
1

Rule-Based RBAC with Negative Authorization 

Mohammad A. Al-Kahtani 

Computer Department of Saudi Air Defense 

mohammad_abdulla@yahoo.com 

Ravi Sandhu 

George Mason University & NSD Security  

sandhu@gmu.edu 

Abstract 

RBAC has proven to be a flexible and useful access 

control model in practice. Rule-Based RBAC family of 

models was developed based on RBAC to overcome some 
of its limitations. One particular model of this family, 

which we call RB-RBAC-ve, introduces the concept of 

negative authorization to the RBAC arena. This paper 

provides a more detailed analysis of RB-RBAC-ve. The 

analysis includes user authorization, conflict among rules, 
conflict resolution polices, the impact of negative 

authorization on role hierarchies and enforcement 

architecture.

1. Introduction.

Role-based access control (RBAC) has emerged as a 

widely deployed alternative to classical discretionary and 

mandatory access controls [1, 2 and 3]. Since roles in an 

organization are relatively persistent with respect to user 

turnover and task re-assignment, RBAC provides a 

powerful mechanism for reducing the complexity, cost, 

and potential for error of assigning users permissions 

within the organization. Conventional RBAC was 

designed with a closed-enterprise environment in mind 

where a team of security officers manually assign users to 

roles. However, the landscape of business and information 

technologies has changed dramatically in recent years. An 

increasing number of service-providing enterprises make 

their services available to their users via the Internet. 

There has been some work to extend present RBAC 

models so they can be used to manage users’ access to the 

enterprise services and resources over the Internet [4,5, 

and 6].  

Also, many enterprises have users (i.e. workers and/or 

clients) whose numbers can be in the hundreds of 

thousands or millions [7]. Typical examples are banks, 

utility companies, insurance companies and popular Web 

sites, to name a few. For such enterprises, manually 

assigning users to roles may  not be feasible, especially in 

case of external users, i.e. the enterprise customers and 

business partners.  

Moreover, RBAC is being supported by software 

products designed to serve large number of clients, such as 

popular commercial database management systems, e.g. 

Oracle, Informix, and Sybase [8].  

All of these factors mentioned above render the 

manual user-to-role assignment a formidable task because 

maintaining user-role assignment up-to-date is both costly 

and error-prone. Besides, automated assignment gives the 

enterprise an edge by extending its user-consumer 

business partnership. 

In fact, some enterprises with large customer bases 

have already implemented systems that assign and revoke 

users automatically [7], and many of them have achieved 

90-95% automation of administration [9]. Rule-Based 

RBAC (RB-RBAC) Family of models was suggested to 

provide a sound conceptual basis for the automation 

process and sets a benchmark for software 

implementations of the process [10, 11 and 16]. RB-

RBAC provides the specification needed to automatically
assign users to roles based on a finite set of authorization 

rules defined by the enterprise, hence the name Rule-

Based RBAC or RB-RBAC for short. The  RB-RBAC 

family introduces negative authorization, represented by 

negative roles, to the RBAC world. The central 

contribution of this paper is to explore and analyze 

different aspects of negative authorization in RB-RBAC 

context. 

This paper is organized as follows. Section 2 provides 

an overview of related research. In section 3, RB-RBAC is 

revisited. In section 4, we introduce the RB-RBAC-ve 

model i.e. RB-RBAC with negative authorization. Section 

5 concludes the paper including a discussion of issues that 

we have not explored in this paper, though they are closely 

related to the topic discussed. 

2. Related Work. 

In the real world of access control, there are two well-

known decision policies [12]:  

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



2

a. Closed policy: This policy allows access if there 

exists a corresponding positive authorization and 

denies it otherwise. 

b. Open policy: This policy denies access if there exists 

a corresponding negative authorization and allows it 

otherwise. 

Bertino et al. contends that the closed policy approach 

has a major problem in that the lack of a given 

authorization for a given user does not prevent this user 

from receiving this authorization later on. They therefore 

proposed an explicit negative authorization as blocking 

authorizations. Whenever a user receives a negative 

authorization, his positive authorizations become blocked 

[13].

Negative authorization is typically discussed in the 

context of access control systems that adopt open policy. 

There is an extensive amount of work in this regard, see 

for example [14] and [13]. The introduction of negative 

authorization brings with it the possibility of conflict in 

authorization, an issue that needs to be resolved in order 

for the access control model to give a conclusive result. 

The types of conflicts brought about by the negative 

authorization and conflict resolution polices are discussed 

in abundance outside RBAC literature. For example, 

Jajodia et al. suggest a model that is based on a logical 

authorization language that allows users to specify, 

together with the authorizations, the policy according to 

which access control decisions are to be made [15]. The 

key components of the model are objects, subjects, 

actions, and rules. Subjects who may be authorized to 

perform actions on objects include user, roles and groups. 

The unit of authorization is an action on an object. The 

authorization language expresses the policy by means of 

rules of different types. One type of rule is used to 

explicitly authorize users, roles or group. Another type of 

rule is used to derive further authorization based on those 

provided by the first type of rule. Any conflict that might 

arise with respect to authorization derivation is resolved 

using a third type of rule. Several types of conflicts and 

conflict resolution policies are suggested. RB-RBAC 

utilizes some of these policies as well as some new 

conflict resolution policies specified in this paper for the 

first time. In another work, Jajodia et al. provide formal 

definitions for several policies for authorization 

propagation and conflict resolution [12]. 

Negative authorization is rarely mentioned in RBAC 

literature, mainly because RBAC Models such as 

RBAC96 and the proposed NIST standard model are 

based on positive permissions that confer the ability to do 

something on holders of the permissions [2]. This is 

different from the semantics given to this concept in RB-

RBAC, as will be discussed in section 4. 

Al-Kahtani has proposed a family of models which 

can be used to dynamically assign users to roles based on a 

set of authorization rules defined by the enterprise. These 

rules take into consideration users’ attributes and any 

constraints set forth by the enterprise’s security policy. 

The Rule-Based RBAC (RB-RBAC) models provide a 

family of languages (Authorization Specification 

Languages or ASL for short) to express these rules. The 

models also define relations among rules, provide 

specification for derived induced hierarchies among the 

roles, and allow constraints specification. Figure 1 shows 

members of the RB-RBAC family. Model A is the most 

basic among the family. This model allows the 

specification of a set of authorization rules that can be 

used to assign users to roles based on users’ attributes. 

Model B extends Model A to allow the specification of 

negative authorization (Model B1) and mutual exclusion 

(Model B2) by extending the ASLA language. The extended 

language is called ASLB1 and ASLB2, respectively. Model C 

extends Model A to allow constraints specification. In the 

following two sections we will briefly discuss model A 

which is the basic model and then we introduce negative 

authorization to RB-RBAC which yields model B1 which 

we name RB-RBAC-ve in this paper.

Figure 1 :RB-RBAC Family 

3. RB-RBAC Model A. 

3.1 Model A Basic Concepts. 

This model is discussed in [10,11 and 16]. The main 

components of the RB-RBAC model A are the sets U, AE, 

R, and P which represent users, attribute expressions,  

roles, and  permissions respectively (Figure 1). 

Figure 2: RB-RBAC Main Components 

The U, R, and P sets are imported from RBAC96. In 

RB-RBAC, the security policy of the enterprise is 

expressed in the form of a set of authorization rules. Each 

rule takes as an input the attributes expression (a member 

of AE set) that is satisfied by a user (a member of U set) 

and produces one or more roles (a member of R set). An 

attribute expression is a well-formed formula in 

U A R P

Model C 
(Model A + 

Constraints  

Specification) 

Model B 
(Model A + Negative 

Authorization/Mutual 

Exclusion)

Model A 

(Monotonic 
Language) 

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



3

propositional logic that specifies what combination of 

attributes values a user must satisfy in order to be 

authorized to roles specified in the rule. The attributes 

expressions can be stated using the language provided by 

the model. Syntactically, a rule has two parts: 

a. The left hand side (LHS) of a rule is an attribute 

expression.  

b. One or more role(s) in the right hand side (RHS). 

If u satisfies the attribute expression, u is authorized to the 

role(s) specified in RHS of the rule. The following is an 

example of a rulei:

aei  rg

where aei is the attribute expression and rg is the produced 

role. If user u satisfies aei, then u is authorized to all the 

roles in the right hand side of rulei. To maintain user-role 

authorization the set URAuth is defined as follows:  

URAuth = {(u,r)| (∃rulei)[u satisfies aei ∧ r

∈RHS(aei)}

If (u,r) ∈ URAuth then this means that u is authorized 

to role r. This set is the key component of RB-RBAC 

since it captures the semantics of user-role assignment in 

the models. Only a user who has authorization on roles 

that are specified in RHS can activate these roles. 

Activating a role enables the user to execute the 

permissions assigned to that role. A user can activate one 

or more of his authorized roles in a session. Different 

sessions belonging to the same user can have different 

roles. 

There is an implicit “OR” among the rules. If u

satisfies one or more rules that produce different roles, 

then he is authorized to activate any combination of these 

roles. Upon receiving a user request of a role, the system 

that implements RB-RBAC searches the authorization 

rules set to find a rule which the user satisfies such that the 

rule yields that requested role. As a user satisfies more 

rules, the set of roles that he is authorized to assume does 

not diminish. Thus Model A is monotonic.

3.2 User States. 

A user can be in any of several states wrt a specific 

role. For a given role r, we distinguish the following user’s 

states:  

a. Potential (P): user u is authorized to role r but has not 

activated it yet. 

b. Revoked (R): user u has activated role r at least once 

but is not currently authorized to activate it. 

c. Not-candidate (N): user u has not activated role r and 

is not currently authorized to activate it because he 

does not have the required attributes for assuming r,

i.e. u is not authorized to r.

d. Deleted (Del): user u has been deleted from the 

system by an authorized individual such as the System 

Security Officer (SSO). 

e. Active (Act): refers to the state where the user is 

currently active in the role. 

f. Dormant (D): After deactivating a role, the user 

becomes dormant with respect to that specific role, i.e. 

in “D” state. 

The importance of this distinction among different 

states of users becomes clear when specifying constraints 

and enforcing policies like the Chinese Wall.  Figure 2 

shows the state diagram of a user with respect to a single 

role.

To express authorization rules, RB-RBAC provides 

ASLA a language based on a context-free grammar. The 

language syntax and semantics are detailed in [10]. 

Figure 3: User's State Diagram with Sessions 

3.3  Seniority Among Authorization Rules. 

Seniority can be determined among the rules based on 

attributes expressions on their left hand sides. The “≥”

symbol, read “is senior to”, represents seniority relation 

among rules:  

rulei ≥ rulej ↔ (aei  aej)

where aei and aej are the LHS of rulei and rulej

respectively. This implies that users who satisfy rulei also 

satisfy rulej and, hence, are authorized to the roles 

produced by rulej. The seniority relation on authorization 

rules, i.e. among attributes expressions forming the LHS 

of the rules, induces a hierarchy among the roles forming 

the RHS of these rules. This induced role hierarchy (IRH) 

captures inheritance of user-role assignment. If ri is senior 

to rj then the users who satisfy the LHS of the rule that 

yields ri will also satisfy the rules that yield rj. As a result, 

the set of ri users is a subset of rj users. In other words, 

user inheritance flows downwards in the IRH graph, that 

is, a junior role in IRH inherits all the users assigned to its 

seniors.  In general IRH is a quasi-order, i.e., it is reflexive 

and transitive.   

P
Act

N

R

start 

start 

ae/r 
ae/r 

ae/r 

ae/r 

D

ae/r 

deact 

act

act

Del

d

d

d

d

Legend: 
ae     : Change in attributes expressions 
r       : Change in authorization rules set 
act    : Role activation by a user 
deact: Role deactivation by a user 

d

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



4

3.4 Alternative Ways to Gain Authorization.  

There are three approaches to assign roles to users: 

1. Implicit Assignment: Based on certain criteria, users are 

automatically assigned to roles. This is what Model A 

does thus far.  

2. Hybrid Assignment: Besides the automatic assignment, 

the SSO can manually assign users to roles. 

3. Explicit Assignment: In this approach a person with 

proper authority such as the SSO manually assigns users 

to roles. This is what traditional RBAC follows. 

In [16] Al-Kahtani argues that there are situations 

where pure implicit assignment is not flexible enough. 

Thus, to provide flexibility, the concept of can_assume

was introduced. The SSO may use can_assume relation to 

explicitly authorize users who are authorized to a role, say 

rg, to another role, rh, for a certain duration d starting at a 

specific time t. The SSO specifies the duration and the 

starting time. As a result, the user(s) in role rg is authorized 

to activate role rh at time t for duration of d. The 

motivation and specification of can_assume relation is 

detailed in [16]. Appendix A provides a summary of 

relevant definitions extracted from RB-RBAC model.  

4. RB-RBAC-ve Model. 

4.1 Introduction.   

RB-RBAC-ve extends Model A to allow the 

specification of negative authorization (called Model B1 in 

[16]). This extension has an impact on user authorization, 

formally represented by URAuth set and it may cause 

conflict among rules. RB-RBAC-ve is the first RBAC 

model that provides detailed analysis of different aspects 

of negative authorization in an RBAC context. In this 

section, we analyze this conflict and present several novel 

conflict resolution polices. The definition of URAuth is 

modified to accommodate the semantics of negative 

authorization. The new definition takes into consideration 

conflict resolution policies in effect. We also discuss the 

impact of negative authorization on URAuth, IRH, and 

RB-RBAC enforcement architecture. 

To specify a negative authorization we use the ASLB1

language which imports the syntactic constructs of ASLA

(Appendix B) but it modifies the syntax of Roles as 

follows [16]:  

Roles ::= [ ] Role  

role-set ::= Role | Role||,||role-set 

The syntax above allows specifying negative 

authorization on roles such as the following: 

aek ¬ ri

The rule above states that once a user satisfies aek the 

system that implements RB-RBAC prohibits that user 

from assuming ri.

4.2 Motivation. 

The motivations to use negative authorization are not 

immediately apparent in environments where RBAC is 

applied. Even though user-role assignment could be 

decentralized [17], it is not left to users’ discretion to 

assign other users to roles. Instead a small number of 

individuals (e.g. SSOs) are entrusted with applying the 

enterprise security policy regarding user-role assignment. 

However, since RB-RBAC automates this process, 

negative authorization provides an extra safeguard, since it 

is not always easy to foresee all possible combinations of 

roles a user can assume based on his attributes, which 

change over time. Negative authorization helps in 

blocking any user whosoever satisfies certain criteria 

(expressed as attributes expression) from assuming certain 

roles. Also, it can be used to block receiving authorization 

of certain roles via can_assume and can_delegate 
relations. The SSO can use can_assume relation to 

explicitly authorize users who are authorized to a role, say 

rg, to another role, rh, for a certain duration d starting at a 

specific time t. As a result, the user(s) in role rg is 

authorized to activate role rh at time t for duration of d.

Also, he may use can_delegate relation to permit regular 

users to delegate their memberships in specific roles to 

other users. To motivate the use of negative authorization 

in the context of RBAC, consider the example of a 

military unit that has a Commander and four staff officers, 

usually known as G1 through G4 as depicted in Figure 3. 

Figure 4 : RBAC Hierarchy for a Battalion 

The commander can delegate his authority to any of 

his staff officers as long as the staff officer meets certain 

criteria specified by the military regulations.  

Table 1 

Attributes in the System: 

a1: rank-type = officer 

a2: Staff course = T 

a3:  Leadership  course = T 

a4:  Rank  Lt. Colonel 

a5: Assignment Order = T

Authorization Rules: 

a1∧ a2  {G1, G2, G3, G4}

a1∧ a2∧ a3 ∧a4 ∧ a5 Commander

¬a4 ¬Commander

can_delegate(Commander,  G1, d, t)

Commander

G1 G4G2 G3

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



5

In Table 1, we show a security policy that specifies a 

possible real world situation. The policy uses negative 

authorization to prevent a Commander from delegating his 

role to a staff officer whose rank is lower than a Lt. 

Colonel. 

4.3 Analysis of RB-RBAC-ve . 

4.3.1 Conflict Due to Negative Authorization.

Introducing “ ” to the RHS may lead to conflict in 

the state of a single user wrt a single role. The conflict is 

due to simultaneous positive and negative authorizations. 

In Figure 5, the symbol  “ ” in a  rule means that attribute 

expression aei produces the roles listed to the right of the 

arrow. Using the set of authorization rules shown in the 

figure, the following are several variations of conflict:   

a. Case 1: Conflict among unrelated rules like the one 

between rule2 and rule3. If u satisfies rule2 and rule3

simultaneously then u should be authorized to activate 

r1 (i.e. u is in P state wrt r1) and denied r1 at the same 

time (i.e. u is in N state wrt r1). This case is 

represented by the following: 

(u, aei) ∈ U_AE ∧ (u, aej) ∈ U_AE ∧ r ∈RHS(aei) ∧
¬r ∈RHS(aej)

Where U_AE is defined such that U_AE = {(u, aei)| (u, 

aei) ∈U×AE ∧ u satisfies aei}. (u, aei) ∈U_AE means 

that u is authorized to RHS(aei).

b. Case 2: Conflict among related rules: rule3 and rule5

are conflicting because if u satisfies rule3 then he is 

denied r1 (i.e. u is in N state wrt r1), but at the same 

time, authorized to assume r1 (i.e. u is in P state wrt r1)

because rule3 ≥ rule5. This case is represented by the 

following: 

(u, aei) ∈ U_AE ∧ (u, aej) ∈ U_AE ∧ r

∈RHS(aei) ∧ ¬r ∈RHS(aej)

∧ ((aei → aej)∨ (aej → aei))

c. Case 3: Conflict between implicit assignment i.e. via 

an authorization rule and explicit assignment i.e. via 

can_assume or can_delegate. Suppose that the SSO 

issued the following: 

can_assume(r4, r3, t, d)

This allows users who are authorized to r4 to activate 

r3. If u satisfies ae1, i.e. u is in N state wrt r3, and at 

the same time is authorized to r4. Nonetheless, the 

can_assume relation above authorizes u to r3, which 

leads to a conflict.     

Figure 5 

4.3.2 Conflict Resolution Policies. Conflict resolution 

policies have been discussed extensively in the literature, 

see for example, [13, 15 and 12]. Most notable among 

them are:  

a. Denial Takes Precedence (DTP): Negative 

authorizations are always adopted when conflict exists.  

b. Permission Takes Precedence (PTP): Positive 

authorizations are always adopted when conflict exists. 

These two policies in their original form suffer the 

following deficiencies: 

a. They are very rigid in the sense that they do not allow 

specification of special cases that violate the policy 

enforced. Suppose a hospital has a policy that has the 

following authorization rules: 

rule1: No. of years in residency ≤ 1  intern  

rule2: No. of years in residency ≤ 1 ¬ ER_doctor  

Naturally, during the holiday seasons large numbers 

of the medical staff take their yearly vacation. 

However, this period of the year witnesses a surge in 

the number of people admitted to the emergency 

room. Clearly, additional medical staff is needed to 

handle this surge in demand of medical care. The 

administration may allow interns to work in the ER, 

and hence authorizes them to role ER-doctor. 

One way to handle this is to change the hospital 

policy by deleting rule2. This course of action is not 

preferred because it might lead to unseen side effects. 

Also, it might lead to a breach in the security policy if 

the SSO forgets to add it back after the holiday season 

is over. A better solution is to use can_assume

relation as follows: 

can_assume(intern, ER_doctor, t, d)

This authorizes interns to activate the role ER_doctor, 

i.e. to work in the emergency room. can_assume 

conflicts with rule2. However, if DTP is enforced, the 

rule1:  ae1 ¬r3, r4

rule2: (ae2)  r1

rule3: (ae3) ¬r1, r2

rule4: (ae4)  r2

rule5: (ae5)  r1

such that: 

rule1 ≥ rule2,

rule1 ≥ rule3≥ rule5,

rule1 ≥ rule4≥ rule5

rule2:

RHS = r1

rule3:

RHS = ¬r1, r2

rule5:

RHS = r1

rule4:

RHS = r2

rule1:

RHS = ¬r3, r4

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



6

interns will not be able to work in the ER unless rule2

is deleted. What is needed in this situation is a relaxed 

version of DTP that allows the stating of this 

exception in the security policy. 

b. DTP with negative authorization is useful in a closed 

policy environment. However, PTP renders negative 

authorization meaningless in such environments. This 

is so because wrt any role that is associated with 

negative authorization, there could be only one of the 

following possibilities: 

i. Conflict may arise: Since PTP is enforced, the 

negative authorization is ignored. 

ii. No conflict may arise: There is no need for the 

negative authorization since we are assuming a 

closed policy. 

Based on that, we argue that there is a need for more 

flexible conflict resolution policies. The following section 

discusses newly formulated conflict resolution policies; 

some of them specify DTP policy with varying degrees of 

flexibility. 

4.3.2.1 Localized DTP (LDTP). DTP policy resolves any 

conflict in favor of denial. This is rather restrictive since it 

means the more rules a user satisfies, the higher is the risk 

that he might be denied access to a role due to a conflict in 

authorization which is counter-intuitive. We propose 

modifying the DTP policy such that the conflict among 

unrelated rules is resolved in favor of permission. In other 

words, the denial is localized to conflict among 

comparable rules. We name the modified policy: the 

Localized DTP, or LDTP for short. Based on this, 

applying the LDTP policy on the three cases of conflict 

mentioned in the previous section results in the following 

authorizations:

Case 1: (u,r) ∈ URAuth i.e. u is authorized to activate 

role r.

Case 2: (u,r) ∉ URAuth 

Case 3: (u,r) ∉ URAuth 

4.3.2.2 Flexible DTP (FDTP). This policy enforces DTP 

in cases where conflict occurs among authorization rules 

but it enforces PTP if conflict occurs between the implicit 

assignment and explicit assignment. Thus, when FDTP is 

enforced, in the example of the hospital discussed above, 

an intern can work as an ER doctor via can_assume

relation without the need to remove rule2 from the 

authorization rules set. In other words, FDTP policy 

authorizes u to role r if there is no conflict wrt role r, or if 

there is a can_assume relation which authorizes u to role r

even if u receives a negative authorization wrt to r.

Applying the FDTP policy on the three cases of conflict 

mentioned in the previous section results in the following 

authorizations:

Case 1: (u,r) ∉ URAuth 

Case 2: (u,r) ∉ URAuth 

Case 3: (u,r) ∈ URAuth 

In Table 2 we summary how the afore-discussed 

policies compare and contrast.  

Table 2 

Conflicting Parties 

Policy 

↓

Comparable 
Rules 

Non-
comparable 

Rules 

Rules and SSO-
initiated 

authorization 

(can_assume and 
can_delegate)

DTP Denial Denial Denial 

PTP Permission Permission Permission 

LDTP Denial Permission Denial 

FDTP Denial Denial Permission  

The entry at the intersection of the fourth row with the 

third column, for example, means that under LDTP if the 

conflicting parties are non-comparable rules, then 

permission prevails.  

4.3.2.3 Weighted Rules. Authorization rules are assigned 

weights according to criteria determined by the enterprise

such as: 
a. The seniority of the rule, so rule3 has higher weight 

than rule5 in Figure 4 and, thus, the negative 

authorization is enforced.  

b. When rules administration is decentralized, the SSO 

may authorize a junior security officer (JSO) to 

administer a specific group of rules. Conflict may 

arise among rules specified by SSO and JSO. One 

way to resolve this is by considering the seniority of 

the rule issuer. Based on this, an SSO-issued rule has 

higher weight than a rule issued by a junior security 

officer and, thus, the authorization obtained via the 

higher rule prevails. 

4.3.2.4 Labeled Roles. This policy requires assigning 

label to each role. This label could be either one of the 

following values: DTP or PTP. If rg and rh are roles such 

that they are respectively labeled DTP and PTP, then in 

case of conflict wrt rg, DTP is always enforced, while PTP 

is enforced in case of rh. The notion and notation of role 

ranges [17] could be utilized in this context. An 

assign_label relation can be defined as follows: 

assign_label ⊆ {DTP, PTP}× 2
IR

So, assign_label(DTP, [rg, rh]) assigns DTP label to all 

roles in the range [rg, rh].

4.3.3 Users' Authorization. We have discussed several 

policies that can be deployed to resolve conflicts that may 

arise among authorization appointed to a specific user. In 

this section, we modify the definition of the set "URAuth" 

under selected policies to reflect the impact of conflict, if 

it exists, on user’s authorization. While it is possible to do 

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



7

this with respect to all the conflict resolution policies that 

we have discussed, for the sake of brevity, we choose to 

focus on PTP, DTP, LDTP and FDTP.  

Definition 1 

1. URAuth, A, and B are imported from Model A, and are 

mentioned here for convenience:  

URAuth= {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r

        ∈RHS(aei)}

A= RHS of URAuth above. 

B= (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧
can_assume(r’, r, t, d ) ∧ can_assume has not expired ] 

2. Let C = ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]

which means that user u has a negative authorization wrt

r via satisfying a rule rulej . 

3. Let C’= ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ∧ ( 

(aej → aei) ∨ (aei → aej)] which means that user u has a 

negative authorization wrt r via satisfying another rule 

rulej that is comparable to a rule that positively 

authorizes u to r.

4. URAuth  varies according to the policy enforced: 

a. PTP: URAtuh in PTP with/without can_assume is 

similar to the corresponding URAtuh in Model A. 

b. DTP : URAuth
DTP

 = A ∧ C , or 

URAuth
DTP

 = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r

∈RHS(aei) ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r

∈RHS(aej)]}

c.  DTP with can_assume: URAuth
DTP with can_assume

 = (A

∨ B) ∧ C , or 

URAuth
DTP with can_assume

 = {(u,r)| ((∃rulei)[(u, aei)

∈U_AE ∧ r ∈RHS(aei)]

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧
can_assume(r’, r, t, d ) ∧ can_assume has not expired 

]) ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]}

d. LDTP: We modify the term C to require the 

conflicting rules to be comparable. Call the modified 

term C', thus URAuth
LDTP

 = A ∧ C'

URAuth
LDTP

 = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r

∈RHS(aei)] ∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r

∈RHS(aej) ∧ ( (aej → aei) ∨ (aei → aej)] )

e. LDTP with can_assume: URAuth
LDTP with can_assume

 = 

(A ∨ B) ∧ C'

URAuth
LDTP with can_assume

 = {(u,r)| ((∃rulei)[(u, aei)

∈U_AE ∧ r ∈RHS(aei)]

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧
can_assume(r’, r, t, d ) ∧ can_assume has not expired 

])

∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ∧ ( (aej

→ aei) ∨ (aei → aej)] } 

f. FDTP: URAuth
FDTP

 = URAuth
DTP

g. FDTP with can_assume: URAuth
FDTP with can_assume

 = (A

∧ C ) ∨ B

URAuth
FDTP with can_assume

 = {(u,r)| ((∃rulei)[(u, aei)

∈U_AE ∧ r ∈RHS(aei)]

∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ] ) 

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧
can_assume (r’, r, t, d ) ∧ can_assume has not expired 

]}

Table 3 summaries the definition of URAuth under 

different policies. 

Table 3 

4.3.4 Impact on Roles Hierarchies.  The concept of a 

given role hierarchy (GRH) that represents the current 

business practice of the enterprise is discussed in [11] and 

[16]. The GRH is identical to role hierarchies defined in 

RBAC96, that is, it is permission-driven: 

(ri ≥GRH rj) → rj permissions ⊆ r j permissions

where ≥GRH has the same semantics as in RBAC96. As 

such, inheritance of permissions flows upward in the 

GRH. When a GRH is present, rulei such that aei rg

may have one of the following two possible semantics: 

a. Propagation prohibited: Users who satisfy aei should 

be prohibited from assuming rg. This is the 

interpretation given previously. 

b. Propagation allowed: Negative authorization 

propagates upward in GRH such that users who 

satisfy aei should be prohibited not only from 

assuming rg, but also from assuming any role rk such 

that rk ≥GRH rg. This ensures that the user cannot 

circumvent the system by assuming rk, whose 

permissions are a superset of rg’s. From a functional 

perspective, this may not be desirable since it is 

usually the case that the prohibition is targeting users 

who merely satisfy rulei, but not those who can 

assume roles higher in the hierarchy by virtue of 

satisfying rules senior to rulei, which usually means 

that they meet higher security requirement. Allowing 

the negative authorization to propagate upward 

requires modification of the definition of URAuth. 

For a user to be authorized to a role r, not only do we 

require that u has positive authorization wrt r and 

does not have negative authorization wrt r, but we 

also require that u does not have negative 

authorization wrt any role r' such that r ≥ GRH r' i.e. r is 

senior to r' in GRH. 

Policy URAuth 

 Without 

can_assume 

With can_assume

PTP A ( A ∨ B)

DTP A ∧ C ( A ∨ B) ∧ C

LDTP A ∧ C' (A ∨ B) ∧ C'

FDTP A ∧ C (A ∧ C ) ∨ B

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



8

Definition 2 

URAuth definition is modified to take propagation of 

negative authorization into account. We need to modify 

term C as follows: 

Term C becomes: Cmodified = ¬ (∃rulej)[(u, aej) ∈U_AE ∧
¬r' ∈RHS(aej) ∧ r ≥GRH r']

Notice that we can replace the term C' in Definition 8 

with Cmodified  since r ≥GRH r' implies that the rules that 

generate r  and r' are comparable.  

4.3.5 User State Diagram. Suppose that the system that 

implements RB-RBAC has the following set of rules only: 

rulei: aei   rg

rulej: aej  rh

rulek: aek rh

Let’s consider the following scenarios assuming DTP 

is in effect and using Figure 2: 

Scenario 1: Assume that u satisfies rulej only and, thus, 

(u, rh) ∈URAuth. In other words, u could be in any of the 

following states wrt rh: P, D, or Act. A change in u’s 

attributes or in the authorization rules may cause the 

system that implements RB-RBAC to invoke rulek

assigning negative authorization to u wrt rh. Accordingly, 

(u, rh) ∉URAuth and u’s state will be changed from P to N 

or from D or Act to R. The arrows labeled ae/r represent 

this.  

Scenario 2: Assume that u satisfies rulei only. Hence, (u,

rg) ∈URAuth. As a result, u could be in any of the 

following states wrt rg: P, D, or Act. A change in u’s 

attributes or in the authorization rules that cause the 

system that implements RB-RBAC to invoke rulek

assigning negative authorization to u wrt rh. If rg ≥ rh and 

propagation is allowed, u’s state will be changed as in 

scenario 1.   

A change in u’s attributes or in the authorization rules 

may make u no more able to satisfy rulek, and thus, u is no 

more authorized to ¬rh. Also, u could become unable to 

satisfy rulek either because it was modified or deleted. 

This results in changing his state from N back to P, or 

from R to D. 

4.3.6  Enforcement Requirements. Enforcing the 

negative authorization requires that the system which 

implements RB-RBAC has access to all relevant 

attributes. This requirement affects the architectural 

options that can be used to enforce RB-RBAC-ve since the 

system must either have these attributes under its control 

or be granted access to them when needed. If this is not the 

case, then users may evade the model. Consider rules rule2

and rule3 in Figure 4. If these rules were in public domain 

or were somehow unconcealed, then users whose 

attributes satisfy both ae2 and ae3 can avoid rule3 simply 

by not providing the attributes necessary to satisfy ae3.

Though this may not be a problem under PTP policy, it 

amounts to a security breach under DTP policy. If RB-

RBAC has access to users’ attributes, DTP policy can be 

enforced.  

4.3.7 Monotonicity. RB-RBAC-ve permits specifying the 

rules such that the set of roles that a user is authorized to 

decreases as the number of rules he satisfies increases. 

Suppose that we have ( rg) ∈ RHS(aei) and {rg , rh} ⊆
RHS(aej). If a user u satisfies rulej, then he is authorized to 

rg and rh. In case of DTP, if u satisfies both rules, he is 

authorized to rh only. The above shows that RB-RBAC-ve 

is non-monotonic.  

5. Discussion and Future Work 

We have shown how to modify RB-RBAC so that it 

allows negative authorization. Negative authorization in 

the context of RBAC is a novel concept. RB-RBAC-ve is 

the first RBAC model that provides detailed analysis of 

different aspects of negative authorization in an RBAC 

context. This analysis includes providing semantics for the 

negative authorization in this new territory, identifying 

cases of conflict, suggesting several new conflict 

resolution policies and analyzing the impact of negative 

authorization on IRH, GRH and any RB-RBAC 

enforcement architecture.  

The conflict resolution policies presented requires 

further analysis. For example, in the Labeled Roles 

resolution policy, there are some subtle issues that need to 

be analyzed further. Suppose we have two roles rg and rh

such that rg  rh. Suppose also that we assign the labels 

DTP and PTP to rg and rh respectively. If u satisfies 

authorization rules such that he has conflict in both roles, 

then based on the labels assigned to the roles, u is 

authorized to rh but not to rg. This reduces the privileges 

available to u, which is not problematic since senior roles 

are naturally assigned more permission and, as thus, it is 

wise to err on the side of denial in case of conflict. 

However, assume that the labels were reversed and that u

has conflict in both roles. The resolution will be such that 

u is authorized to rg but not to rh, which is very 

problematic since rh’s permissions are a subset of rg’s 

permissions. To follow this policy strictly, we need to 

suspend this subset of permissions, which may render rg

deficient or even meaningless. We have not found any 

practical example in which this scenario is applicable. So, 

when assigning labels to roles, we require that the roles 

higher in the hierarchy receive labels of equal or higher 

level than their juniors. We assume that DTP label is 

higher than PTP. We believe this requirement is 

reasonable since senior roles are naturally assigned more 

permission, so they need more protection. 

Another candidate for future work is introducing the 

concept of parameterized roles to RB-RBAC family and 

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



9

analyzing its impact on different aspects of the models 

such as user authorization, IRH. 

6. References 

[1] R. Sandhu, E. Coyne, H. Feinstein and C. Youman, “Role-

Based Access Control Model”, IEEE Computer, 29(2), 

Feb. 1996.

 [2] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST Model for 

Role-Based Access Control: Towards a Unified 

Standard”, In Proceedings of the fifth ACM workshop 

on Role-based access control table of contents, Berlin, 

Germany,  2000, Pages: 47 - 63.  

[3] D. Ferraiolo, R. Sandhu, S. Gavrila , and R. Kuhn, “Proposed 

NIST Standard for role-based access control: towards a 

unified standard”, In ACM Transaction on Information 

and System Security (TISSEC), Vol. 4, Number 3,

August 2001.

 [4] D. Ferraiolo, J. Barkley, and R. Kuhn, “A Role Based Access 

Control Model and Reference Implementation Within a 

Corporate Intranet”, ACM Transactions on Information 

and Systems Security, 2(1):34-64, February 1999. 

[5] J. Park, R. Sandhu and G. Ahn, “Role-based Access Control 

on the Web”, In  ACM Transactions on Information 

and System Security, Vol. 4, No 1, 2001.  

[6] Joon S. Park, Ravi Sandhu, and SreeLatha Ghanta. “RBAC 

on the Web by Secure Cookies” In Proceedings of the 

IFIP WG11.3 Workshop on Database Security,

Chapman & Hall, July, 1999. 

 [7] A. Kern, A. Schaad and J. Moffett, “An Administration 

Concept for the Enterprise Role-Based Access Control 

Model”, SACMAT’03, June 1-4, Como, Italy.

 [8] C. Ramaswamy and R. Sandhu, “Role-Based Access Control 

Features in Commercial Database Management 

Systems”, NISSC 1998.  

[9] A. Kern, “Advanced Features for Enterprise-Wide Role-

Based Access Control”, In Proceedings of the 18th 

Annual Computer Security Applications Conference,

Las Vegas, Nevada, USA, December, 2002, pages 333-

342. 

 [10] M. Al-Kahtani and R. Sandhu, “A Model for Attribute-

Based User-Role Assignment”, In Proceedings of the 

18th Annual Computer Security Applications 

Conference, Las Vegas, Nevada, December 9-13, 

2002.  

[11] M. Al-Kahtani and R. Sandhu, “Induced Role Hierarchies 

with Attribute-Based RBAC”, In Proceedings of the 

8th ACM Symposium on Access Control Models and 

Technologies (SACMAT), Villa Gallia, Como, Italy, 

June 2-3, 2003. 

[12] S. Jajodia, P. Samarati, M. Sapino and V. 
Subrahmanian, ‘‘Flexible support for Multiple 
Access Control Policies’’ , In ACM Transactions on 
Database Systems, Vol. 26, No. 2, June 2001. 

 [13] E. Bertino, P. Samarati, and S. Jajodia, ‘‘An Extended 
Authorization Model for Relational Databases”, In 

IEEE Transactions On Knowledge and Data 

Engineering, Vol. 9, No. 1, January-February 1997. 

 [14] E. Bertino, P. Samarati, and S. Jajodia,  
‘‘Authorizations in Relational Database 
Management Systems’’, In Proceedings of the 1st 
ACM Conference on Computer and 
Communications Security (Fairfax, VA.Nov. 3---5). 
ACM, New York, pp. 130---139. 

 [15] S. Jajodia, P. Samarati and V.S. Subrahmanian, “A logical 

Language for Expressing Authorizations”, In 

Proceedings of the 1997 IEEE Symposium on Security 

and Privacy, 1997. 

 [16] M. Al-Kahtani, “A Family of Models for Rule-Based User-

Role assignment”, A Ph.D. dissertation submitted to  

George Mason University, 2004.

[17] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The 

ARBAC97 Model for Role-based Administration of 

Roles”,   ACM Transactions on Information and 

System Security. Vol.2, No.1, Feb. 1999, pages 105-

135. 

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



10

Appendix A: Relevant Definitions from RB-RBAC

U, R, and P, imported from RBAC96, are the sets of users, roles, and permissions respectively.  In addition RB-RBAC 

Model A has the following components. 

2. A set of attribute expressions AE.  Elements of AE are denoted as ae ∈ AE (See the language in section 

3.2.5.1). 

3. A set of authorization rules where each rule rulei is written as: aei RHS where  is read “generates” or 

“yields” and RHS ⊆ R. 

4. Function RHS(aei) = RHS returns the set of roles that user u who satisfies aei is authorized to activate. 

5. U_AE = {(u, aei)| (u, aei) ∈U×AE ∧ u satisfies aei}, (u, aei) ∈U_AE means that u is authorized to RHS(aei).

6. IR is the set of roles produced by all authorization rules:  

IR = { rg | (∃aei) [aei ∈ AE ∧ rg∈ RHS(aei)}

7. URAuth = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)}. For the sake of convenience, we will call the right 

hand side of this definition as "A". We will refer to it in future definitions to simplify the relation of different 

models to each other. 

The concept of session and the functions sessions and user are imported from RBAC96:   

8. sessions : U →2S, a function mapping each user ui to a set of sessions  

9. user : S → U, a function mapping each session si to the single user user(si) (constant for the session's lifetime)  

10. URA ⊆ URAuth, URA = {(u,r)| (u, r) ∈ URAuth ∧ u is currently activate wrt r } 

11. URD ⊆ URAuth, URD = {(u,r)| (u, r) ∈ URAuth, ∧ u has activated r at least once but is not currently active 

wrt r } 

12. URP ⊆ URAuth, URP = {(u,r)| (u, r) ∈ URAuth ∧ u has never activated r}

URAuth = URA ∪ URD ∪ URP 

URA ∩ URD = ∅
URA ∩ URP = ∅
URD ∩ URP = ∅

13. URN ⊆ U×AE, URN = {(u,r)| (u, r) ∉ URAuth ∧ u has not activated r in the past} 

14. URR ⊆ U×AE, URR = {(u,r)| (u, r) ∉ URAuth ∧ u had activated r at least once in the past } 

15. User_State(u, r) = 

Case:

a. (u, r) ∈ URP: User_State(u, r) = P. 

b. (u, r) ∈ URA: User_State(u, r) = Act 

c. (u, r) ∈ URD: User_State(u, r) = D. 

d. (u, r) ∈ URR: User_State(u, r) = R. 

e. (u, r) ∈ URN: User_State(u, r) = N. 

f. Del: u is deleted by SSO. 

These states are mutually exclusive.  The state Del is a terminal state. 

16. roles : S → 2R, a function mapping each session si to a set of roles roles(si) ⊆ {r | (user(si), r) ∈ URAuth} 

(which can change with time) 

17. can_assume relation: Specification is provided in [16] 

18. URAuthwith can_assume = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)

∨ (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, d ) ∧ can_assume has not 

expired ] )} 

Let's call the second term in the right hand side B, and hence we say: 

URAuthwith can_assume = A ∨ B 

19. (rulei ≥ rulej) ↔ (aei  aej).

20.  IRH ⊆ IR x IR is a relation such that rg is senior to rh ( (rg, rh) ∈ IRH is also written as rg ≥ rh ):

IRH= {(rg ,rh) | (∀rulei) [(aei rg) → (∃rulej) [rulei ≥ rulej  aej rh]]} 

Intuitively, this means rg is senior to rh in IRH if every rule that produces rg is senior to a rule that produces rh.

21. IRH = {(rg ,rh) | (u, rg) ∈URAuth  → (u, rh) ∈URAuth} 

22. IR  is the set of  equivalence classes that results from defining relation “mutually senior to one another” on IR 

such that:  

[ri] = { rj | ri and rj are mutually senior to one another} 

23. IRH  = {([rg] ,[rh]) | ∀u∀rg∈[rg]∀rh∈[rh] [((u,rg) ∈ URAuth → (u,rh) ∈ URAuth)  

∧ ((u,rh) ∈ URAuth → (u,rg) ∈ URAuth)]} 

24. IRH and GRH are the sets of roles in IRH and GRH respectively.  

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 



11

Appendix B: Syntax Diagrams of ASLA Language 

Attribute Expression Role
Rule

{

Roles

Role

Role }

,

Attribute_Expression

Attribute Expression

Attribute_Expression

Term

( Attribute_Expression Attribute_Expression )

∧

∧

Attribute_Expression¬

Term
Attribute

Enumerated_SetIN

Attribute_ValueRelation_Operator

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04) 
1063-9527/04 $ 20.00 IEEE 


