
Role-Based Delegation Model/ Hierarchical Roles (RBDM1)

Ezedin Barka

College of Information Technology

University of the United Arab Emirates

Al Ain, United Arab Emirates

ebarka@uaeu.ac.ae

 And

 Ravi Sandhu

Laboratory for Information Security Technology

Information and Software Engineering Department, MS 4A4

George Mason University, Fairfax, VA 22030, USA

Sandhu@gmu.edu

Abstract

The basic idea behind delegation is that some

active entity in a system delegates authority to

another active entity in order to carry out

some functions on behalf of the former. User

delegation in RBAC is the ability of one user

(called the delegating user) who is a member

of the delegated role to authorize another

user (called the delegate user) to become a

member of the delegated role. This paper

introduces a new model, which we consider it

to be an extension of RBDM0 [BS2000].

The central contribution of this paper is to

introduce a new model, referred to as

RBDM1 (Role-Based Delegation Model/

Hierarchical Roles), that uses the details from

RBDM0, which was described in the

literature by barka and Sandhu [BS2000] to

address the temporary delegation based on

hierarchical roles. We formally defined a

role-based delegation model based on

hierarchical relationship between the roles

involved. We also identified the different

semantics that impact the can-delegate

relation, we analyzed these semantics to

determine which ones we consider as more

appropriate in business today, thus allowed in

our model, and provided a justification to

why those selections are made

1. Introduction

This paper describes the ways by which RBDM0

is extended to address more complicated issues that

come along with hierarchical roles.

Hierarchies are natural means for structuring roles

to reflect an organization’s lines of authority and

responsibility (figure 1). By convention, more

powerful (senior) roles are shown toward the top of

these diagrams, and less powerful (junior) roles toward

the bottom. In figure 1.a, the junior-most role is that of

the health-care provider. The physician role is senior

health-provider and thereby inherits all permissions

from health-care provider. The physician role can have

permissions besides those it inherited. Permission

inheritance is transitive. So, for example, in figure 1.a,

the primary-care physician role inherits permissions

from both the physician and health-care provider roles.

The primary-care physician and the specialist

physician both inherit permissions from the physician

role, but each will have different permissions directly

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

2

assigned to it. Figure 1.b illustrates multiple

inheritances of permissions, where the project

supervisor role inherits from both the test engineer and

the programmer role.

Mathematically, these hierarchies are partial order.

A partial order is a reflexive, transitive, and anti-

symmetric relation. Inheritance is reflexive because a

role inherits its own permissions, transitivity is a

natural requirement in this context, and anti-symmetry

rules out roles that inherit from one another and would

therefore be redundant.

 Primary-Care Specialist Project supervisor

 Physician physician

 Test engineer Programmer

 physician

 Health-care provider Project member

 (a) (b)

 Test engineer Project supervisor Programmer

 Test engineer Programmer

 Project member

 (c)

Figure 1. Example of Role Hierarchy

When we extend RBDM0 model to capture

the role-to-role delegation using hierarchical roles, we

add more complexity to the flat roles model. Here, we

have to deal with different kinds of delegations, some

of which are not very useful, and some which carry

more risk than others.

To appreciate the reason behind doing delegation in

hierarchical roles, let us consider a typical example

from the office context. Suppose that we have a

department whose manager (DM) has access to view

and modify the overall departmental portfolio (DP).

Now, let us suppose that the department has several

projects, each of which has an individual portfolio

(Dpi). A project manager (PM) can view or modify the

project’s portfolio if and only if the departmental

manger (DM) has delegated the appropriate right to it.

In this case, the project manager (PMi) is acting on

behalf of the departmental manager. On some

occasions, the departmental manager may only wish to

give the project manager the right to view another

project’s budget without allowing him to perform any

modifications. So, a user in a role may delegate all or

only a subset of his role to another user who belongs to

another role. Furthermore, a department manager may

delegate the membership of one project manager to a

project member, or to another project manager. Also, a

project manager may delegate his delegated rights over

the budget to a project member (this is known as two

step delegation and is not allowed in our model). These

types of situations are common in many business

organizations.

