
SOWAC: A Service-Oriented Workflow Access Control Model

XU Wei, WEI Jun, LIU Yu, LI Jing

Technology Center of Software Engineering, Institute of Software,
the Chinese Academy of Sciences, Beijing 100080, P.R. China

E-mail: {xuwei, wj, liuyu, lij}@otcaix.iscas.ac.cn

Abstract

Workflow access control is the fundamental issue in
workflow security. With the development of enterprise
globalization and the constant re-engineering and
optimizing of enterprise business, the organization
becomes more dynamic and its business process is
frequently changing. As a result, workflow access
control turns more complicated and entails a compara-
tively operational mechanism. To solve the problem, in
view of decoupling workflow access control model
from workflow model, we propose a Service-Oriented
Workflow Access Control (SOWAC) model in this
paper. In SOWAC model, service is the abstraction of a
task and the unit for applying access control. We pre-
sent the elements of SOWAC model and illustrate the
enforcement of SOWAC with an example workflow.
Then the dynamic separation of duty for SOWAC
model is proposed based on the authorization history
of services. By applying SOWAC in a real workflow
management system, we show SOWAC model is practi-
cal and effectual.

1. Introduction

Workflow management system provides the

infrastructure for Business Process Automation (BPA).

With different organizations participating in workflow

applications and each of them having its unique organ-

izational structure, software systems and security re-

quirements, workflow management system should

support a process-level security mechanism. Workflow

access control is the fundamental issue in workflow

security [1]. The traditional access control model ex-

presses an authorization as a tuple (s,o,p), specifying a

subject (s) can gain privilege (p) to an object (o). To

ensure that authorized subjects gain access on the re-

quired objects only during the execution of the specific

task in a workflow application, granting and revoking

of privileges need to be synchronized with the progres-

sion of the workflow from one task to another. This is

not feasible unless there exists a workflow access con-

trol mechanism that authorizes an individual in syn-

chronization with the progression of workflow.

Workflow access control mechanism aims to im-

plement the security policies of an organization. First,

it should fulfill the security requirements of an organi-

zation; second, it should realize the security goals of an

organization. With the progression of enterprise global-

ization and the constantly re-engineering and optimiz-

ing of enterprise business, the organization becomes

more dynamic and its business process is frequently

changing. It necessitates re-assigning privileges to

participants in business processes, thus increasing

complexity of workflow access control. To deal with

this, workflow access control model should be decoup-

led from the workflow model so that we are able to

tune the workflow access control more dexterously to

meet changes in workflows and organizations. In this

paper, we propose a Service-Oriented Workflow Ac-

cess Control model, SOWAC for short. In SOWAC

model, service has been defined as abstraction of a task

in a workflow, which describes interactions between

workflow and its participants (users or applications).

Therefore, SOWAC replaces access control on tasks

with access control on services.

The remainder of this paper is organized as follows.

In section 2, we investigate two major researches,

RBAC and TBAC, on workflow access control. In

section3, we present our SOWAC model, with its for-

malized description, enforcement and dynamic separa-

tion of duty that is based on the authorization history of

services. Section 4 provides the application of SO-

WAC in ONCEPI, a practical workflow management

system. Section 5 provides conclusions and future

research directions.

2. Related Research

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

2.1. Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) has become a

very popular access control paradigm. The best known

of the RBAC models is the RBAC96 family of models

proposed by Sandhu et al [2]. Figure 1 shows the main

entities and their relationship with each other within

the RBAC96 model. It can be seen that users are asso-

ciated with roles. In turn, roles are associated with

permissions. Users are typically humans or computer

programs. Roles are defined in terms of responsibility

that are often associated with a specific job function.

As such, users are associated with roles based on their

qualification to accept the responsibilities. Constraints

(e.g., separation of duty) can apply to relations and

functions in RBAC model. This is an effective mecha-

nism for establishing higher-level organizational pol-

icy.

Figure 1. RBAC96 model
RBAC allows the specification of access control

policy in a way that maps naturally to an organization’s

structure and the concept of a role is correspondent to

an organizational position. So many researchers chose

RBAC as the basis for workflow access control. Kan-

dala and Sandhu extended RBAC96 to a secure work-

flow model by introducing explicit permission assign-

ment (permissions assigned to a role) and implicit

permission assignment (permissions on task instances)

[3]. The permissions on task instances are assigned to

roles based on explicit permission assignment. If a task

is assigned to a role then all instances of the task are

also assigned to the same role. Bertino et al. proposed

workflow role specification that defined the role order

for executing tasks. Furthermore, they present a con-

straint specification language to express the authoriza-

tion rules [4]. Similarly, by associating tasks with roles,

Miller et al. presented a workflow security framework

using RBAC in the METEOR workflow project [5].

