
James B.D. Joshi
University of Pittsburgh

Rafae Bhatti, Elisa Bertino,
and Arif Ghafoor
Purdue University

Access-Control Language for
Multidomain Environments

The XML Role-Based Access Control (X-RBAC) specification language addresses

multidomain environments’ policy-specification needs. X-RBAC is based on an

extension of the widely accepted US National Institute of Standards and Technology

role-based access-control (RBAC) model. In addition to allowing specification of

RBAC policies and facilitating specification of timing constraints on roles and access

requirements,X-RBAC provides a framework for specifying mediation policies in a

multidomain environment where RBAC policies have been employed.

Recent advances in high-performance
computing and networking technolo-
gies have fueled the growth of large-

scale distributed applications. With the
rapid proliferation of information tech-
nologies, security is a growing concern.
Many studies show that unauthorized
access, particularly by insiders, constitutes
a major security problem for enterprise
applications.1 The issue is magnified in
multidomain environments, in which mul-
tiple distributed organizations — each with
its own security policy — interoperate.2,3

XML technology has emerged as the
most promising approach for developing
pragmatic security solutions for multido-
main environments. XML allows uniform
representation, interchange, sharing, and
dissemination of information over hetero-
geneous environments.4 The key challenge
for securing an XML-based multidomain
environment is developing access-control
models that grant access based on envi-
ronmental context (such as administrative
domain or access time) and information
content, object and subject type, profile,
or qualifications, and facilitate easy inte-

gration of multiple security policies.2

Role-based access-control (RBAC)
models show clear advantages over tradi-
tional discretionary and mandatory
access-control models2,5 with regard to
these requirements. In particular, an RBAC
approach allows uniform representation of
diverse security policies and supports effi-
cient access management. Our XML-based
access-control policy (X-RBAC) specifica-
tion language extends the US National
Institute of Standards and Technology
(NIST) RBAC model6 with temporal con-
straints, role attributes, contextual condi-
tions, a notion of role states, and
preconditions for state transitions. X-
RBAC provides a wide range of protection
granularity for protected data and supports
policy mapping in multidomain environ-
ments. Our approach allows access control
at the element-level granularity of XML
sources and enforces concept-level access
control on huge document repositories.

Although researchers have aligned
XML technologies with RBAC sys-
tems,7–10 to the best of our knowledge, no
one has investigated an XML-based

40 NOVEMBER • DECEMBER 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

A
cc

es
s-

C
on

tr
ol

 P
ol

ic
y

RBAC language for access management in mul-
tidomain environments. In addition, our model
supports specification of policies in arbitrary mul-
tidomain environments.

Extended RBAC Model
Figure 1 is a simplified version of the NIST RBAC
model, which comprises four key elements: users,
roles, permissions, and sessions. System adminis-
trators can apply constraints to the assignment of
users and permissions to roles and users’ activa-
tion of roles in sessions. A user assigned to a role
can activate the role in a session and acquire all
the permissions assigned to it. We extend the NIST
model with parameterized roles, context and con-
tent-based constraints, and XML-based policy
components (see Figure 1) for specifying various
elements of the extended-RBAC model.

Roles with Attributes
Underlying our extended RBAC model is the notion
that roles can have associated temporal constraints,
specifying when they can be used. Depending on
the application semantics, all roles might not be
available to all users at all times. Our model reflects
this notion by associating different states with roles.
Figure 2 shows the three potential role states:

• Disabled indicates that the role can’t be acti-
vated in a session.

• Enabled indicates that the users authorized for
the role at the time of the request can activate
the role.

• Active implies that at least one user has acti-
vated the role.

A role in enabled or active state transitions to dis-
abled state if the system generates a role-disabling
event. For instance, after a role stays enabled for a
specified interval of time, the system generates the
disabling event to disable it and prevents users
from activating it. The model allows capturing pre-
conditions that define how a role might change its
state. Each precondition consists of logical condi-
tions defined on elements of a role’s parameter set.
For instance, a role enabling precondition might
simply involve checking whether the current time
is an instant of the specified interval defined for
that role. Similarly, a role activation precondition
might simply involve checking whether the user’s
network domain matches some prespecified
domain name. The model also allows specification
of preconditions for controlling assignment of

users and permissions to roles. For instance, a user
assignment precondition may specify that a user
might be assigned to a given role if the user’s cre-
dential values satisfy the prespecified criteria.

Role-assignment parameters typically include
attributes whose values:

• the system administrator assigns to a user
together with the authorization to use the
role (typically, these refer to prespecified
organization-specific values) or

• the user provides and for which the user must
have a certificate (typically, these refer to
generic values an unknown user can present).

The attribute sets for the three types of precondi-

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 41

Access-Control Language

Figure 1. US National Institute of Standards and Technology role-
based access control (RBAC) model and X-RBAC policy components.
The X-RBAC framework adds policy components to define the
extended RBAC elements: users and their credentials, roles with
attributes and associated preconditions, permissions, and sessions.
For example, XML user sheets (XUS) define users and their
credentials, XML role sheets (XRS) specify a role’s attributes and
context-based constraints using these attributes.