For each object involved in a delegation, there are

certain requirements that have to be met. The

originator, or delegator, may wish to give only a part of

its overall rights, or even just a single right.

Furthermore, he may only want to grant these rights for

a limited duration. Also he should be able to identify

each of his delegations so that he may at some stage

attempt to revoke one or all of these delegations.

The needs above can be justified by explaining

delegation as a particular mechanism for collaborative

working. Suppose a group of employees need to work

together. In delegation, the members of the group do

not work in tandem; their rights are used by delegates

of the group without their participation. This results in

a need for trust between members. This trust can be

limited in scope by limiting the rights contributed by

delegator to delegate.

The most familiar form of collaborative working is

hierarchical in nature, as shown in the office example

above. In such hierarchical cooperation, the superior

might not take part in the details of a task, but he or

she is the instigator of the task, and participates

through granting authority, and even talking to users

who are his junior.

In this paper, we formally defined a role-based

delegation model based on hierarchical relationship

between the roles involved. We also identified the

different semantics that impact the can-delegate

relation, we analyzed these semantics to determine

which ones we consider as more appropriate in

business today, thus allowed in our model, and

provided a justification to why those selections are

made.

The rest of this paper is organized as following:

Section 2 provides assumptions and basic elements that

are specific to the role-based delegation models in

hierarchical roles. Section 3 discusses delegation in

RBDM1, and analyzes the deferent semantics of

delegation in hierarchical roles. This is addressed in

the sub-section 3.1 Section 4 addresses revocation of

delegation within RBDM1. Finally, Section 5 provides

a summary of the RBDM1 model.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

3

2. Assumptions and Basic Elements

In addition to the elements discussed in the

RBDM0 (delegation in flat) this model adds the

following assumptions and basic elements that apply

specifically to the delegation model using hierarchical

roles:

• Delegation can only be either downward or

cross. Upward is useless because senior roles

inherit all the permissions of their junior roles.

• Downward delegation means that a user who

is an original member of a role delegates his

role to other users who are original members

of roles that are junior to the delegation role.

• Cross delegation means that the delegation

takes place between users who are members

of incomparable roles. For example, a

manager in the sales department can delegate

his role membership to an auditor from the

auditing department in order to do auditing on

the sales department.

Unlike RBDM0, in RBDM1 partial downward

delegation is allowed because members of senior roles

can delegate only subsets of their permissions (only

enough to accomplish the task).

Original members of senior roles are also original

members of the roles that are junior to their roles, and

delegate members of senior roles are also delegate

members of the roles that are junior to their roles.

However, this type of membership is considered an

implicit membership.

The addition of role hierarchy to RBDM0

introduces a new notion for a user membership in a

role (explicit and implicit memberships). The explicit

role membership grants a user the authority to use the

permissions of that role because of his/her direct

membership to that role. The implicit role membership,

on the other hand, grants a user the authority to use the

permissions of that role because of the user’s

membership in a role that is senior to that role.

Combining the two new types of role

memberships with the original two types (original

memberships and delegate memberships) produces

four different combinations of user memberships in a

role at any given moment. These combinations are:

original/explicit, original /implicit, delegate/explicit,

and delegate/implicit. These combinations will have a

major impact on the semantics of the can-delegate

relation in this model.

Revocation issues become more complicated when we

deal with hierarchical roles. This is because of the

involvement of many different roles and their

hierarchical relationships.

The following section formally defines the role-

based delegation model in hierarchical roles:

To flow the natural progression from RBAC to

RBDM1, we refer to the definitions of RBAC96 and

RBDM0 listed below:

Definition 1: The following is a list of the original

RBAC96 components:

• U and R and P are sets of Users, Roles, and

Permissions, respectively.