However, because RBAC does not consider workflow,

all these researches focused only on associating tasks

with roles, which leads to workflow model being

tightly bound with RBAC model. Consequently, it is

very difficult to re-configure workflow access control

when workflow model or organization model has been

changed.

2.2. Task-Based Authorization Control
(TBAC)

Thomas and Sandhu recognized that with the in-

creased automation of business activities there is a

need for re-thinking the access control paradigms and

they presented Task-based Authorization Controls

(TBAC)[6,7]. TBAC is a task-oriented model for ac-

cess control and authorization. It is an active security

model that is well suited for workflow management

system. From their task-oriented point, a high level

task consists of several subtasks with multiple depend-

encies between the tasks that determine whether a

particular permission may indeed be granted. It can be

seen that this resembles the idea of a business process

consisting of a network of tasks that are linked accord-

ing to business rules. In TBAC, an authorization-step is

used to describe the properties of a task and form the

basis of modeling access control. Every authorization-

step maintains its own protection state. The initial

value of a protection state is the set of permissions that

are turned on (active) as a result of the authorization-

step becoming valid. However, the contents of this set

will keep changing as an authorization-step is proc-

essed and the relevant permissions are consumed. Con-

ceptually, permissions are checked-in and checked-out

in a just-in-time fashion based on tasks. The TBAC

family of models is, however, not defined to be or-

thogonal to workflow. Several workflow-related con-

cepts are introduced as an intrinsic part of the models,

so TBAC is coupled with workflow model tightly. In

addition, TBAC does not provide tools for mapping the

access control mechanism to its corresponding organi-

zation model. Therefore, it is too complex to imple-

ment TBAC in a practical workflow management sys-

tem.

3. A Service-Oriented Workflow Access
Control Model (SOWAC)

3.1. SOWAC Model

By decoupling access control model from workflow

model, we propose a Service-Oriented Workflow Ac-

cess Control Model (SOWAC). SOWAC also uses a

role as the semantic construct forming the basis for

access control policy, because the concept of a role

facilitates modeling organizational hierarchy. How-

ever, rather than associates roles with tasks directly,

SOWAC binds them through such a service as an inter-

face. Service is an abstract expression of a task and

permissions are assigned to services, instead of roles.

Dependences between tasks, which are fundamental

elements of TBAC, are counterparts of constraints for

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

services in SOWAC. Figure 2 presents the SOWAC

model and its relation with the elements of workflow.

For the sake of brevity, a set of notations has been

adopted that runs as follows:

 Wf: workflow

WfIns: workflow instance

 T: task

TIns: task instance

U: a set of users

R: a set of roles

S: a set of services

P: a set of permissions

SS: a set of S-sessions

C: a set of constraints

The elements, relations and functions of SOWAC

are defined as below:

(1) A workflow (Wf) is represented as a partially

ordered set of tasks and every task (T) is a 3-tuple

. D},,{ outin DDOPT in is the set of input data types, Dout

is the set of output data types, and OP is the set of

operations that should be executed on T.

(2) , a many-to-one task to service as-

signment relation. Each task has only one service as its

abstract expression and one service can be assigned to

several tasks.

STTS

(3) A workflow instance (WfIns) is a set of task

instances . Each TIns is

corresponds to a service instance.

},...,,{ 21 nTInsTInsTInsWfIns

(4) , a partial order on R that is called

role hierarchy. This relation can be written as . For

example, indicates that r

RRRH

21 rr 2 is the dominant role

of r1.

(5) , a many-to-many user to role as-

signment relation.

RUUR

(6) , a many-to-many service to role as-

signment relation. If a service is assigned to the role r

RSSR

i,

this service is implicitly assigned to the dominant roles

of ri,][][):)(:,(jijiji rSRsrSRsrrSsRrr .

(7) , a one-to-many service to permis-

sion assignment relation. In the P set, permission is the

abstract description of privileges for finishing a task.

The nature of permissions is highly dependent upon the

implementation details of the system, so we interpret

the permissions for a workflow in terms of its compo-

nents such as tasks and operations on them like exe-

cute.