Permissions

Hierarchy

XML user
sheet (XUS)

XML role sheet (XRS) XML permissions
sheet (XPS)

XML user-role assignment
sheet (XURAS)

XML permission-role assignment
sheet (XPRAS)

Constraints
(separation of

duty, contextual)

User
assignment

Permission
assignment

Operations

Objects

Users Roles

Sessions

Figure 2. Role states. Disabled roles can’t be
activated in a session, whereas enabled roles can
be activated by authorized users.

Enabling

Deactivation

Disabling

Activation
Enabled Active

Disabled

Activation

Deactivation

42 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Nontheme Feature

tions aren’t disjoint; the same parameters can affect
role enabling, assignment, and activation. The
“Role Preconditions” sidebar illustrates the notion
of a parameterized role and role preconditions.

Capturing Context
and Content Information
In general, we can use parameterized roles to cap-
ture context-based access requirements by defin-
ing an appropriate set of parameters and predicates

associated with them. Our specification framework
captures time and location context.

Time. We use the periodic time expression repre-
sented by pairs of the form [I, P] and calendars — that
is, countable sets of contiguous intervals — to express
timing constraints.11 We write Ca � Cb if each inter-
val of calendar Cb is covered by a finite number of
intervals of Ca. P is a periodic expression denoting an
infinite set of periodic time instants, and I = (begin,
end) is an interval denoting the lower and upper
bounds imposed on instants in P. Formally,

P = �n
i=1 Oi.Ci � x.Cd,

where Cd, C1, …, Cn are calendars and O1 = all, Oi �
2� � {all}, Ci � Ci-1 for i = 2, ..., n, Cd � Cn, and x �
�. The expression to the left of � identifies the set
of starting points of the intervals, and the expres-
sion to the right indicates each interval’s duration
in terms of calendar Cd. For example, {all.Years +
{3, 7}.Months � 2.Months} represents the set of
intervals that start on the third and seventh months
of every year and have two-month durations.11 Fig-
ure 3 shows the XML specification for periodic time
denoting every Monday and Wednesday between 9
a.m. and 9 p.m. in 2003. Calendars’ Year, Month,
and Week are by default assumed to be associated
with all (for example, all.Year).

Location. A session parameter records the user
domain associated with an access request to provide
location-based access control. Additionally, X-RBAC
lets us capture attributes that profile user activities —
for example, login_time, login_date, and session
duration. The system processes such information
dynamically and incorporates it into access decisions.

Content. We allow content-based access control
for XML document sources at four levels: concep-
tual, XML schema, XML instance, and XML ele-
ment. We use a cluster-based approach to specify
conceptual-level access control by grouping infor-
mation content into concept clusters using a sim-
ilarity-based function for content classification.12

RBAC Policy
Specification Framework
Multidomain environments are evident in several
emerging systems, most prominently in Web ser-
vices and grid-based systems.13,14 Web services typ-
ically appear in business-to-business applications
in which service providers expose specific informa-

Figure 3. Periodicity expression. The XML specification defines
timing constraints. The example specifies intervals between 9 a.m.
and 9 p.m. of every Monday and Wednesday in 2003.

<PeriodicTimeExpr pt_expr_id = “PT1”
pt_begin = “2003-01-01”
pt_end = “2003-12-31”>

<StartTimeExpr>
<Day daySet = “Monday, Wednesday”/>
<Hour hourSet = “9AM”/>

</StartTimeExpr>
<DurationExpr cal = “Hours” len = 12/>

</PeriodicTimeExpr>

Figure 4.Example multidomain environments. A–D and X–Z are roles,
with links indicating inheritance. (a) Links a and b indicate interdomain
access between domains 1 and 2 such that users authorized for role C
are also authorized for roles Y and Z. (b) Adding links c and d leads to
a violation of the security principle, by extending authorization for role
C to role A through inheritance. (c) Role mapping from global role R to
local roles in the three domains indicates what roles a user assigned to
R may assume in the local domains in a federated environment.

A X

Y

Z

Domain 1

(a)

Domain 2

a

b

B C

D

A

Domain 3

(c)

B C

X

Domain 5

Y Z

r1

[I, P]1
[I, P]2

[I, P]3

[I, P]4

Domain 4

r2 r3

A X

Y

Z

Domain 1

(b)

Domain 2

a

b

d
c

B C

D

RGlobal role

tion to clients, or automated transactions occur
between two e-commerce applications. Grid-based
systems can span an Internet-sized environment
with heterogeneous systems distributed across mul-
tiple administrative domains.13

In a multidomain environment, such as those
illustrated in Figure 4, the key security goal is to
ensure that no violations occur during interdo-
main accesses. In particular, secure interoperation
should enforce two principles3:

• Autonomy. An access that’s permitted within
an individual system must also be permitted
under secure interoperation.

• Security. An access that isn’t permitted within
an individual system can’t be permitted under
secure interoperation.