• UA ⊆ U × R is a Many to Many, User to

Role assignment relation

• PA ⊆ P × R is a Many to Many,

Permission to Role assignment relation

• Users: R→2
U
 is a function derived from UA

mapping each role r to a set of users where
Users(r) = {U | (U, r)∈UA}

• Permissions: R→2
P
 is a function derived from

PA mapping each role to a set of permissions

where Permissions (p) = {P | (P, r) ∈ PA}

Definition 2: The RBDM0 model adds the following

components:

• UAO ⊆ U × R is a Many to Many, Original

Member to Role assignment relation

• UAD ⊆ U × R is a Many to Many, Delegate

Member to Role assignment relation

• UA = UAO ∪ UAD

• UAO ∩ UAD = ∅ Original members and

delegate members in the same role are disjoint

• Users_O(r) = {U | (U, r)∈UAO}

• Users_D(r) = {U | (U, r)∈UAD}

• All members Users_O(r) ∪ Users_D(r) in a

role receive all of the permissions assigned to

that role

• Note that Users_ O(r) ∩ Users_ D(r) = ∅
because UAO ∩ UAD = ∅

• T is a set of durations

• Delegate roles: UAD → T is a function

mapping each delegation to a single duration

Definition 3: The following is a formal definition of

RBDM1:

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

4

The definition of RBDM1 is the same as RBDM0, with

the following elements added (see figure 2):

• RH ⊆ R × R is a partially ordered role

hierarchy (this can be written as ≥ in infix

notation). Also, the less familiar symbol is used

to denote non-comparability: we write x y if

x¬≤ y and y¬≤ x.

 RH

 UAO

 UAD

 Figure 2: RBDM1

3. Delegation in RBDM1

In RBDM1 our goal is to define a model by

extending the RBDM0 model in order to capture the

notion of delegation in the case of hierarchical roles

and to show how the model handles the impact of the

changes to the user-role assignment.

In RBDM1, authorization of delegation depends

on the semantics of the can-delegate relation. These

semantics become specially complicated when the

membership statuses of the delegating and the

delegated roles vary from one situation to another. For

example, the delegation by an original explicit

delegating role to an original implicit delegated role

will carry a different meaning than a delegation by an

original implicit role that delegates to an original

explicit role, and so on.

 In this section, we address how the semantics of

delegation in RBDM1 impact the can-delegate relation.

We list a number of semantics for the can-delegate

relation in RBDM1, we analyze these semantics and

identify the ones that make more sense for business

today, thus allowed by our model, and we justify our

selections by giving some examples. Furthermore, in

this section, we address how revocation is handled

under the new conditions.

The addition of role hierarchy to RBDM0

introduces a new notion for a user membership in a

role (explicit and implicit memberships). The explicit

role membership grants a user the authority to use the

permissions of that role because of his/her direct

membership to that role. The implicit role membership,

on the other hand, grants a user the authority to use the

permissions of that role because of the user’s

membership of a role that is senior to that role.

The following is a formal definition of an implicit

membership:

Definition 4: Let us a say a user U is an explicit

member of role x if (U, x) ∈ UA, then a user (U) is

considered to be an implicit member of x if for some

x’> x, (U, x’) ∈ UA

Definition 5: The user-role assignment is authorized

in RBDM1 by the following relation: Can-delegate ⊆
R × R

In RBDM1, expressing and enforcing the

delegation between users is done through the different

semantics of the can-delegate relation. The following

section introduces and explains the semantics used by

this model to enforce the delegation between users that

belong to different roles.

3.1 Semantics of Delegation in RBDM1

The semantics of the delegation relation become

especially complicated when the relation between the

roles involved is hierarchical. This is because along

with the hierarchical relation comes an additional type

of roles memberships (explicit, implicit), which makes

the meaning of the can-delegation dependent on the

membership status of each of the delegating and the

delegated roles in any given situation.

In this section, we list and analyze the different

semantics that impact delegation in RBDM1 and

explained the approach our model takes towards

allowing the appropriate semantic of delegation.

Figure 3 depicts organizational role hierarchy and

users’ role memberships. To illustrate the different

semantics of delegation in RBDM1, we use this

example in the rest of this section.

