms have to be substitutable. To meet
these primary requirements the overal conceptual architecture
has to provide some generic interfaces (API), facilities for
medium-independent data storage, as well as corresponding
configuration tools.

Within the Webocracy project CSAP will be used by
several user partners (city councils, public administrations)
with different requirements for the implementations of the
offered services. For example, the authentication service can
be implemented using passwords, using PKI or a different
scheme, while the authorization service can be implemented
based on RBAC or a different scheme. As a result the need
raised to design a system implementing different security
services that are completely substitutable, as demonstrated in
figure 4. In this context we speak about “pluggable” security
services.

IV. ADMINISTRATION OF RBAC

From a technical point of view, RBACs flexibility results
from the fact, that users can be easily de-assigned from

Web System

CSAP Service Architecture

Web
Client

Application
(e.g. Webocrat)

HTTP
Server

Security Data
Audit Service

Authentication
 Service

Password

X.509 certificates

Authorization
 Service

RBAC

Session
Service

CSAP

API

CSAP

API
XML files

MySQL

LDAP server

Fig. 4. CSAP service architecture

roles while roles can be granted or withdrawn permissions
without interfering with the assignment of users. From an
organizational point of view roles reflect and generalize vari-
ous types of job functions (secretary, billing clerk, manager),
which greatly simplifies security administration. For example,
when a user moves to a new job function, only the user’s
membership in roles must be modified while in the absence
of roles (in traditional discretionary access control systems)
the permissions have to be individually searched and revoked.

Therefore RBAC proved to be suitable for large enterprise-
wide multi-domain systems with a number of roles up to
hundreds and a higher number of users and permissions up
to ten thousands. This means that administration of RBAC
becomes more important and that managing this amount of
roles, users and permissions has to be done carefully and
prudently to ensure that security policies remain to be the
intended ones.

In this section we describe administrative issues that form
our functional requirements for the implementation of CAC
and some extension of the authorization facility of CSAP,
which implements the NIST functional requirements. Later on
we describe the implementation of CAC and how we meet the
given functional requirements.

A. CAC’s requirements

As mentioned in Section II RBAC elements are users, roles,
permissions, objects, operations and sessions (we will use
the term elements later on in this text). With regard to the
management of these RBAC element sets the NIST standard
requires only functions for creation and deletion of users and
roles as part of the administrative commands, depicted in
figure 3, which are likewise part of the RBAC functional
specification. With regard to the management of the user
role assigment and the permission role assignment (depicted
in figure 2) the NIST standard only requires operations to
assign and deassign permissions and users to a role. Assigning
roles to permissions starting with permissions is not included.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

Moreover, review functions (see figure 3) are essential for the
use of administrative commands. Before deassigning a user
from a role whith the administrative command DeassignUser,
the review function AssignedUser must be called, but there
is no review function NotAssignedUser which could be called
before assigning a user to a role.

After several discussions with our end-user partners in the
Webocracy project, we figured out some requirements to meet
for the administration of a Core RBAC system like the access
control component of CSAP, which the required functionality
in the functional specification of the NIST standard are not suf-
ficient for. These RBAC related requirements are represented
in the following and arranged into three groups. The first group
regards to the managment of the element sets while the second
and third group regard to two aspects of the management of
the corresponding relations.

1. Although the remaining elements (permissions, objects
and operations) are given by the system for which the
RBAC system is employed for, there must be some
facility to define them explicitly within the RBAC system.
Consequently it must be possible to create and delete
all five element sets not only users and roles. The NIST
proposed standard only requires to create and delete users
and roles.

2. Administration of element sets does not only comprise the
creation of elements but also some functionality to change
(the attributes of) just existing elements. Therefore update
operations for each element are required.

3. Contrary to the create function that does not require an
element to be existent, the delete and update operation
require to be applied to an existing element. This element
is assumed to be selected of an increasing amount of
defined elements first. Since RBAC elements does not
only possess an unique identifier (ID, name) but some
more attributes, which may not be unique, there must
be some selection facility that allows selection by an
arbitrary number (one or more) of these attributes in order
to modify or delete selected elements later on.

4. Before creating a new element, the administrator has to
specify the element’s attributes in a GUI mask. It is
necessary to validate user input in the sense, that user
input is complete and does not lead to a conflict with
a still existing element. A conflicting element must be
found first.

In accordance with figure 2 there are relations to be
managed between four of the element sets: users, roles,
permissions and sessions. Each relation is symmetrical and
involves two elements that can be of the cardinality n:m.
Identifying an existing assignment (instance of that relation)
means to start with a given element object (e.g. a certain
role), to ask for all elements that are assigned to it (e.g.
one or more users) and to select one of the resulting set
of assigned elements. We will later use the terms user-view,
permission-view and role-view. If we consider for example the
relationship user-role assignment starting with a user, we also

can say that we consider the user-role assignment from user
view. There are following reasons to consider more relations
from both possible views than done in the NIST functional
requirements. In that sense the Core RBAC review functions
are not sufficient und must be completed:

5. It must be possible to know in advance, which roles are
affected if a permission is modified. Consequently it must
be possible to select assigned roles from permission-view.

6. It must be possible to determine if a user is logged into
the system, when his attributes must be changed or when
the user may be deleted. To be logged in means, that there
must be at minimum one assigned session. The concerned
user must be logged off first to avoid the lost update
problem.

7. It must be possible to withdraw a users membership in a
role, that may just be activated and used by the affected
user. To examine this case means to evaluate if a role is
activated within a certain session.

Deleting an assignment between certain elements (e.g. a
role and a permission) assumes the assignment to be already
existent. From view of a certain role an assigned permission is
part of the already assigned elements. To assign a permission
to a role and so establishing a new relation instance between
those elements requires the permission to be part of the not yet
assigned elements (the complementary set). This means, that
the review functions of the Core RBAC model must be com-
pleted with review functions, which return the complementary
set of a considered element. Moreover the administration
console must reflect this fact in the user interface, which is
shown in figure 5. More precisely the following requirements
are valuable:

8. To grant one or more permissions to a certain role, which
is/are not known precisely, there must be a function
that lists all not yet granted permissions and enables the
administrator to perform a selection.

9. If a certain permission is given, that may be assigned to
one or more roles, which the administrator does not know
precisely, there must be a function that lists all not yet
assigned roles which are candidates for the assignment
of this permission.

10. From view of a certain user, it is comfortable to give
a list of potential roles for a membership. From those
candidates the administrator can select one or more roles
and assign them to the user.

B. Design and implementation issues

In the previous section we described the RBAC related
requirements, which form CAC’s functional requirements.
There are some more requirements to meet, which primarly
concern to the main design decision to be made for CAC’s
software architecture:

a. In its actual state of development the access control
component of CSAP implements only the core RBAC
model of the proposed NIST standard. The extension to
other RBAC model such as the hierarchical or constraint

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

RBAC is planned and must be anticipated in the design of
the administration console. Therefore an extensible and
flexible design must be able to realize additional views of
the user interfaces that reflect the new functionality and
can administer hierarchical relations and constraints.

b. Similar to the approaches mentioned in section V the
functionality of the administration console must be pro-
tected by some authentication mechanism and access
control functionality. Access to the console is only given
to administrative users which have been granted the
adequate authorizations to perform some administrative
functions. There are several administrative roles with
different scopes of administrative rights.

c. A simply understandable, clear and consistently subdi-
vided user user interface is required. Consistent sup-
port for navigation through the console’s functionality is
needed in the same way as error messages and status
information must be visible consistently.

d. Since CSAP is used by several web-based modules in
the Webocrat system, it was quite obvious to require
a web-based design for the administration console and
so integrate it with the other applications. This offers
the advantage of providing remote access to several ad-
ministrative users. Of course such security administration
functionality is highly sensitive, which is why our CAC
modul has to be secured by means of cryptographic
techniques like SSL (Secure Socket Layer).

In figure 4 the integration of CSAP into web-based appli-
cations is demonstrated. In accordance with the requirement
d the administration console is implemented as a web-based
application based on technologies like JSP and servlets [5],
[6]. CAC is a client of CSAP as depicted in figure 4.

To meet the requirement b we decided to use the function-
ality of CSAP to realize access control for the administration
console. Consequently - on one hand - the CAC represents a
client depending on CSAP functionality for authentication and
access control as the other applications using CSAP do. This
case is called ”administrating RBAC by means of RBAC”.
On the other hand, CAC has a special purpose that the CSAP
system depends on, which is to administer the persistent data
of CSAP. Consequently CAC needs some more administrative
functionality to be provided by CSAP, that goes beyond the
functionality needed by other clients. Since the persistent data
of CSAP are hold transparent to clients and the currently
employed implementation of the data layer depends on the
current configuration, the CAC has to avoid operating directly
on the data layer.

Since CSAP is implemented in java, we used java related
web-techniques like servlets, java beans, tag-handler and JSP.
Requiring a high degree of flexibility and the ability to
anticipate enlargements to the underlaying CSAP module, the
architecture of CAC was designed with a special variant of
the architectural design pattern MVC (model view controller)
called Model 2. Model 2 allows an application to be scaled
up using EJB in conjunction with servlets and JSP and is part
of a larger catalog of integrating design patterns described in

Session

Permission

Role
getAssignedRoles

getAssignedUsersge
tP
er
mi
ss
io
nR
ol
es

ge
tR
ol
eP
er
ms
.

getUserPermissions

getPermissionUsers

ge
tU
se
r

getSessionPerms.

getPerm.Sessions

ge
tU
se
rS
es
si
on
s

Nist administration function

new administration function

User

g
e
t
R
o
l
e
S
e
s
s
i
o
n
s

g
e
t
A
c
t
i
v
e
R
o
l
e
s

Fig. 6. Administration functions

the Blue Prints [7]. Some more of those patterns described in
the catalogue are used by the console.

Figure 5 shows the structure of CAC. On the left side
of CAC a navigation menu is shown. The result of every
menu selection is displayed on the right side of CAC. In this
example permissions can be assigned or deassigned to/from
a role which is first selected. In this case the relation called
permission-role assignment (compare figure 2) is considered
from role-view. After selecting a role the list of the already
assigned permissions and the list of the not assigned permis-
sions are presented. It is up to the administrator to select a
certain permission from one list and assign it to the opposite
one. The management of the other relations (e.g. user-role
assignment) is done in a similar way. All relevant relations can
be considered from both views respectively, e.g. the relation
user-role assignment from role or user view.

In section IV-A we described some requirements regarding
to the management of the element relations. To meet this
requirements (especially the reqiurements 5,6,7) we conse-
quently decided to implement all missing functions, to support
both views of each relation. For example, for the relation role-
permission assignment we implemented getRolePermissions as
well as getPermissionRoles. In figure 6, the functions marked
with a dashed line are not defined in the NIST RBAC models
and additionally implemented by CSAP.

To meet the requirements 8,9,10, some operations are neces-
sary, which returns the complementary sets to the respectively
assigned elements. For example, considering the relation role-
permission assignment from role-view, the assigned permis-
sions are given by the function getRolePermissions, which is
defined in the NIST RBAC model. The complementary set
containing the not assigned permissions is given by an addi-
tionally implemented function, called notAssignedPermissions.

V. RELATED WORK

There are some existing RBAC Systems, that come with
an administrative user interface, which we examined and

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

Fig. 5. Screenshot: permission role assignment from role-view

compared to get some incentives for our design of the user
interface and to identify some more requirements for our
implementation. In RBAC/Web [8] Sandhu and al. imple-
mented a web-based reference implementation that comprises
CGI scripts connected to some binary kernel. Consequently
RBAC/Web provides a user interface based on HTML pages
that only requires a standard browser to be viewed. Contrary
to the web-based approach the solaris administration console
[9] concerns a user interface that is based on swing, which is
a graphical library implemented in Java and shipped as part
of the JDK.