Figure 4b illustrates a violation of the security
principle. Let A, B, C, D, X, Y, and Z be roles and
let the links indicate inheritance — that is, users
authorized for role A are also authorized for roles
B, C, and D; users authorized for C are also autho-
rized for D, and so on. Let links a and b indicate
interdomain accesses allowed between domains 1
and 2. Assuming the interdomain links also have
inheritance semantics, users authorized for role C
are also authorized for roles Y and Z. Clearly, links
a and b uphold the two principles. If we add inter-
domain links c and d, as Figure 4b depicts, we vio-
late the security principle: Users originally autho-

rized for role C and not for role A are now autho-
rized for role A because of the inheritance path
from C to Y to Z to A.

Figure 5 depicts two architectural configura-
tions characterizing a multidomain environment:
loosely coupled and tightly coupled (or federated)
multidomain environments. In the figure, domains

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 43

Access-Control Language

Figure 5. Architectural configurations in a multidomain environment. In
a loosely coupled multidomain environment (top), systems agree to
share information for a specified amount of time. In a tightly coupled,
or federated environment, one system is designated as the global, or
master domain,whereas the others are local. Arrows indicate the
general flow of access requests.Dotted lines indicate that domains
receiving access requests for information in other domains redirect the
requests to the global layer.

Local policy base
(domain 2)

Access-control module

Local policy base
(domain 1)

Access-control module Interdomain access

Loosely coupled

Global policy base

Access-mediation module

User’s requests User’s authorized view

Federated

Local policy base
(domain 4)

Access-control module

Local policy base
(domain 5)

Access-control module

Local policy base
(domain 3)

Access-control module

Role Preconditions

We use sets Xen, Xas, and Xac to denote
the elements of X associated with the

three preconditions: Xen corresponds to
role-enabling,Xas to role assignment, and Xac

to role activation.
For the role DoctorInTraining in

a hospital,where X = {time instant (t), time
duration (d), system load (l), user (u), role
(x), certification (c)}, we apply the three
preconditions.

Role-enabling precondition (Xen = {t, l}).
The system enables the role DoctorIn-
Training if the following conditions hold:

1. Time instant t falls on every workday
between 9 a.m. and 9 p.m.

2. System load l is low. Here, we assume
that the system load characterizes the

number of doctors and nurses
currently on active duty.

Role assignment precondition (Xas = {c, t}).
The system assigns Dr. Smith to
DoctorInTraining if the following
conditions hold:

1. Dr. Smith’s certification c is valid.Here,
c represents the certificate of eligibility
provided by a certifying authority.We
define a predicate ValidCertificate(c) for
this purpose.

2. Time instant t falls on every Monday,
Tuesday, and Wednesday between 9
a.m. and 9 p.m.

Role activation precondition (Xac = {t, u, r, d}).
An authorized user can activate

DoctorInTraining if the following
conditions hold:

1. Dr. Jones is on active duty as a supervisor.
We can use predicate active(u, r) to test
whether user u has activated role r. If
active(u,r) returns true for u = “Dr.Jones”
and r = SupervisorDoctor, this
condition is satisfied.

2. Active duration d for Dr. Jones is less
than or equal to two hours. We can
define a predicate ActiveDuration(u, r, d)
to check whether u has activated role r
for duration d.We then use the predicate
to check for u = “Jones,” d = “2 hours.”

The example also illustrates that we can
use an attribute in more than one precon-
dition type.

44 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Nontheme Feature

3, 4, and 5 form a federated environment, whereas
domains 1 and 2 form a loosely coupled environ-
ment. Multidomain environments can contain both
loosely coupled and federated components.

Loosely Coupled Multidomain Environments
In a loosely coupled multidomain environment,
independent systems dynamically come together
to share information for a period of time. For
example, a company that lets its consulting firms
partially share information during a contractual
period creates a loosely coupled environment with
its consultant companies.

Two access-mediation approaches are available
for these environments. The first uses a predefined
set of role mappings to mediate interdomain access-
es. This approach requires the constituent systems to
indicate the level of sharing they want to allow and
to establish a consistent set of mediation rules for
interdomain accesses. The second approach uses cer-
tificates to map unknown principals to predefined
roles. This approach is suitable for environments like
the Internet, in which anyone presenting required
credentials or role attribute values that satisfy role
preconditions gets access. Typically, this method
relies on a trust-management infrastructure.15 Either
approach can involve a trust-negotiation phase.

Federated Multidomain Environments
In a federated multidomain environment, one sys-
tem is typically designated master; the others are
local domains. The master mediates accesses to
individual systems through a global policy. For
example, we can view a digital government as a
federated system attempting to provide a set of ser-
vices by federating several government units.2 Such
systems can also characterize merged organiza-
tional systems in which the policies are integrated.
We can consider a grid a federated system in which
donor systems join by submitting their local poli-
cies.13,14 Typically, the global policy maps to local
policies. For instance, a global role can map to var-
ious local roles in individual domains. Figure 4c
shows the mapping of a global role R1 to the local
role C in domain 3, r1 and r3 in domain 4, and X in
domain 5. Table 1 depicts such a mapping specific
to a healthcare application environment.

Using this mapping, we can assign a doctor
who needs to be cross-appointed to different hos-
pitals at different times — for instance, to the
FederatedDoctor role between 9 a.m. and 6 p.m.
on Monday through Saturday. This means that dur-
ing those hours, Dr. Smith can assume the role
DayDoctor in hospital 1 on Mondays and Wednes-
days, and in hospital 2 on Tuesdays and Thursdays;
EmergencyDoctor in hospital 2 on Fridays; and
SupervisorDoctor in hospital 3 on Saturdays.

XML-Based Specification
Language for RBAC Model
Our XML specification framework, X-RBAC,
expresses RBAC policies as well as mediation poli-
cies in both loosely coupled and federated mul-
tidomain environments.

Figure 6 shows the XML syntax for policy speci-
fication. Our policy-specification components
(described in the following section) correspond to
various RBAC components depicted in Figure 1. With
X-RBAC, the system administrator can specify inte-
grated policies by including other policy definitions
as components through <!— Local Policy Defin-

Figure 6.X-RBAC policy specification format. The policy definition
contains the optional policy id;a policy name;XML policy components
related to users, roles,permissions,assignment of users and permissions
to roles;and optional local policy definitions of subdomains.

<!-- Policy Definition --> ::=
<XPolicy [policy_id = “(value)”]>
<PolicyName> (name)</PolicyName>
<!-- XML User Sheet -->
<!-- XML Role Sheet-->
<!-- XML Permission Sheet-->
<!-- XML User-Role Assignment-->
<!-- XML Role-Permission Assignment-->
[<!-- Local Policy Definitions-->]
[<!-- Policy Relationship Definitions-->]

</XPolicy>

Table 1. Example role mapping in a federated system.

Mapped to� Hospital 1 role C Hospital 2 roles r1 and r2 Hospital 3 role X
R is FederatedDoctor C = DayDoctor in PT1 r1 = DayDoctor in PT2 X = SupervisorDoctor in PT4

= [I,P]1, representing every Monday = [I, P]2, representing every Tuesday = [I, P]4, representing every weekend
and Wednesday and Thursday

r2 = EmergencyDoctor in PT3
= [I, P]3, representing every Friday

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 45

Access-Control Language

itions —>, thus supporting the dynamic creation
of articulated and complex multidomain policies. A
constituent policy can be a local policy in a federat-
ed system or a partner domain policy in a loosely
coupled environment. We include local policy defin-
itions or simply refer to them using local policy IDs.
If we define local policies, we must also define the
set of relationships between global and local policies
<!— Policy Relationship Definitions—>.

Because of size limitations, details on the syn-
tax of the specification language are presented
elsewhere.16 In this article, we present policy spec-
ification examples using the language.

X-RBAC Policy Specification
We use several basic specification components.

XML user sheets (XUS) define users and their
credential types. Credentials defining user qualifi-
cations and profile information are necessary
when unknown users will have system access. The
system checks whether the presented credential
values satisfy assignment preconditions for the
requested role. Figure 7 shows an instance of XUS
that defines a user and his credentials.

A credential type definition specifies the attribute
list associated with a credential type. Attributes can
be mandatory (mand) or optional (opt). Consider the
following user credential based on a general creden-
tial expression of the form ((cred_type_name
cred,_type_id), cred_expr), where cred_type_id
is a unique credential type identifier and cred_expr
is a set of attribute-value pairs:

((Nurse, “C100”), {(user_name, “John”,
mand), (age, 30, opt), (level, fifth, mand)}).

User definitions can simply define the
user_name and user_id, or also specify the
assigned credentials the user might carry. In Figure
7, the MaxRoles tag indicates the maximum num-
ber of roles the user can be assigned to.

We define permissions for a given system in
terms of objects and associated operations. Figure
8 is an example XML permission sheet instance; in
it, perm_id is a unique permission identifier. An
object can represent a cluster, schema, instance doc-
ument, or document element. We use object types
to distinguish them. The system administrator
assigns IDs to clusters, schemas, and documents.
XML Path Language (XPath) expressions specify
elements within a given XML document. A user
with access privileges to a cluster also has access to
all schemas and instance documents belonging to

the cluster. Similar semantics apply to schema and
their elements and instances. Propagation options
indicate whether a permission propagates down the
object hierarchy.4

In Figure 8, permission P1 allows a read oper-
ation on all documents within the scope of cluster
CL100 with the default propagation option (that is,
“no prop”). Similarly, permission P2 allows all
operations on all document instances conforming
to schema XS101, and P3 allows all operations on
document instance XI100, both with the default
propagation option. Lastly, permission P4 allows
a navigate operation on the XML name element,
also with the default propagation option.

A role can have associated enabling, assignment,
and activation preconditions, which we define using
the <EnabCondition>, <AssignCondition>, and
<ActivCondition> tags. For enabling and dis-
abling preconditions, we use the periodic time
expression (Figure 3) as a condition. X-RBAC lan-
guage includes a generic syntax for expressing an
arbitrarily complex logical expression.

A role definition can specify hierarchy rela-
tions using the <Junior> and <Senior> tags, and
express role cardinality using the <Cardinality>
tag. To specify separation-of-duty (SoD) con-
straints, we construct a role set and specify a car-
dinality stating how many roles from the set we
can assign to a user (Static SoD, or SSD) or a user
can activate (Dynamic SoD, or DSD).

Figure 9 shows an XML instance document
describing SpecialDoctor and Database Admin-
istrator roles along with the corresponding SSD
and DSD role sets. Accordingly, SpecialDoctor

Figure 7. An example XML user sheet showing the definition of a
user, John Smith, his credential information, such as age and level,
and the maximum number of roles he can assume.

<XUS>
<User u_id = “u1”>
<UserName> JSmith </UserName>
<CredType c_type_id = “C100”>
<CredExpr>
<FName>John</FName>
<LName>Smith</LName>
<age>30</age>
<level>5</level>

</CredExpr>
</CredType>
<MaxRoles> 2 </MaxRoles>

</User>
</XUS>

46 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Nontheme Feature

belongs to the SSDRoleSet identified by SSD1 with
cardinality 1, and hence we can’t assign users to
more than one role from this set. Similarly, the DBA
role belongs to the DSDRoleSet identified by DSD1
with cardinality 2, and hence authorized users can
activate no more than two roles at the same time.

The system administrator uses an XML user-role
assignment sheet (XURAS) to assign users to a role
by associating with it the required credentials, and
an XML permission-role assignment sheet (XPRAS)
to assign permissions to a role. Figure 10 shows an
XURAS instance. The example associates a set of

credentials with the SpecialDoctor role. It states
that any user with the credential type Nurse can be
assigned to the SpecialDoctor role only if the
user’s level is greater than 5 and age is less than 80.

The assignment of permissions to correspond-
ing roles reflects the policy specifications at the
conceptual, schema, instance, and element levels
in an XPRAS. Conceptual-level access control uses
roles related to concepts, as Figure 11 illustrates. In
Figure 11, the mapping identified by PRM1 associ-
ates the EyeDoctor role with permission P1, which
refers to a concept object cluster (see Figure 8). In

Figure 9. An instance of an XML role sheet describing two roles — SpecialDoctor and DBA — with their corresponding
static (SSD1) and dynamic (DSD1) separation-of-duty role sets. The SpecialDoctor role is enabled in the time interval
defined by periodic time expression PT1 (that is, between 9 a.m. and 9 p.m. every Monday and Wednesday in 2003) and if
the SupervisorDoctor role is active.

<XRS>
<Roles>
<Role role_name=“SpecialDoctor”>
<EnabCondition pt_expr_id= “PT1”>

<LogicalExpr>
<Predicate>
<Operator>eq</Operator>
<FuncName>isActive</FuncName>
<NameParam type=role>

SupervisorDoctor</NameParam>
<RetValue>true</RetValue>

</Predicate>
</LogicalExpr>

</EnabCondition>
<Junior> Resident </Junior>
<Cardinality>8</Cardinality>

</Role>
<Role role_name=”DBA”/>

</Roles>

<SSDRoleSet ssd_id = “SSD1”
ssd_cardinality = “1”>

<SSDRole>Nurse</SSDRole>
<SSDRole>SpecialDoctor</SSDRole>
<SSDRole>Dispenser</SSDRole>
<SSDRole>DBA</SSDRole>

</SSDRoleSet>

<DSDRoleSet dsd_id = “DSD1”
dsd_cardinality = “2”>

<DSDRole>DBA</DSDRole>
<DSDRole>Accountant </DSDRole>
<DSDRole>Cashier</DSDRole>

</DSDRoleSet>
</XRS>

Figure 8. An instance of XML permission sheet describing permissions as permitted operations over various object types,
such as cluster CL100 and XML schema document XS101.

<XPS>
<Permission perm_id = “P1”>
<Object type = “Cluster” id = “CL100”>
EyeDisease

</Object>
<Operation> read </Operation>

</Permission>
<Permission perm_id = “P2”>
<Object type = “Schema” id = “XS101”>
PatientEyeReport

</Object>
<Operation> all </Operation>

</Permission>

<Permission perm_id = “P3”>
<Object type = “Instance” id = “XI100”>
EyeReportForJoe

</Object>
<Operation> all </Operation>

</Permission>
<Permission perm_id = “P4”>
<Object type = “Element” id = “XE100”>
EyeColor

</Object>
<Operation> navigate </Operation>

</Permission>
</XPS>

this case, an EyeDoctor role is authorized to read
all the documents in the cluster with ID CL100.

We can similarly protect XML schemas, docu-
ment instances, and the elements within by associ-
ating them with corresponding roles. For instance,
in Figure 11, the mapping identified by PRA2 asso-
ciates the DBA role with permissions P2 and P3,
which refer to a schema object and an instance doc-
ument, respectively (see Figure 8). In this case, the
DBA role is authorized to read, write, and navigate
all instance documents conforming to the schema
ID XS101 and the instance document XI100. Simi-
larly, the mapping identified by PRA3 associates the
Dispenser role with permission P4 referring to the
Name element. Hence, the Dispenser role is autho-
rized only to navigate the Name element in all con-
forming instance documents.

Mediation Policies
As Figure 12 shows, we can include local policy
definitions within a policy definition using <!-
Local Policy Definitions —>. Local policies are
defined using the syntax for <!— Policy Defin-
ition —> shown in Figure 6 and are placed
between the tags <XLPD> and </XLPD>. Each pol-
icy can be a global policy over a set of locally
dominated domains. In our specification, media-
tion policies — that is, policies that indicate how
roles from a policy are related to the roles in the
local policies — are specified by defining relation-
ship definitions using <!—Policy Relationship
—>. The policy specification uses the following
scoping rule:

If a policy P becomes a local policy of a higher level
policy, P’s local policy definitions and the policy
relations are unknown to the higher level policy.

This scoping rule indicates that only the locally
dominated policy entities within a global policy def-

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 47

Access-Control Language

Figure 10. Instance of an XML user-role assignment sheet. This XURAS defines the SpecialDoctor role and an
assignment precondition on user credentials and time.

<XURAS>
<URA ura_id=“URA1” role_name =

“SpecialDoctor “>
<AssignUsers>
<AssignUser user_id = “ANY”>
<AssignCondition pt_expr_id = “PT1”>
<LogicalExpr op = “AND”>
<Predicate>
<Operator> gt </Operator>
<ParamName>level</ParamName>
<RetValue>5</RetValue>

</Predicate>

<Predicate>
<Operator> lt </Operator>
<ParamName>age</ParamName>
<RetValue>80</RetValue>

</Predicate>
</LogicalExpr>

</AssignCondition>
</AssignUser>

</AssignUsers>
</URA>

</XURAS>

Figure 11. Instance of an XML permission-role assignment sheet.
This shows the assignment of the EyeDoctor role to permission P1,
allowing the EyeDoctor role to read all documents in cluster CL100.

<XPRAS>
<PRA pra_id=“PRA1” role_name=”EyeDoctor”>
<AssignPermission perm_id = “P1”>

</PRA>
<PRA pra_id=“PRA2” role_name=”DBA”>
<AssignPermission perm_id = “P2”>
<AssignPermission perm_id = “P3”>

</PRA>
<PRA pra_id=“PRA3” role_name=”Dispenser”>
<AssignPermission perm_id = “P4”>

</PRA>
</XPRAS>

<!—Local Policy Definitions --> ::=
<XLPD>

[<!— Policy Definition -->]+
</XLPD>

<!—Policy Relationship Definitions -->::=
<XPRD>

[<!--Policy Relationship-->]+
</XPRD>

Figure 12. Definitions of local policies and mapping relations. The
specification format shows that a policy can contain an arbitrary
number of local policies. The relationship definitions capture the
relation between the components of the policy and components of
its local policies to establish mediation policies.

48 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Nontheme Feature

inition are visible, rather than the entities of the local
policies’ constituent domains. This abstraction sim-
plifies metapolicy construction. However, if the high-

er-level policy management must oversee the overall
federation consistency, we might need to relax this
rule. Figure 13 shows the XML syntax for defining
policy relationships. We can map each external role
onto several local roles belonging to the same or dif-
ferent local domains. For each mapping, we specify a
condition. We include the local roles onto which an
external role is mapped in the local policy defini-
tions. Figure 14 is the specification of the interdo-
main role mapping defined in Figure 4c.

We use the same structure to capture mediation
policies for loosely coupled systems. In this case, each
local policy definition comprises a part of the domain
policy of the partner domain. For example, consider
domains 1 and 2 in Figure 4a, with policies 1 and 2.
In the policy 1 specification, some entities of policy 2
are known (specifically, roles Y and Z) and appear in
the <!— Local Policy Definitions —> section.
Similarly, some entity definitions of policy 1 (that is,
roles C and D) will appear in policy 2 as local policy
definitions. Role-to-role mappings can be from one
domain to the other, as Figure 4a shows, or bidirec-
tional. To capture mapping direction, we include the
<MappedFrom>...</MappedFrom> syntax similar
to the <MappedTo>...</MappedTo> syntax. Figure
15 shows snapshots of the relationship definitions
for the role-to-role mapping.

Policy-Integration Challenges
Several issues — such as semantic heterogeneity
and policy consistency — pose considerable chal-
lenges in multidomain environments. To manage
semantic heterogeneity and integration of multiple
heterogeneous policies in an XML-integrated mul-

Figure 14. Policy relation specification for the example in Figure 4c. The example shows that the global role
FederatedDoctor is mapped to the DayDoctor role of Policy3 of Domain 3 provided that the current time is in the
intervals specified by the periodic time expression PT1 of Figure 1.

<XPR xpr_id =” XPRg”>
< InterDomainMapping [idMap_id = “IDMg”]>
<RoleMapping>
<MappedRole>
<Role policy_id = “Global”>

FederatedDoctor</Role>
</MappedRole>
<MappedTo>
<Role policy_id = “Policy3”>
DayDoctor</Role>

<MappingCondition pt_expr_id = “PT1” />
</MappedTo>
<MappedTo>

<Role policy_id=“Policy4”>
EmergencyDoctor</Role>

<MappingCondition pt_expr_id = “PT1 />
</MappedTo>
<MappedTo>

<Role policy_id = “Policy5”>
SupervisorDoctor</Role>

<MappingCondition pt_expr_id = “PT1” />
</MappedTo>
</RoleMapping>

</ InterDomainMapping >
</XPR>

Figure 13. Policy relation syntax. This syntax allows specifying mapping
between a policy’s roles to roles in its local policies, and indicates
conditions that must be satisfied for the mapping to be valid.

<!-- Policy Relationship --> ::=
<XPR xpr_id = (id) [pt_expr_id = (id)]>
<InterDomainMapping [idMap_id = (id)] >
<RoleMapping>
[<Mapping Definition>]+
</RoleMapping>

</ InterDomainMapping >
</XPR>

<Mapping Definition>::=
<MappedRole>
<Role[role_id = (id)] [policy_id = (id)]>
(name)</Role>
[<Mapped(To|From) Definition>]+

</MappedRole>

<Mapped(To|From) Definition>::=
<Mapped(To|From)>
<Role [role_id=(id)] [policy_id = (id)]>
(name)</Role>

<MappingCondition [pt_expr_id = (id)>
[<!--LogicalExpression-->]

</MappingCondition>
</Mapped(To|From)>

tidomain environment,2,7 ontologies and approach-
es for semantic integration of heterogeneous data-
base schema can be useful. Our policy-integration
methodology for multidomain environments has
four phases:

• Pre-integration deals with representation and
organization of semantic information about
each domain’s policy entities that helps resolve
semantic differences. This phase might involve
a data-dictionary-based approach or a com-
mon ontology.

• Policy comparison involves semantic-conflict
detection, including naming conflicts among
domain roles or structural conflicts among role
hierarchies. Information obtained in the pre-
integration phase facilitates this detection. We
need techniques for detecting semantic conflicts,
automatically or semiautomatically.

• Policy conformance deals with resolving seman-
tic and rule conflicts. We need automatic tech-

niques to synthesize mediation policies when
security violations such as one in Figure 4b occur.

• Merging and restructuring deals with needed
local-policy readjustments for obtaining a
consistent merged policy after removing
inconsistencies.

This process can be iterative. In particular, remov-
ing inconsistencies can entail considerable restruc-
turing and refinement of the mediation policies. We
perform this iteration mainly during the merging
and restructuring and policy-conformance phases.

Future Work
We plan to extend our work in several directions.
Because the XUS maintains a lot of user data, a
user privacy provision is highly desirable, and we
plan to pursue X-RBAC extensions to provide pri-
vacy preferences. We’ll also extend our framework
to allow interoperation of our mechanism with
single-sign-on mechanisms and apply it to secure-

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 49

Access-Control Language

Figure 15. Policy relation specification for example in Figure 4a: (a) domain 1 and (b) domain 2. The specification shows
that domain 1’s policy includes domain 2’s policy as its local policy and domain 2’s policy includes domain 1’s policy as its
local policy. The relationship definitions for domain 1 capture the mapping from external role C to local role Y and local
role Z to external role D in domain 1’s policy.

<XPolicy policy_id = “Policy 1”>
<!--Policy Definition-->
<XPR pxr_id = “XPR1”>
< InterDomainMapping idMap_id = “IDM1”>
<RoleMapping>
<MappedRole>
<Role policy_id = “Policy1”> C
</Role>

</MappedRole>
<MappedTo>
<Role policy_id = “Policy2”> Y
</Role>

</MappedTo>
</RoleMapping>
<RoleMapping >
<MappedRole>
<Role policy_id = “Policy1”>D
</Role>

</MappedRole>
<MappedFrom>
<Role policy_id = “Policy2”> Z
</Role>

</MappedFrom>
</RoleMapping>

</ InterDomainMapping >
</XPR>

</XPolicy>
(a)

<XPolicy policy_id = “Policy2”>
<!--Policy Definition-->
<XPR xpr_id = “XPR2”>
< InterDomainMapping idMap_id = “IDM2” >
<RoleMapping>
<MappedRole>
<Role policy_id = “Policy2”> Z
</Role>

</MappedRole>
<MappedTo>
<Role policy_id = “Policy1”> D
</Role>

</MappedTo>
</RoleMapping>
<RoleMapping >
<MappedRole>
<Role policy_id = “Policy2”> Y
</Role>

</MappedRole>
<MappedFrom>
<Role policy_id = “Policy1”> C
</Role>

</MappedFrom>
</RoleMapping>

</ InterDomainMapping >
</XPR>

</XPolicy>
(b)

ly compose interoperable Web services. Further-
more, we plan to extend the X-RBAC language to
include the full set of temporal constraints intro-
duced in the generalized temporal role-based
access control (GTRBAC) model.11

References

1. R. Power, “Tangled Web”: Tales of Digital Crime from the

Shadows of Cyberspace, Que/Macmillan Publishing, 2000.

2. J.B.D. Joshi et al., “Digital Government Security Infra-

structure Design Challenges,” Computer, vol. 34, no. 2, Feb.

2001, pp. 66-72.

3. L. Gong and X. Qian, “Computational Issues in Secure

Interoperation,” IEEE Trans. Software and Eng., vol. 22,

no. 1, Jan. 1996, pp. 43-52.

4. E. Bertino, S. Castano, and E. Ferrari, “Securing XML Doc-

uments with Author X,” IEEE Internet Computing, vol. 5,

no. 3, May/June 2001, pp. 21-31.

5. S.L. Osborn, R. Sandhu, and Q. Munawer, “Configuring Role-

Based Access Control to Enforce Mandatory and Discre-

tionary Access Control Policies,” ACM Trans. Information

and System Security, vol. 3, no. 2, Feb. 2000, pp. 85-106.

6. D. Ferraiolo et al., “The NIST Model for Role-Based Access

Control: Towards a Unified Standard,” ACM Trans. Infor-

mation and System Security, vol. 4, no. 3, Aug. 2001, pp.

224-274.

7. N.N. Vuong, G.S. Smith, and Y. Deng, “Managing Security

Policies in a Distributed Environment Using Extensible

Markup Language (XML),” Proc. Symp. Applied Comput-

ing, ACM Press, 2001, pp. 405-411.

8. T. Moses, ed., “OASIS eXtensible Access Control Markup

Language (XACML) Version 1.1,” committee specification,

24 July 2003; www.oasis-open.org/committees/xacml/

repository/cs-xacmlspecification-1.1.pdf.

9. A. Anderson, ed., “XACML Profile for Role-Based Access

Control (RBAC),” OASIS Access Control TC committee draft

01, 13 Feb. 2004,

10. A. Kern, “Advanced Features for Enterprise-Wide Role-

Based Access Control,” Proc. Ann. Computer Security

Applications Conf., IEEE CS Press, 2002, pp. 333-343.

11. J.B.D. Joshi et al., “Generalized Temporal Role-Based

Access Control Model,” IEEE Trans. Knowledge and Data

Eng., accepted for publication.

12. R. Bhatti et al., “XML-Based Specification for Web-Services

Document Security,” Computer, vol. 37, no. 4, Apr., 2004,

pp. 41-49.

13. F. Azzedin and M. Maheswaran, “Towards Trust-Aware

Resource Management,” Proc. 2nd IEEE/ACM Int’l Symp.

Cluster Computing and the Grid (CCGrid 02), IEEE CS Press,

2002, pp. 452-457.

14. L. Pearlman et al., “A Community Authorization Service for

Group Collaboration,” Proc. IEEE 3rd Int’l Workshop Poli-

cies for Distributed Systems and Networks, IEEE Press,

2002, pp. 50-59.

15. M. Blaze et al., “The KeyNote Trust-Management System,

version 2,” IETF RFC 2704, Sept. 1999; www.ietf.org/

rfc/rfc2704.txt.

16. J.B.D. Joshi et al., X-RBAC: An Access-Control Language for

Multi-Domain Environments, tech. report 2004-46, CERIAS,

2004; www.cerias.purdue.edu/tools_and_resources/bibtex

_archive/2004-46.pdf.

James B.D. Joshi is an assistant professor at the University of

Pittsburgh and a coordinator of the Laboratory of Educa-

tion and Research on Security Assured Information Sys-

tems (LERSAIS). His research interests include information

systems security and distributed multimedia systems. He

has a PhD in computer engineering from Purdue Universi-

ty. He is a member of the ACM and the IEEE. Contact him

at jjoshi@mail.sis.pitt.edu.

Rafae Bhatti is a PhD candidate in the Electrical and Comput-

er Engineering Department at Purdue University. His

research interests include information systems security and

distributed systems. He has an MS in computer engineer-

ing from Purdue University. He is a student member of the

IEEE. Contact him at rafae@purdue.edu.

Elisa Bertino is a professor in the Computer Sciences Depart-

ment at Purdue University and the research director of

CERIAS. Her research interests include security, database

systems, object technology, and Web-based information

systems. Bertino received a PhD in computer science from

the University of Pisa. She is a fellow of the IEEE and the

ACM. Contact her at bertino@cerias.purdue.edu.

Arif Ghafoor is a professor in the Electrical and Computer Engi-

neering Department and director of the Distributed Multi-

media Systems Laboratory at Purdue University. His

research interests include database security, parallel and

distributed computing, and multimedia information sys-

tems. He has a PhD in electrical engineering from Colum-

bia University. He is a Fellow of the IEEE. Contact him at

ghafoor@dynamo.ecn.purdue.edu.

50 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Nontheme Feature

Figure 16. Policy-integration phases for multidomain environments.
The iterative process identifies and resolves semantic and rule
conflicts among local policies, making necessary adjustments to
achieve a consistent merged policy. Handling conflicts or
incompleteness might require an external mediation policy.

Pre-integration Policy
comparison

Policy
conformance

Merging/
restructuring

Consistent,
complete, and
minimal policy

External mediation policy might be needed
to handle conflicts/incompleteness