 U

Users

R

Roles

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

5

 Director

 (D)

 D

 Project Lead 1 PL1

 (PL1)

 PE1 QE1

 Production Quality

 Engineer 1 Engineer 1

 (PE1) (QE1)

 E1

 Engineering 1

 (E1)

 Employee (b) Users with role memberships

 (E) in role hierarchy

 (a) Role hierarchy

 Figure 3: An Example of Organizational Role Hierarchy and Its Users

Alice

Bob

Dan

Charlie

Frank

The following is a list of the semantics that control

the authorization of delegation in RBDM1. The first

three semantics are general semantics, and the fourth is

a set of semantics that result from the different

membership status in the delegating and the delegated

roles at any given time.

1) (x, y) ∈ can-delegate means that original

members, explicit or implicit, of x can make an

original member, explicit or implicit, of y an

explicit delegate member of any other role junior

or equal to x.

2) For x >y (y, x)∉ can-delegate

 (x, y)∉can-delegate means that a member of a

role cannot delegate his role membership to

another user who is a member of another role

senior to his role. For example, in Figure 3, Alice

who is a member of (PL1), cannot delegate PL1 to

Frank who is a member of the role director,

because by definition, Frank inherits the

permission of role PL1.

This semantic is very useful, because it prevents

the delegation from being upward.

3) (x, y), (y, x) ∈ can-delegate → x y

(x, y), (y, x) ∈ can-delegate means that users that

belong to different roles can delegate to one

another only if the roles to which they belong are

non-comparable.

This semantic is also useful, because in some

cases, in the office context, there is a need for a

manager from one department to assume the

responsibilities of the manager of another

department and vice versa.

For example, Bob who is a member of PE1 can-

delegate his role to Charlie who is a member of

QE1 and vice versa.

4) The following sets of semantics are based on the

statuses of both the delegating role and the

delegated role (explicit/implicit) at the time of

delegation.

For the sake of illustration we use Table 1, in

conjunction with Figure 3, to describe the derived

semantics of the can-delegate relation. We used all

possibilities that result from testing the delegating

role/delegated role memberships at any given time.

As the case in RBAC96 and RBDM0, in RBDM1,

delegating role members and delegated role members

are assumed to be original members. Moreover,

through out this discussion, we assumed that all the

members shown in figure 3 to be original-explicit

members.

We used OE to denote original explicit members

and OI to denote original implicit members. Hence the

four possibilities are (OE, OE), (OE, OI), (OI, OE),

and (OI, OI), where the first item of each tuple

represents the delegating role member and the second

represents the delegated role member.

In the table below, we list all different semantics

that resulted form the above conditions.

Status of the role memberships Total

Delegating
role

Delegated role

Given that (PL1, E1) ∈ Can-delegate

Semantics of can-delegate relations

RBDM0
(Flat roles)

OE OE Alice can-delegate PL1 to Dan, and Dan can-
delegate to Alice

OE OE

Alice can-delegate PL1 to Dan

Alice can-delegate PE1 to Dan

Alice can-delegate QE1 to Dan

Alice cannot-delegate PL1 to Bob

Alice cannot-delegate PL1 to Charlie

OE OI

Alice can-delegate PL1 to Dan
Alice can-delegate PL1 to Bob

Alice can-delegate PL1 Charlie

Alice can-delegate PE1 to Charlie
Alice can-delegate QE1 to Bob

OI OE

Frank can-delegate PL1 to Dan

Frank can-delegate PE1 to Dan
Frank can-delegate QE1 to Dan

Frank cannot-delegate PL1 to Bob

Frank cannot-delegate PL1 to Charlie

RBDM1

Hierarchical

oles)

OI OI

Frank can-delegate PL1 to Dan

Frank can-delegate PL1 to Bob
Frank can-delegate PL1 Charlie

Frank can-delegate PE1 to Charlie

Frank can-delegate QE1 to Bob

 Table 1: Examples of Authorization Functions

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

6

The table above showed that in RBDM1 the

meaning of the can-delegate relation changes

depending on the explicit/implicit status of the

(delegating and the delegated) roles involved in the

delegation process.

With the assumption that (PL1, E1) ∈ Can-

delegate, the following semantics were derived:

1. In RBDM0, where the relation between roles is

flat, the can-delegate relation has very clear

meaning: both the delegating and the delegated

roles are original/explicit. Therefore, the can-

delegate relation has one meaning: (PL1, E1) ∈
Can-delegate. This means that any member of

PL1can-delegate to any member of E1 , and vice

versa.

2. In RBDM1, the can-delegate relation has different

meaning depending on

 the status of the delegating and delegated roles.

In the first scenario, where both, the delegating

and delegated roles, are original explicit (OE, OE),

(PL1, E1) ∈ Can-delegate means that Alice can

delegate PL1 to Dan, Alice can-delegate PE1 to Dan,

Alice can-delegate QE1 to Dan. This is because of

Alice’s implicit membership in both PE1 and QE1.

This also means that Alice cannot delegate PL1 to Bob,

and Alice cannot-delegate PL1 to Charlie. This is

because both Bob and Charlie are explicit members in

their respective roles, which means that they are also

implicit members in E1.

This is of course creates an anomaly, because Bob

and Charlie are both senior to Dan, and it does not

make a lot of sense for Alice to be able to delegate PL1

to Dan and not to Bob and not to Charlie.

In the second scenario, where the delegating role

is an original/explicit and the delegated role is an

original/implicit (OE, OI), our table shows that because

Dan is an implicit member of E1, he is also an explicit

member of PE1 and explicit member of QE1. This

means that, in addition to being able to delegate PL1 to

Dan, Alice can delegate PL1 to Bob, and Alice can

delegate PL1 to Charlie. This also means that, Alice

can-delegate PE1 to Charlie, and Alice can-delegate

QE1 to Bob.

In the third scenario, where the delegating role is

an original/ implicit and the delegated role is an

original/ explicit (OI, OE), our table showed that now

Frank can-delegate PL1 to Dan, Frank can-delegate

PE1 to Dan, and Frank can-delegate QE1 to Dan. It

also showed that Frank cannot-delegate PL1 to Bob,

and cannot-delegate PL1 to Charlie

In the last scenario, where both the delegating role

and the delegated role are original/implicit (OI, OI),

our table shows that Frank can-delegate PL1 to Dan,

Frank can-delegate PL1 to Bob, Frank can-delegate

PL1 Charlie, Frank can-delegate PE1 to Charlie

Frank can-delegate QE1 to Bob. This is not desirable,

because it prevents any explicit members from

delegating.

In conclusion, in this model, we have chosen the

most liberal approach of authorizing delegation

between users in different roles. This means that our

model allows all semantics of the can-delegate relation.

This is motivated by the fact that by allowing one

semantic or the other will produce anomalies. For

example, by allowing only (OE, OE) means that Alice

will not be able to delegate PL1 to Bob, and to delegate

PL1 to Charlie. However, Alice is allowed to delegate

the same role to Dan, which is a less powerful role than

that of Bob and of Charlie. Also, by allowing only

(OE, OE) will prevent Frank from delegating PL1 to

Dan. This is not desirable, because Frank is the most

senior role, thus, inherits permission of all other junior

roles. Hence, should be allowed to delegate PL1 to

anywhere Alice can.

Finally, by allowing only (OI, OI) to delegate is

not desirable, because by allowing the implicit

membership to delegate and not the explicit

memberships puts more trust on the memberships that

gained via inheritance than the ones that were

originally assigned by the security officer.

The above semantics of delegation are a result of

having an active/full hierarchy. If the hierarchy is

empty, or collapsed, our model becomes flat and our

can-delegate becomes the same as in RBDM0.

4. Revocation in RBDM1

We now turn our attention to the revocation part of

RBDM1. Revocation in RBDM1 takes the approach of

the classical discretionary access control where the

source of the delegation (explicit or implicit) and the

identity of the revoker are taken into account in

interpreting the revoke operation.