PSSP

(8) S is the set of services and we denote a service

as }},{,,,{ soutin SRSPPAPAs . PAin and PAout are,

respectively, the set of input data types and the set of

output data types. SP is the set of permissions assigned

to s and SR is the set of roles assigned to s. The partial

local order for SR is denoted . There are three rules

circumscribing activation of a role for a service s. First,

if r

s

1 and r2 are both assigned to s and , r21 rr s 1 should

be activated before r2. Second, if r1 and r2 are both

assigned to s, there is no partial local order between

them and , r21 rr 1 should be activated before r2.

Third, if r1 and r2 are both assigned to s and they have

no partial order relation in RH and SR, either of them

can be activated.

Figure 2. SOWAC model and its relations with
elements of workflow

(9) Service instance is a process of service invoca-

tion and we denote a service instance as SIns. SIns is a

4-tuple },,,{ rExePddSIns outin . In SIns, din is the set

of input parameters and dout is the set of output parame-

ters. ExeP is the set of activated permissions for a

service instance and these permissions are granted to r

that is the activated role.

Figure 3. S-session, user and service instance

(10) SS is the set of S-sessions for invocating ser-

vices and each S-session is used for one and only one

service instance. During a S-session, a user is associ-

ated with a service instance, as shown in figure 3.

Upon authentication to workflow management system,

a user receives no permissions. When he embarks on a

task, a service instance is thus created for the service

assigned to this particular task. Also, a S-session is

established for the user and the appropriate role and

permissions of the service instance become available to

the user. As soon as the user ceases working (suspend,

cancel or finished) on the task, the S-session is closed

and the service instance is destroyed. As a result, the

corresponding role and permissions are revoked. There

are two functions for a S-session: ,

which maps a specific user to a S-session, and

UsersessionSsuser:

SInssessionSssi: , which maps a service instance to a

S-session. In run-time, SOWAC is able to support the

principle of least privilege [8] through S-session.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

(11) C is the set of authorization constraints en-

forced on different elements and relations of SOWAC

model. Using a set of constraints is a powerful mecha-

nism for laying out high-level organizational policy,

such as separation of duty. The details of constraints

will be discussed in section 3.3.

3.2. An Example

Figure 4. An example workflow

Figure 5. Role hierarchy example

Figure 6. Enforcement of SOWAC in the exam-
ple workflow

To illuminate the enforcement of SOWAC, we pre-

sent an example workflow for SOWAC in this section.

Figure 4 describes a portion of a typical purchasing

workflow. In the portrayed workflow, a buyer will

complete a purchase order (T1). Thereafter an account-

ant will account the order (T2) and another accountant

will re-account the order (T3). Orders in excess of

10000 are forwarded to the manager for approval (T4),

whereas the buyer send smaller orders to suppliers

(T5). Figure 5 depicts the role hierarchy relating to the

example workflow. As we can see, R1 is the role of

manager, R2 is the role of buyer and R3 is the role of

accountant. We define the set of permission

P={CREATE ORDER, ACCOUNT ORDER, AP-

PROVE ORDER, REJECT ORDER, SEND ORDER}.

According to the requirements of data and operations

in each task, we can define services as below.

(1) Service S1 for creating order task T1:

S1={NULL, ORDER, {CREATE ORDER},

{{R1,R2},{ }}}.12 RR s

(2) Service S2 for accounting order task T2 and re-

accounting order task T3: S2={ORDER, ORDER,

{ACCOUNT ORDER}, {{R3, R1}, { }}}.13 RR s

(3) Service S3 for approving order task T4:

S3={ORDER, APPROVED, {APPROVE ORDER},

{{R1},{}}}.

(4) Service S4 for sending order task T5:

S4={ORDER, NULL, {SEND ORDER}, {{R2, R1},

{ }}}.12 RR s

Figure 6 shows the associations between SOWAC

elements of the example workflow. During the design-

ing stage, three works need to be performed consecu-

tively: (1) Generating the organization model through

users, roles and role hierarchies; (2) Creating a set of

permissions specific to the workflow; (3) Defining

services and associating services with pertinent roles

and permission. In the run-time, a service instance is

created and assigned to an appropriate user through a

S-session, e.g., in figure 6, user A acquired SIns3 dur-

ing a S-session.

3.3. Dynamic Separation of Duty

With regard to the constraints in SOWAC, we fo-

cus only on separation of duty (SoD), because it is a

well-known security policy and an important constraint

in workflow security [1,4]. The purpose of SoD is to

prevent fraud by requiring the involvement of more

than one individual in completing a process [9,10,11].

