
Designing an Agent-Based RBAC System for Dynamic Security Policy

Wataru Yamazaki , Hironori Hiraishi, and Fumio Mizoguchi

Information Media Center

Tokyo University of Science

{yamazaki, hiraishi, mizo}@imc.tus.ac.jp

Abstract

Most practical applications have dynamic attributes,

but conventional access control mechanisms have not

addressed the problem sufficiently. In this paper, we

discuss how to realize an access control system that

enables us to manage dynamic security policies. Our

proposed method is based on Role-Based Access

Control (RBAC), and the agent decides access rights

dynamically for the abstract role, which is defined by

the role administrator statically using context-enabled

rules and an inference engine. By defining rules using

declarative representation (logic programming style),

bidirectional queries can be realized for USER-

ROLE-PERMISSION relationships. In this paper, we

will demonstrate the usefulness of our proposed system

by presenting our project management application and

its access control system.

1. Introduction

Access control is important in all computer programs.

Access control both defends against illegal access by

malicious attackers and prevents honest users from

making inappropriate access and possibly causing

administrative errors. However, managing access

control appropriately is generally a difficult problem

for two reasons. First computer applications are

getting more complex, and the numbers of control

objects and users of these applications are becoming

larger than ever. Second, many applications have more

or less dynamic attributes, but defining all possible

situations of these applications is difficult.

A modern approach to the first problem is applying

Role-Based Access Control (RBAC) [1], in which the

target of access control is a role, i.e., a set of access

rights based on the user’s usage pattern. In RBAC,

users have associated roles, and roles have associated

access rights. RBAC enables simpler management than

conventional access control systems such as MAC and

DAC in adding or eliminating users and adding or

deleting access rights.

However, the second problem has not been fully

discussed. The dynamic attributes here consist of

things like access based on application states, access

based on time, access based on place, exclusive access

control, and delegation of access rights. When we

think of recent large-scale applications and distributed

applications, we have to consider access control and its

management system. Many existing applications must

also deal with dynamic access control. In such

situations, the problem in management of static roles is

that the role administrator has to manage all possible

roles statically during application development because

conventional RBAC systems have not been

implemented. Most role administrator operations are

similar in all applications.

In this paper, we implement an extended RBAC

system that can manage the second problem. The basic

idea is that we define abstract roles, and the actual role

(access right set) is decided dynamically by using rules

and context information, such as user place and time.

Our purpose in proposing this method is to simplify

the management of dynamic role assignment in a

uniform way. The basic idea is that we define abstract

roles, and the actual role (access right set) is decided

dynamically by using rules and context information,

such as user place, time, and so on. Our model

consists of an Abstract Role Set (ARS), a Context Rule

(CR), and an Agent, which derives actual access rights

by using CR and Context Information (CI). CI is

generated dynamically by an agent, and the access

right is derived by the agent’s inference engine. ARS,

CR, and CI are defined in first-order logic

programming (prolog) style, so the bidirectional

queries for these relationships are easily

accommodated.

In this paper, we discuss the efficiency of our

proposed model by applying the model to the access

control of our project management application.

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

The remainder of this paper is structured as follows.

In Section 2, we briefly introduce the basic RBAC

system. In Section 3, we discuss the limitations of

conventional RBAC systems by summarizing our

project management system and its requirements for

access control. In section 4, we present the basic idea

of our model by using the access control mechanism of

our project management system as an example. In

section 5, we define our agent-based RBAC

management extension and its usage pattern. Section 7

describes related work and presents the conclusion.

2. Role Based Access Control

By categorizing the minimum privilege for assigning

a duty to a role, RBAC enable us to both defend

against illegal accesses and harmful operations, and

reduce management errors because RBAC is simple

but supports a variety of security policies. The

relationships of user, role, and access rights in the

original RBAC (RBAC0) are defined as follows [1].

- type user of individual users

-type role of role identifiers

-RM(r:role)
usrs2 , the role-to-member mapping

that gives the set of users authorized for role r.

- type permission =
)(2 objectoperation

- RP(r:role)
spermission2 , the role-to-access rights

mapping that gives the set of access rights authorized

for role r.

RBAC has two main properties: hierarchy and

constraint. Role hierarchy is realized when all access

rights of one role are contained in another role. The

notation A B means role A contains role B, and in

that case role A can also be treated as role B

][

][):)(:,(

jRMu

iRMujiuseruroleji

Here, RM[r] is a set of users who can perform given

role r.

RBAC0 provides two static constraints on user-role

and role-permission authorization: Static Separation of

Duty (SSD) and Role Cardinality.

SSD represents the constraint of the role for which

the user is authorized and is mutually exclusive with

other roles for which the user has already obtained

membership.

 Ea: role role, Exclusive authorization set

that yields the pairs of roles that are mutually exclusive

with each other for role membership.

Eaji

jRMuiRMurolejforalliuseru

),(

][][):,)(:(

In other words, if a user is a member of both “i” and

“j”, then these two roles cannot be SSD.

 Another constraint supported by RBAC0 is role

cardinality. Cardinality defines the maximum number

of the users authorized for the role.

3. Our Project Management System and

Its Access Control

In this section, we discuss the limitations of the

original RBAC system by presenting some functions

and some dynamic situations of the access control

system for our target application, the project

management system.

3.1 Project Management System

The purpose of our project management system is to

efficiently manage a project and the system control

resources, such as human resources and time. The

system schedules project tasks, reports the results of

the task, confirms and follows up on the schedule,

evaluates task results, and so on. Using this system that

we designed and implemented, managers and members

can see the total flow of the project and its tasks, so

they can share a common view of the project. Almost

all operations of this system are subjected to access

control. However, here we show some simple

examples of system operations for ease of explanation.

1 The owner of the project task divides the task into

subprojects, allocates adequate resources to the

subproject, and reports the schedule to executants

and members.

2 The executant of the project executes the allocated

task or subtask and reports finishing or progress of

the task.

3 Each project member checks the progress or

finishing report from other members.

4 When the task is finished, the owner of the task

evaluates the task and task executants. When the

task is delayed, the owner reschedules the task.

For the four operations above, we need at least three

roles for controlling access.

1. Task Manager: This role is for operations 1 and 4

above. This role is for the manager or owner of the

task, and the role corresponds to the set of access

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

rights of generation, resource allocation, deleting, and

evaluation of the task.

2. Task Executant: This role is for operation 2 above,

and consists of access rights like writing reports and

reading reports

3. Task member: This role is for operation 3 above,

and the member can read task information such as time

schedule, reports and evaluations.

Here, access rights of the upper role are contained in

the lower role. The upper roles can thus be defined

using inheritance in RBAC. In that case, the

relationships of roles are:

managertexecumenber tan

3.2 Dynamic Aspects of Our System

Our project management system cannot use the

original RBAC for the operations mentioned in the

previous section, primarily because there are multiple

tasks in one project. For example, a manager in one

project is not a manger in another project. In contrast,

an executant in a project may be a manager in another

project. For this reason, we cannot obtain actual access

rights for the above role directly using the original

RBAC system. The simplest solution is to define all

possible roles for each task and project, but this is not

rational because many roles have identical structures

but different project names and access target. Besides,

the conventional RBAC system cannot perform

dynamic role allocation such as by role time constraint

or delegation. For example, a user may share one role

depending on the login time. Furthermore, we may

want access control based on login place and priority

access operations. We need an extended RBAC that

would enable us to manage these dynamic attributes

efficiently.

4 RBAC System for Dynamic Security

Policy

In a computer system, one general approach for

solving the problem of dynamic behavior is to first

represent the target in abstract form and then decide

details dynamically during runtime. For example,

object-oriented programming languages provide

interfaces and abstract classes for dynamic operations.

When designing and implementing libraries, the library

programmers define interfaces and abstract objects and

then use these abstract methods in their programs.

Library users then implement concrete instructions

and decide the details of implementation when they

implement there own applications. Program variables

can be considered the simplest abstraction. For

example, in logic programming, we can operate on a

list using abstract logical variables such as [top| Tail]

for separating the top of the list.

We apply this approach for our RBAC extension for

dynamic access control. Namely, abstract role sets are

defined statically, we use rules for decide the details of

the relation of access rights. Concrete access rights are

allocated dynamically using the abstract role and rules

and context information at the runtime. For example,

abstract role sets used in our project management

system are illustrated in Table 1.

Table 1 Abstract Role Set

Project Name Name

Target T1, …

ROLE: Manager T1.makeSchedule();

T1.deleteSchedule();

….

ROLE: Executant T1.setResult();

…

ROLE: Member T1.readSchdule();

…

When the variable Name, which represents the name

or project, is decided, target object Target and each

access right of each role are automatically assigned. In

Table 1, access rights of the target object are defined

using object-oriented programming notation, such as

T1.makeSchedule(), and T1.setResult(). Table 1

indicates that when the project name is decided by

variable Name, the Manager role can perform the

operation in operation two above, the executant can

perform serResult() of the target object, and the

member can perform readSchedule() of the target

object. In Table 1, we use only one target T1, but our

model allows using multiple targets in one abstract role

set.

An example rule used for deciding the project and the

access rights is defined in Table 2.

Table 2 Example of role-mapping rules.

Name Project_task1

Target /home/xml/task1.xml/, …

Manager userA

Executant userB, userC,

Member userA, userB, userC, userD,…

When the rule in Table 2 is applied, userA can act as

role Manger or Member for the project named

project_name. For example, when a user has the role

of Manager in this rule, he has the access right to

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

makeSchedule() or delete Schedule() of the target

related to “/home/xml/task1.xml.” . The rule in Table 2

is the simplest one, and all roles can be determined

directly by this rule. Generally our model allows more

complex relations. For example, if the role

administrator wants the executant role to be valid

(active) only from 10:00 to 17:00, he may define a rule

as in Table 3.

Table 3 Another example of role-mapping rules

Name Project_task1

Target /home/xml/task1.xml/

Manager userA

Executant Executant_Candidates &
(1000<time<1700)

Member userA, userB, userC, userD,…

Executant _

Candidates

userB, userC

The difference between Tables 2 and 3 is that the

executant role definition in the abstract role set in

Table 3 is not a list of users, but the rule is defined by

using another “Executant_candidates” and a time

constraint (1000<time<1700). The

Executant_Canditate (line 6 in Table 3) declares that

the corresponding users are userB and userC. By

defining rules as in Tables 2 and 3, our system finds

the appropriate relationships between user and

permission that suit the condition for mapping to the

abstract role set.

5. Agent-Based Management System

This section illustrates the agent-based method of

realizing a system that can derive access rights from

abstract role set, rules, and context information that we

mentioned in the previous section. Some of the rules

we introduced in the previous section are automatically

generated at run time, and some other rules are defined

statically and explicitly by the role administrator.

5.1 Components of Our Model

Figure 1 depicts an overview of the system, which is

divided into three major parts, agent, agent input, and

agent output. The agent input consists of an Abstract

role set, a Context, and a Context Role. The agent

derives access rights by using these inputs and an

inference engine. The details of the components of our

model are explained below.

Figure 1 Agent Based Dynamic Role Management

Abstract Role Set (ARS)

Abstract Role Set defines the abstract

permission mapping using variables such as

presented in the previous section, and

permission mapping is determined by binding

these abstract variables. These variables are

bound by agent inference, which was executed

using context and context rules we will show

below. This Abstract role set is a static relation

that was defined in the role management phase

by the role administrator.

Context Information (CI)

Context Information consists of states

observed by the agents we mention below. For

example, current time, user location, input data

from user interface (UI), and dynamically

generated rules such as delegation of roles, are

examples of Context Information. Context

Information thus consists of facts and rules

that change dynamically based on the context

of the application and user environment.

Context Rule

Context Rules are static rules and part of the

agent input. Agents generate all rules with the

above CI.

Agent

An Agent decides access by inference. Agent

inputs are the Abstract Role Set, Context

Information, and Context Role; the output is

an access right. User queries are also examples

of Context Information, and agents can answer

the question by inference.

Access rights (Concrete Role Set)

Access rights are a set of access rights

determined by the agent. Role is a set of access

rights, so access rights can be seen as a

concrete role set.

Role

Permission

Permission

Permission
Role

Permission

Permission

Permission

Abstract Role

Context Rule

Member list

Other rules

Context

USER Input

Time

…

Agent

Inference

output
input

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

5.2 I/O of Agent

We use a logic programming system to realize a

system consisting of the components we introduced in

the previous section. ARS, Context, and CR are facts

and rules, so they can be defined in first-order logic

programming (prolog) style. Besides, agent is designed

with a prolog engine as the inference system. Here,

Context Information is represented as the clauses

generated by agents dynamically based on the context

that the agent observed. In this section, we define

agents and the relationship of an agent’s input and

output by presenting an example of our project

management application that we mentioned in section

4.

5.2.1 Abstract Role Set (ARS)

 An Abstract Role Set is defined as a set of clauses.

The role administrator defines the name of an abstract

role set, role names to which the user is mapped, the

object which the role targets, and access rights as

target operations by using prolog programming syntax.

The prolog rule that corresponded to Table 1 is as

follows.

role(member, U) :- role(executant, U). (Rule 1)

role(executant, U) :- role(manager, U). (Rule 2)

makeSchedule(U, T) :-

role(manager, U), target(T) . (Rule 3)

deleteSchedule(U, T) :-

role(manager, U) target(T). (Rule 4)

serResult(U ,T) :-

 role(executant, U), target(T). (Rule 5)

readSchedule(U,T) :-

role(member, U), target(T). (Rule 6)

The ARS definition programs must contain all

abstract types of the final role and all the types of

access rights. In the above example, the rule has to

contain and define access rights for each manager role,

executant role, and member role. In this rule program,

Rule 1 and Rule 2 are rules for role hierarchy. Rule 1

argues that if a user acts as an executant, the user can

also act as a member. Rule 2 says that when a user

acts as manager, then the user also has access rights of

the executant role. Predicates role(R,U) and target(T)

are not defined in this program. These predicates are

defined in Context Information and Context Rules,

which we mention below.

5.2.2 Context Information

Context Information is a set of clauses that an agent

generates dynamically based on the context. In Table 3,

current time (time) and current user information are

defined as clauses as shown below. Context

Information is used like built-in predicates in the

Abstract Rule Set and Context Rule provided by the

role administrator.

user(userA). (Rule 7)

target(“/home/xml/task1”). (Rule 8)

selected(manager). (Rule 9)

 Here, the clause user(X). (Rule 7) corresponds to the

fact that a user is logging onto the system. The clause

target(X). (Rule 8) corresponds to the fact that the

selected (or to be selected) project is X. Rule 9 says

that the selected (or to be selected) role is now

manager. Other examples of Context that do not

appear in Table 3 contain context constraints such as

user place information (log-in machine), exclusive

control, or priority control.

5.2.3 Context Rule

A Context Rule defines the rule for generating a role

based on the context observed by an agent. Using the

context rule, an agent can decide access rights. Some

of the rules are defined as Context Information, and

others are defined as context rules. For example, the

remaining rules in Table 3 are defined as Context

Rules as follows.

rolemember(member,userD). (Rule 10)

executant_candidate(userB). (Rule 11)

executant_cadidate(userC). (Rule 12)

rolemember(executant, U) :-

executant_candidate(U) ,sys_time(X),

X>1000, X<1700. (Rule 13)

rolemember(manager, userA). (Rule 14)

role(R,U) :-

user(U), selected(R), rolemember(R,U). (Rule 15)

Here, Rule 10 declares that userD can act as a role

“member,” and Rule 11 declares that UserB is a

candidate for an “executant” role. The actual executant

role is assigned when a user is the candidate, and the

log-in time has to be from 1000 to 1700. In our project

management example, one Abstract Role set and

Context Rules for each project and Context

Information are used for dynamically determining the

access right. As an implementing issue, SSD and role

cardinality are also represented as Context Rules.

5.2.4 Agent

The primary function of an agent is to generate

appropriate access rights by executing the above three

rules. Generating the Context, which is one of the three

rules, is also an agent responsibility. In the above

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

example, when there are three rules and agentA selects

the target object taskA and has already obtained a

manager role, then the agent dynamically adds Rule 7,

Rule 8, and Rule 9 as Context Information. In this

situation, the query for the agent is as follows when the

system wants to know if this user has the access right

to makeSchedule of target file “/usr/xml/task1.”

?- makeSchedule(userA,”/usr/xml/task1”). (Query 1)

For this query, the agent infers that user A has access

to the operation by using a prolog engine. Using logic

programming style rules enables us to make

bidirectional queries. This is another advantage of this

programming style. For example, when the system

wants to know the list of users who may execute

setResult, the dynamically generated Context

Information and queries are as shown below. In this

case, the agent replies with the names of corresponding

users UserB, UserC, and UserA.

user(_).

target(/home/xml/task1).

selected(_).

?-setResult(X,/home/xml/task).

X = userB;

X = userC;

X = userA

yes.

6. Related Work and Conclusion

Our proposed Abstract Role Set is structured

similarly to Template proposed by Giuri et al. [2]. In

our model, we assume that the Abstract Role Set is

used with Context Information generated by an agent

and the Context Role defined by the role

administrator; we also emphasize using user context.

Our approach can thus deal with dynamic information.

Besides, our model enables bidirectional queries and

is executed in a unified way because we apply a first-

order logic programming style for defining the rules

and context information.

Zhang [3] uses prolog-style rules for defining role

delegation, and we use rules to dynamically select

access rights by using context information. They do

not emphasize context and abstract roles for a

dynamic environment, so their objects or usage rules

differ from our approach.

Convington et al. extended the original RBAC to

apply concepts or roles not only to subjects but also

to objects and environments, and proposed a method

to define security policies more finely[4] In this

model, role administrators have to define many roles,

and role management tends to be complex. In our

model, the role administrator defines only necessary

roles when designing the system.

In this paper, we propose a model and method for

realizing an access control system for applications

with many dynamic attributes. The dynamic access

rights are determined by using rules, context

information, and agents for inference by these rules.

The dynamic access rights are determined by using

rules, context information, and agents for inference

by these rules. We are now developing a web-based

role server that supports our model and method, as

well as it’s API for role manager, to enable our

proposed method to be used in many applications.

We also plan to evaluate the relationships between

the rate of dynamic rules, the total number of

dynamic rules, and scalability. We now plan to

evaluate the relationships between the rate of

dynamic rules, the total number of dynamic rules, and

scalability.

7. References

[1] David F.Ferraiolo, John F.Barkly, and D.Richard Kuhn,

“A role based access control model and reference

implementation within a corporate internet” in ACM

Transactions on Information Systems Security, volume 1,

February 1999.

[2] Luigi Giuri and Pietro Iglio. Role templates for content-

based access control. In Proceedings of the Second ACM

Workshop on Role Based Access Control, pp.153-159, 1997.

[3] Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu,

“A Rule-Based Framework for Role-Based Delegation and

Revocation”, ACM Transactions on Information and System

Security, Vol.6, No.3, August 2003, pp.404-441.

[4] Michael Convington, etc. al., “Securing Context-Aware

Applications Using Environment Roles”, SACMAT’01 2001,

pp.10-20.

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’04)
1524-4547/04 $ 20.00 IEEE