Similar to revocation in RBDM0, Our model has

two approaches to implement revocation of previously

delegated roles. In the first approach, it appends a

lifetime to each delegation. Once that time expires, so

does the delegation. The second approach our model

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

7

uses to implement revocation is allowing users to

revoke the memberships of delegated roles (human

revocation).

The following sub-sections discuss these types of

revocations and address some of the issues that might

introduce complexity and subtlety to the model.

4.1. Revocation Using Time Outs

In this model, where the delegation is temporary

and expires with time, the length of the delegation

becomes critical to the effectiveness of delegation.

This period, which we refer to in our model as duration

of delegation, must be chosen carefully.

Overestimating the duration of delegation increases

risk by allowing the delegate member to continue to

execute the permissions assigned to the delegated.

Underestimating the duration of delegation might

prevent the delegate member from completing the

assigned task. The concept of delegation duration was

explained in RBDM0.

4.2. Human Revocation

In the cases where revocations are implemented by

humans, our model authorizes revocation under the

following conditions:

Only the delegator can revoke:

Only the delegating original can revoke. This approach

has some advantages and disadvantages. Among the

advantages are:

- It gives power to the original delegating member

to track and control the behavior of the temporary

delegate member.

- It minimizes the possibility of conflicts between

the original members that might result from

having someone else other than the sponsoring

original member revoking the delegated

membership.

Among the disadvantages of this approach are:

- Protection of the system resources from the

delegate member depends solely on the delegating

role member. If the delegate member behaves

badly in the delegated role, then only the

delegating user can revoke his membership, which

could take a long time before the delegation can

timeout. Allowing any of the original role

members to revoke can help mitigate the risk

resulting from such situations.

This revocation approach raises some issues that

introduce complexity and subtlety. The following

discussion addresses these issues.

For the sake of illustration we used Table 1, in

conjunction with Figure 3, to discuss the revocation

issues associated with the delegation in hierarchical

roles.

Suppose that Alice, who is an original member of

role PL1 (Alice ∈ User_O(PL1)), delegates her

membership to Bob who is an original member of role

PE1 (Bob ∈ User_O(PE1)), (PE1≤ PL1). Thereby

((Bob, PL1) ∈ UADE), and ((Bob, r’) ∈ UADI),

where, r’ is any role that is junior to PL1 (PL1 ≥ r’).

This is done at Alice’s discretion because Alice acts as

an owner of role PL1 because of her original

membership in that role. Alice can later revoke Bob’s

delegate membership of role PL1 (and from any role

that is junior to PL1). Note that, in this case, a member

of any role that is senior to role PL1 cannot revoke

Bob’s membership in PL1. This is because that senior

role is not the actual delegator of role PL1 to Bob. In

our example, this means Frank cannot remove Bob

from PL1.

Now suppose that Bob was made a member of role

PL1 by Alice, and by Dave, who is another member of

PL1, not shown in figure 3. If Alice revokes Bob’s

membership in PL1, then Bob should still continue to

retain his membership in PL1, via Dave. Bob can be

totally revoked from PL1 only if both Alice and Dave

revoke his membership in PL1.

Cascading Revocation

Cascading revocation refers to the way a delegation of

membership can become automatically revoked as a

result of the revocation of the membership of the roles

involved.

Our model supports the cascading revocation. In

the above example, suppose that Alice’s membership

of role PL1is revoked by a security officer. This will

result in the automatic revocation of Bob’s

membership in role PL1 (and from any roles junior to

PL1). Also, if Bob loses his membership in his

original role (PE1), this will lead to losing his delegate

membership of role PL1 (and any roles junior to role

PL1). However, if Dave’s membership in role PL1

was in turn given by Alice, then if Alice revokes Bob’s

membership of PL1, Bob will also lose his membership

in role PL1 obtained from Dave. Alice can also revoke

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

8

the membership of Bob in role PL1 indirectly by

revoking Dave’s membership of PL1.

Multiple sponsoring / supporting roles

Multiple supporting roles is when a user who is an

original member of more than one role gets delegated

more than once to the same role one for every role

membership. This is also allowed in our model.

Multiple sponsoring roles is when a user becomes a

delegate member in a role by more then one original

member in that role. This is also allowed in our model.

In both cases, the delegate member in a role is

dependent of both the sponsor and the supporting roles.

If either of these roles is revoked, the delegate

membership will also end up being revoked.

Definition 6: The role-role revocation is authorized in

RBDM1 using the following relation:

Can-Revoke ⊆ R × R

The meaning of can-revoke (x, y) ∈ can-revoke is

that the delegating member of role x (explicit or

implicit) can revoke the membership of the delegate

member y or any subsets of y in the role x. For

example, Alice, who can delegate PE1 to Dan, thereby

((Dan, PE1) ∈ UADE), can also revoke Dan from PE1,

and any roles junior to PE1.

Strong Revocation vs. Weak Revocation

In RBDM1, revocation has impact only on explicit

membership and it is strong. Strong revocation

requires revocation of both explicit and implicit

memberships. A user who is strongly revoked from a

role will also be weakly revoked from all roles junior

to that role. Strong revocation therefore has a

cascading effect downward in the role hierarchy. In

weak revocation, a user may be revoked explicitly

from a role but continue to maintain an implicit

membership in the same role. This situation does not

apply in RBDM1 (as shown in examples above)

because the delegation was done at the delegator’s full

discretion. Thus, when he revokes, every related

delegation gets revoked.

5. Summary of the RBDM1

In this paper we described the motivation,

intuition, and formal definition of a new simple and a

non-trivial model for human-to-human delegation

using roles called RBDM1 (Role-Based Delegation

Model/ Hierarchical Roles) that is based on the Role-

Based Access control (RBAC96) developed by

[SCFY96]. This new model is considered an extension

to the RBDM0, which was a delegation model using

flat roles. In this paper we also identified the different

semantics that impact the can-delegate relation, we

analyzed these semantics to determine which ones we

consider as more appropriate in business today, thus

allowed in our model, and provided a justification to

why those selections are made. We concluded this

paper with an explanation of how our model handles

the revocation of the previously delegated

memberships. Our model has two approaches to

implement revocation of previously delegated roles. In

the first approach, it appends a lifetime to each

delegation. Once that time expires, so does the

delegation. The second approach our model uses to

implement revocation is allowing users to revoke the

memberships of delegated roles (human revocation).

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

9

6. References

[ABLP96] Martin Abadi, Michael Burrows, Butler

Lampson and Gordon Plotkin. A calculus for

Access Control in Distributed Systems. ACM

Transactions on Programming Languages and

Systems, Vol. 15, No 4, September 1993,

pages 706-734.

[FK92] David Ferriaolo and Richard Kuhn. Role-

based access controls. In Proceedings of 15th

NIST-NCSC National Computer Security

Conference, pages 554-563, Baltimore, MD,

October 13-16 1992.

 [GM90] Morrie Gasser, Ellen McDermott. An

Architecture for practical Delegation in a

Distributed System. 1990 IEEE Computer

Society Symposium on Research in Security

and Privacy. Oakland, CA. May 7-9, 1990.

[Lamp71] B.W. Lampson, Protection. 5th Princeton

Symposium on information science and

systems. Pages 437-443.

[SB97] Ravi Sandhu and Venkata Bhamidipati. Role-

based administration of user-role assignment:

The UR97 model and its Oracle

implementation. In Proceedings of IFIP

WG11.3 Workshop on Data Security. August,

1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.

Feinstein, and Charles E. Youman. Role-based

access control models. IEEE Computer,

29(2):38-47, February 1996.

[BS2000] Ezedin Barka and Ravi Sandhu. A Role-based

Delegation Model and Some Extensions.

Proceedings of 23rd National Information

Systems Security Conference, Pages 101-114,

Baltimore, Oct. 16-19, 2000

[BS2000] Ezedin Barka and Ravi Sandhu. Framework for

Role-Based Delegation Models. In

Proceedings of 16th Annual Computer

Security Application Conference, New

Orleans, LA, December 11-15 2000

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