In a workflow context, SoD has to be divided and

extended into static and dynamic SoD [12]. Static SoD

enforces certain rules during build time of the work-

flow and is therefore applied to the workflow specifi-

cation. Static SoD is too strict to apply in a workflow

management system. In contrast, dynamic SoD is en-

forced during run time, which is more flexible and

adjustable. In this paper we will concentrate on dy-

namic SoD. The dynamic SoD for SOWAC is based on

the authorization history of services. With the progres-

sion of a workflow instance, the authorization history

of services is kept as the basis for enforcing next dy-

namic SoD constraints.

Perelson et al. proposed “conflicting entities” for

SoD in workflow environment [13]. Conflict between

entities, in the general sense, implies that the risk of

fraud increases if associations with those entities are

not carefully controlled. We apply the concept “con-

flicting entities” in SOWAC and present the definitions

of four “conflict entities” with relevant examples from

previous example workflow of section 3.2.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Definition 1: Conflicting permissions
Conflicting permissions are permissions that can

result in unnecessary power if bestowed on the same

person. represents the set of conflicting

permissions, and is the

function to identify the conflicting permissions of a

specified permission p.

PPCP

}),(|{)(CPppppCPWith ii

Example: “CREATE ORDER” and “APPROVE

ORDER” are conflicting permissions.

Definition 2: Conflicting roles
Conflicting roles are roles that together possess the

ability to conspire. represents the set of

conflicting roles, and

RRCR

}),(|{)(CRrrrrCRWith ii is

the function to identify the conflicting roles of a speci-

fied role r.

Example: “Manager” and “Buyer” are conflicting

roles.

Definition 3: Conflicting users
Conflicting users are users who will together have

sufficient power to collude, and are likely to do so. In

practice, this may be family members or previously

known accomplices. represents the set of

conflicting users, and

UUCU

}),(|{)(CUuuuuCUWith ii is

the function to identify the conflicting users of a speci-

fied user u.

Example: If use A and user B are brothers, they are

conflicting users and should be treated as one user in a

workflow instance. E.g., if user A has the permission

“CREATE ORDER” in a workflow instance, user B

will never be granted with the permission “APPROVE

ORDER” in the same instance.

Definition 4: Conflicting services
Conflicting services are services that should be

associated with conflicting permissions. SSCS

represents the set of conflicting services, and

is the function to identify

conflicting services of a specified service s.

}),(|()(CSssssCSWith ii

Example: We can identify conflicting services by

extracting mutual exclusive relations between tasks.

Service S1 (for creating order task) and service S3 (for

approving order task) are conflicting services.

The authorization history of services is denoted as

SAH, which is the authorization base of dynamic SoD

in SOWAC. SAH is used to track the authorizating

process of service instances in a workflow instance.

Each record in SAH, as the result of a S-session, is a 4-

tuple . For a S-session, “sid“ is the

identifier of a service that the service instance belongs

to, “UsedP“ is the set of permissions consumed by the

user, “r“ is the activated role for the user and “u“ is the

identifier of the user.

),,,(urUsedPsid

The following rules define the dynamic SoD con-

straints for SOWAC.

Rule 1:
In a workflow instance, conflicting roles should not

be activated for the same user or conflicting users.

CUuuuuSAHurUsedP

sidSAHurUsedPsidCRrr

jijijjj

jiiiiji

),(),,

,(),,,(),(

Rule 2:
In a workflow instance, conflicting permissions

should not be granted to the same user or conflicting

users.

CUuuuu

UsedPpSAHurUsedPsid

UsedPpSAHurUsedPsidCPpp

jiji

jjjjjj

iiiiiiji

),(

),,,(

),,,(),(

Rule 3:
In a workflow instance, conflicting services should

not be assigned to the same user or conflicting users.

CUuuuuSAHurUsedPsid

SAHurUsedPsidCSss

jijijjjj

iiiiji

),(),,,(

),,,(),(

When enforcing dynamic SoD in a workflow in-

stance, the S-session should execute these three rules

by referring to the SAH and the sets of conflicting

entities. Also, the record of current S-session will be

added to the SAH. The result of calculating the dy-

namic SoD constraints can be presented by a set of

users, denoted as DeniedU. Users in DeniedU are de-

nied to access the service instance in the S-session. The

following algorithm is used by the S-session to find out

the DeniedU for a service instance.