Sandhu et al. [10] concern with the topic of administrating
RBAC. This work describes how RBAC can be used for
managing RBAC itself and is mainly motivated by the goal
to decentralize the details of RBAC adminstration without
loosing central control over broad policy. It is proposed to
use a second level of roles for administrative purposes and
so enable to spread administrative responsibility over more
administrative roles. This work is build upon the cognitions
of the RBAC models given in the proposed NIST standard.

VI. CONCLUSION

We have presented CSAP, an autonomous software module
offering programming interfaces to core security services
such as authentication, access control, auditing and security
management. It is currently developed as part of the ongoing
EU-funded Webocracy project. We further concentrated on the
access control facility of CSAP that is an implementation of
the Core RBAC model described in [1]. Regarding to the func-
tional specification of the Core RBAC model, we formulated
some additional functional requirements that had to be met by
the implementation of an administration console. Additional
non-functional requirements for the software architecture of
CAC had been presented as well. To meet the functional
requirements, the required functionality of Core RBAC had
to be completed and implemented by the CSAP and CAC.

In future works, the access control facility of CSAP will
be extended conforming to the remaining RBAC models as
well as CSAP will be extended to include alternative plug-in

security services. In addition, the configuration functionalities
of CSAP for managing several applications with different
storage requirements will be improved. The improvement of
the CAC is planned to go along with the extension of CSAP.
Therefore we designed the CAC in a flexible, extensible way.

ACKNOWLEDGMENT

We would like to thank our project partners for helpful
comments and stimulating discussions. This work is done
within the Webocracy Project which is supported by European
Commission DG INFSO under the IST programme, contract
No. IST-1999-20364. The content of this publication is the
sole responsibility of the authors, and in no way represents
the view of the European Commission or its services.

REFERENCES

[1] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli,
“Proposed NIST standard for role-based access control,” ACM Transac-
tions on Information and Systems Security, vol. 4, no. 3, pp. 224–274,
August 2001.

[2] F. Dridi, G. Pernul, and T. Sabol, “The Webocracy project: Overview and
security aspects,” in Professionelles Wissensmanagement: Erfahrungen
und Visionen, S. et al., Ed. Shaker Verlag, Aachen, 2001, pp. 401–408.

[3] J. Paralic, T. Sabol, and M. Mach, “A system to support e-democracy,”
in Proc. of the 1st eGovernment Conference within DEXA2002, Aix-en-
Provence, France, September 2002, pp. 288–291.

[4] F. Dridi, M. Fischer, and G. Pernul, “CSAP – an adaptable security
module for the e-government system Webocrat,” in Proc. of the 18th
IFIP International Information Security Conference (SEC 2003), Athens,
Greece, 26-28 May 2003, pp. 301–312.

[5] Sun Microsystems, “JavaServer Pages 2.0 Specification,
Proposed Final Draft ,” April 2003. [Online]. Available:
http://jcp.org/aboutJava/communityprocess/first/ jsr152/index3.html

[6] Sun Microsystems , “Java Servlets,” Dezember 2001. [Online].
Available: http://java.sun.com/products/servlet/

[7] J. Singh, Stearns, Designing Enterprise Applications with the J2EE.
Addison-Wesley, 2002, iSBN 0-201-78790-3.

[8] D. Ferraiolo, J. Barkley, and D. Kuhn, “A role-based access control
model and reference implementation within a corporate intranet,” ACM
Transactions on Information and System Security, vol. 2, no. 1, pp. 34–
64, February 1999.

[9] “Rbac in the sun solaris 7 operating environment,” Mai 2002.
[10] R. S. Sandhu, V. Bhamidipati, E. Coyne, S. Ganta, , and C. Youman,

“The ARBAC97 model for role-based administration of roles: prelimi-
nary description and outline,” in Proceedings of Second ACM Workshop
on Role-Based Access Control, Fairfax, Virginia, November 6-7 1997.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