Algorithm: dynamic SoD constraints based on

SAH

Input: CP, CR, CU, CS, SAH, n (sid of the ser-

vice), r, ExeP

Output: DeniedU

Steps:
Step 1: Calculating DeniedU1, the set of users

whose access are denied in accordance with rule 1, by

the following function.

})((),,,(|{
)(

1

uuuCUWithuSAHurUsedPsidu

DeniedU

zz
rCRWithr

ziyx

i

Step 2: Calculating DeniedU2, the set of users

whose access are denied in accordance with rule 2, by

the following function.

})((

),,,(|{
)(

2

uuuCUWithu

UsedPpSAHurUsedPsidu

DeniedU

zz

ii
ExePppCPWithp

zyix

i

Step 3: Calculating DeniedU3, the set of users

whose access are denied based on rule 3, by the follow-

ing function.

})((),,,(|{
)(

3

uuuCUWithuSAHurUsedPsidu

DeniedU

zz
sCSWiths

zyxi

ni

Step 4:
321 DeniedUDeniedUDeniedUDeniedU

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Figure 7. Architecture of ONCEPI

4. Applying SOWAC in ONCEPI Work-
flow Management System

We apply SOWAC in a practical workflow man-

agement system, called ONCEPI, which is a process

integration platform developed by TCSE of ISCAS. As

shown in figure 7, ONCEPI is comprised of four major

components: (1) Workflow Execution Server (WES)

that is responsible for interpreting the specification of a

workflow, creating and managing workflow instances,

(2)Workflow Worklist Server (WWS) that manages the

interactions with the workflow participants,

(3)Workflow Resource Server (WRS) that provides

services of workflow-related resource including role

service, workflow data service, application data service

and access control service, (4) Workflow Studio (WS)

that is a unified workflow development environment

and provides several tools, such as workflow modeling

tool, organization modeling tool and access control

configuration tool.

Access control service consists of an Authorization

Specification Module, a Service Authorization Log

Module, and a Service Authorization Manager.

Authorization Specification Module (ASM): This

module provides interfaces for access control configur-

ing tool to execute three types operations: defining

services and permissions, associating services with

roles and permissions, building the sets of conflicting

services and conflicting permissions. All the result of

these operations are stored in the Service Authorization

Repository (SAR). In addition, other organization-

related elements of SOWAC, i.e. roles, users, assign-

ment relations between them, conflicting roles and

conflicting users, are defined by organization modeling

tool through role service of WRS and deposited in the

Workflow Resource Repository (WRR).

Service Authorization Log Module (SALM):
This module is responsible for managing the authoriza-

tion log of services. When WES notified SALM that a

new workflow instance is started, SALM will initialize

a new SAH for this workflow instance and maintaining

the SAH in synchronization with the progression of the

workflow instance.

Service Authorization Manager (SAM): This

module is to manage the service authorization through

the S-session mechanism. Practically, it is the imple-

mentation of core functions of SOWAC. Those func-

tions are creating and revoking of service instances,

creating and revoking of the S-session, and enforcing

the dynamic SoD constraints based on SAH.

During the execution of a workflow instance, WES

sends an work item, which is the representation of

work to be processed in the context of a task, to WWS,

and then WWS will request a service instance from

access control service by submitting the service ID and

the workflow instance ID to WRS. Afterwards, WRS

performs an authorization process to determine an

executable service instance. The details of this process

are presented as below.

(1) After receiving the service ID and the work-

flow instance ID, SAM queries the corresponding

service definition and SAH from SAR by using func-

tions of ASM and SALM.

(2) SAM creates a service instance based on the

service definition and creates a S-session for this ser-

vice instance.

(3) S-session calculates the DeniedU by executing

the algorithm of the dynamic SoD constraints based on

SAH.

(4) SAM sends the DeniedU and the activated role

ID of the service instance to WWS.

(5) Using the data from SAM, WWS chooses a

feasible user and sends the user ID to SAM.

(6) SAM allows the S-session to associate the user

ID with the service instance, and then the S-session

sends the service instance to WWS.

(7) WWS treats the service instance as the security

context, including the set of executable permissions

and the executable role, for the work item, and adds the

work item into corresponding user’s work list.

(8) After work item is finished, WWS returns the

service instance to SAM.

(9) SAM revokes the S-session and asks SALM to

add the recorder of current service authorization in

SAR.

5. Conclusions and Future Work

In view of decoupling workflow access control

model from workflow model, we have presented a

Service-Oriented Workflow Access Control model,

called SOWAC, in this paper. The novel part of SO-

WAC is the key concept of using a service as an ab-

straction of a task in SOWAC; thus traditional access

control on tasks is replaced with access control on

services. Hence, workflow model and organization

model can be incorporated in SOWAC model, enabling

resilience to possible alterations. Moreover, we have

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

discussed the dynamic separation of duty based on the

authorization history of services and presented a con-

straint algorithm. By applying SOWAC model, we

have implemented a flexible access control in ON-

CEPI, a workflow management system. Currently, it is

that we can only intuitively use definition of service in

a straightforward way without taking into account

detailed dependencies between tasks and even a precise

method for extracting service from tasks and intricate

relations in between. Our future work lies in coming up

with some practical approaches to define services,

thereby implementing a better service modeling in

ONCEPI.

Acknowledgement

This research is supported by the National Natural

Science Foundation of China (60173023, 60203029),

the Chinese National “863” High-Tech Program

(2001AA113010, 2001AA414020, 2001AA414330),

and the Chinese National “973” Key Research Program

(2002CB312005).

Reference

[1] Workflow Management Coalition, “Workflow Security

Considerations – White Paper,” Technical Report

WFMC-TC-1019, Workflow Management Coalition,

1998. http://www.wfmc.org

[2] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman,

“Role-Based Access Control Models”, IEEE Computer,

29(2): 38-47, 1996.

[3] S. Kandala, R.S. Sandhu, “Secure Role-Based Work-

flow Models”, Proceedings of IFIP TC11/WG11.3 Fif-
teenth Annual Working Conference on Database and
Application Security, Kluwer Press, July 2001, pp.45-

58.

[4] E. Bertino, E. Ferrari, V. Atluri, “Specification and En-

forcement of Authorization Constraints in Workflow

Management Systems”, ACM Transactions on Informa-
tion and System Security, 2(1): 65-104, 1999.

[5] J. Miller, M. Fan, S. Wu, I. B. Arpinar, A. Sheth, K.

Kochut, “Security for the METEOR Workflow Man-

agement System”, Technical Report UGA-CS-LSDIS-

TR-99-010, University of Georgia, June 1999.

http://webster.cs.uga.edu/~budak/papers/security_repor

t.pdf

[6] R.K. Thomas, R.S. Sandhu, “Conceptual Foundations

for a Model of Task-Based Authorizations”, Proceed-
ings of the Computer Security Foundations Workshop
VII, IEEE Press, June 1994, pp.66-79.

[7] R.K. Thomas, R.S. Sandhu, “Task-based Authorization

Controls (TBAC): A Family of Models for Active and

Enterprise-oriented Authorization Management”, Pro-
ceedings of the IFIP TC11/WG11.3 Eleventh Interna-
tional Conference on Database Securty XI: Status and
Prospects, Chapman & Hall Press, August 1997,

pp.166-181.

[8] K. Karlapalem, J. Gray. III., P.C.K Hung, “Issues in

Document Security Enforcement for Activity Execu-

tion in CapBasED-AMS”, Proceedings of 12th Interna-
tional Conference on Information Networking, IEEE

Press, January 1998, pp.96-99.

[9] R.S. Sandhu, “Transaction Control Expressions for

Separation of Duties”, Proceedings of the 4th Aero-
space Computer Security Conference, IEEE Press, De-

cember 1988, pp.282-286.

[10] R.S. Sandhu, “Separation of Duties in Computerized

Information Systems”, Proceedings of IFIP WG11.3
Workshop on Database Security IV: Status and Pros-
pects, Elsevier Press, September 1990, pp.179-189.

[11] M.J. Nash, K.R. Poland, “Some Conundrums Concern-

ing Separation of Duty”, Proceedings of the 1990 IEEE
Symposium on Security and Privacy, IEEE Press, May

1990, pp.201-207

[12] K. Konstantin, W. Harald, “Analyzing Separation of

Duties in Petri Net Workflows”, Proceedings of the In-
ternational Workshop on Mathematical Methods, Mod-
els and Architectures for Computer Networks Security,
Springer Press, May 2001, pp.102-114.

[13] S. Perelson, R. Botha, J. Eloff, “Separation of Duty

Administration”, South African Computer Journal,
27:64-69, 2001.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

	footer1:

