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Abstract 

This paper presents a framework for verifying the 
access control requirements of real-time application 

systems such as workflow management systems and 

active databases. The temporal and event-based 

semantics of these applications can be expressed using 

event-driven Role Based Access Control (RBAC) 

model. Any comprehensive access control model such 
as RBAC requires verification and validation 

mechanisms to ensure the consistency of access control 

specification. An inconsistent access control 

specification exposes the underlying system to 

numerous vulnerabilities and security risks. In this 
paper, we propose a Petri-Net based framework for 

verifying the correctness of event-driven RBAC 

policies.  

1. Introduction 

Role based access control (RBAC) has emerged as a 

promising alternative to traditional discretionary and 

mandatory access control (DAC and MAC) models, 

which have some inherent limitations [9, 15]. Several 

beneficial features such as policy neutrality, support 

for least privilege, efficient access control 

management, are associated with RBAC models [9, 

16]. The concept of role is associated with the notion 

of functional roles in an organization, and hence 

RBAC models provide intuitive support for expressing 

organizational access control and are suitable for 

handling access control requirements of diverse 

organizations and emerging service-based applications 

such as e-commerce, healthcare-systems, etc. [5, 9]. 

Furthermore, use of role hierarchies and grouping of 

objects into object classes based on responsibility 

associated with a role simplifies management of access 

permissions. RBAC constraints allow expressing user-

specific access control policies, and DAC and MAC 

policies, thus, increasing the applicability of RBAC 

models. In particular, many separation of duty (SoD) 

constraint can be easily specified to cater to the access 

control needs of many commercial applications [1, 14]. 

By configuring the assignment of the least set of 

privileges from a role set assigned to a user when the 

user activates the role, inadvertent damage can be 

minimized in a system. RBAC models have also been 

found suitable for addressing security issues in the 

Internet environment, and show promise for newer 

heterogeneous multi-domain environments that raise 

serious concerns related to access control across 

domain boundaries [2, 9, 10].  

RBAC has been widely researched and has been 

extended by several researchers [16, 14, 7]. One such 

crucial extension is an RBAC model with temporal 

constraints, which was proposed in Temporal RBAC 

model [4] and later generalized into Generalized-

TRBAC [10]. GTRBAC distinguishes among various 

states of a role - such as disabled, enabled and active

states - and extends the notion of RBAC events 

introduced in TRBAC. An event-based of TRBAC 

approach is particularly suitable for time-based access 

control requirements and for dynamic access control 

models [10, 11].  

In this paper, we combine the event-based approach 

taken in GTRBAC with the Petri-net based modeling 

approach to develop a framework for modeling and 

analysis of non-temporal RBAC policies. The approach 

is particularly novel because of the intuitive way in 

which Petri-nets capture both system states and events, 

thus allowing state-based analysis for policy 

verification and assisting in deriving an event based 

execution model of an RBAC system in order to ensure 

safety. Furthermore, several formal tools and 

techniques are available for Petri-nets that can be 

utilized to carry out relevant analysis for correctness 

verification of specification.  

An essential feature of RBAC is that it allows 

specification of various SoD constraints that are 

needed in many commercial applications [1,5]. SoD 

constraints aim at eliminating any possibility of users 

committing a fraud in a system by preventing a user 

from acquiring enough access privileges to commit 

fraud.  

The paper is organized as follows. In section 2, we 

present relevant background on RBAC models on 

which we build our Petri-net framework. In section 3, 
This work was supported in part by NSF award IIS 0209111. 
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we provide a classification of consistency rules.  The 

colored Petri-net model of RBAC and the policy 

analysis framework are presented in section 4. In 

section 5, we discuss related work. Section 5 concludes 

the paper and provides future directions. 

2. Overview of Role Based Access Control 

In this section, we provide relevant background on 

the RBAC and GTRBAC models that we refer to in 

this paper. The RBAC model as proposed by Sandhu 

et. al. in [16], currently being used as the basis for the 

NIST RBAC model, consists of the following four 

basic components: a set of users Users, a set of roles 

Roles, a set of permissions Permissions, and a 

set of sessions Sessions. A user is a human being or 

a process within a system. A role is a collection of 

permissions associated with a certain job function 

within an organization. A permission is an access 

mode that can be exercised on a particular object in the 

system. A session relates a user to possibly many roles. 

When a user logs in the system the user establishes a 

session by activating a set of enabled role that the user 

is entitled to activate at that time. If the activation 

request is satisfied, the user issuing the request obtains 

all the permissions associated with requested role. On 

Roles, a hierarchy is defined, denoted by ≥. If ri ≥ rj,

ri, rj ∈ Roles then ri inherits the permissions of rj. In 

such a case, ri is a senior role and rj a junior role. 

The RBAC model does not explicitly model 

different states of a role and hence does not capture 

various events that are typical of an RBAC system. 

Such event based approach was used by Bertino et. al.

in TRBAC model [4] and later extended by Joshi et. al.
in GTRBAC [10], primarily to capture the different 

transitional actions needed in the context of temporal 

constraints. The GTRBAC model provides a temporal 

framework for specifying an extensive set of temporal 

constraints and uses a language-based framework [10]. 

GTRBAC allows various types of temporal constraints 

such as temporal constraints on role 

enabling/disabling, temporal constraints on user-role 
and role-permission assignments/de-assignments, role 

activation-time constraints, etc. These constraints are 

useful in capturing the dynamic behavior of systems 

that employ RBAC. 

Fig. 1 highlights four key components of GTRBAC 

model that include user-role assignment/de-

assignment, role-permission assignment/de-

assignment, role enabling/disabling, and role 

activation/deactivation. The latter two events allows 

one to define fine-grained access constraints based on 

system events as well as states. Such events, in 

particular, are useful in describing various dependency 

constraints. For instance, a role can be enabled only if 

some other roles are enabled, defining a precedence 

relation between them.  

In this paper, we use an event based approach to 

model RBAC. This event based RBAC model 

corresponds to a selected set of temporal constraints of 

GTRBAC. The motivations for this are two fold: 

User-Role 

Assignment/ 

De-assignment

Permission-

Role 

Assignment/ 

De-assignment

Role enabling/ 

Disabling
Role Activation/ 

Deactivation

User-Role 

Assignment/ 
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Figure 1. Components corresponding to event set of 

GTRBAC 

1.  Such an event-based realization of traditional 

RBAC system allows capturing the dynamic 

properties of the system that can be used to verify 

the correctness of an RBAC specification.  

2. Our future goal is to extend the proposed Petri-net 

modeling framework to model the GTRBAC 

system and then, to develop techniques for 

validating and verifying the correctness properties 

of GTRBAC Policies pertaining to the four 

components of Fig. 1. 

3. A Verification Model for RBAC 

Our main objective in this paper is to model RBAC 

using a Petri net based framework and then use this 

framework to verify the correctness of the underlying 

security policies.  

3.1. Policy Considerations in RBAC 

A policy is a set of rules that defines the expected 

behavior of the system employing that policy. The 

system is said to be in conformance with the 

underlying policy if every state of the system can be 

deduce from the set of rules/axioms comprising the 

policy. An inconsistent state or erratic system behavior 

can be attributed to a potential flaw in the policy 

specification. This flaw may be because of 

inconsistency in the policy itself or because of 

incompleteness. An inconsistent policy is the one in 

which two or more rules from a given set of rules 

comprising the policy contradict each other. 

Incompleteness implies that the given set of rules 

defining the policy is not sufficient to capture all states 

of the system. In this context, security verification can 
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be stated as the process of proving that the properties 

or rules specified in a security policy are enforced in 

the information system. 

Gavrila et. al. [7] state a set of consistency rules for 

information systems employing RBAC as an access 

control mechanism. These rules are defined as 

consistency rules because the information system is 

expected to satisfy these rules in all possible states it 

may take. These consistency rules although specify 

most of the constraints for the traditional RBAC model 

[7], do not capture the constraints required in modeling 

event-based systems. For example precedence and 

dependency constraints cannot be modeled using the 

consistency rules specified in [7]. For an RBAC 

system constraints can be grouped into following 

classes: 1) cardinality constraints, 2) separation of 

duties (SoD) constraints, 3) inheritance constraints, and 

4) precedence and dependency constraints. 

Cardinality, inheritance and SoD constraints are 

addressed in literature for traditional RBAC [7], 

however these approaches are primarily static in 
nature and do not take into account various 

authorization related RBAC events allowed in a system 

non-deterministically. These events include user-role 

assignment enabling/disabling of a role, and 

activation/deactivation of a role as described in [10]. 
A SoD constraint in an event-based environment may 

prohibit two conflicting roles to be enabled at the same 

time, or inhibit two conflicting users of some role to 

activate that role concurrently. Similarly, inheritance 

and cardinality constraints have new semantics in this 

(event-based) environment that may not be captured by 
static approaches. Precedence and dependency 

conditions are required to model the relative ordering 

of events. The following two examples describe 

situations where precedence and dependency 

constraints are required: 

1. A junior employee of an office is allowed to 

activate the Junior_Employee role in the system 

only if the manager of the office has activated the 

Manager role. This condition can be modeled by 

the precedence constraint. 

2. A trainee doctor is authorized to activate his/her 

role only in presence of a senior doctor. In this 

case the senior doctor cannot deactivate his/her 

role if there is an active trainee doctor role. This 

example represents a dependency constraint. 

In [17], a set of consistency rules are proposed which 

are major extensions of consistency rules defined by 

Gavrila in [7]. This extended set of rules allows 

modeling of various constraints of RBAC with an 

event-based approach. These set of rules mainly cover 

the cardinality, inheritance, SoD and precedence and 

dependency constraints. In the context of these 

consistency rules, the correctness of a system state is 

verified against these rules. Due to space limitations, 

we do not list all the consistency rules, however, for 

clarity in presentation, we briefly describe a few of 

them; this will also facilitate the reader in 

understanding the examples given in section 4.2.  

a. User activation cardinality constraint: The 

number of roles activated by any user u does not 

exceed the maximum number of roles the user is 

entitled to activate at any time.  

,  | _ ( ) |

        _ _ ( ).

u USERS active roleset u

activation user card u

∀ ∈
≤

Where, active_roleset(u) describe the set of 

roles currently being activated by user u, and 

activation_user_card(u) gives the total number 

of roles the user is authorized to activate in 

concurrent sessions. 

b. Activation time user-based SoD constraint: Role 

r cannot be concurrently activated by users u1

and u2, if they are activation time conflicting 

users for role r. Formally: 

1 2

1 2

, , _ _ ( )

_ ( ) _ ( )

r ROLES u u conflict user activeset r

r active roleset u active roleset u

∀ ∈ ∀ ∈

Ý ∉
    Where, conflict_user_activeset(r) returns the set 

of activation time conflicting users for role r.

c. Activation time dependency constraint: A role rz

having an activation time dependency on role ry

can be activated by user u only if role ry is in the 

active role set of some user u’. Furthermore, 

role ry cannot be deactivated if role rz is in active 

role set of any user. Formally: 

'

_ ( ) [ _ ( )

                   _ ( ')]

z y z

y

u USERS

r dep activeset r r active roleset u

r active roleset u
∈

∈ Ý ∈ →

∈

Where, dep_activeset(ry) gives a set of roles that have 

activation time dependency on role ry. The second 

example, given above, describes the activation time 

dependency between the trainee doctor and senior 

doctor. The above constraints give a synopsis of a 

comprehensive set of constraints described in [17]. 

3.2. Colored Petri-Net model of RBAC 

In this section, we present a Colored-Petri-net (CPN) 

based framework to model RBAC. We first present a 

brief background on CPNs followed by the detailed 

description of the RBAC components and its CPN 

representation. 

CPN Formulation of RBAC: A CPN [8] is a tuple

CP = (Σ, P, T, A, N, C, G, E, I), where:

a. Σ is a finite set of non-empty types, called 
color sets;  

b. P is a finite set of places; 
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c. T is a finite set of transitions; 

d. A = NA ∪ RA ∪ IA is a finite set of arcs such 

that: P ∩ T = P ∩ A = T ∩ A = ∅; where NA 
is a set of Normal Arcs, RA is a set of Read 

Arcs and IA is a set of Inhibitor Arcs.   

e. N is a node function. N:A → P × T ∪ T × P. 

f. C: is a color function. C:P→ Σ.
g. G is a guard function. It is  defined from T 

into expressions such that:  

∀t∈T: [Type(G(t)) = Β and Type(Var(G (t)) 

⊆ Σ]. 
h. E is an arc expression function. It is defined 

from A into expressions such that: 

a∈A: [Type(E(a)) = E(G(a))MS and 

Type(Var(E(a)) ⊆ Σ]. Here p(a) is the place 
of N(a). 

i. I is an initialization function. It is defined 

from P into closed expression such that: 

∀p∈P: [Type(I(p)) = C(p(a))MS]. 
In the following, we elaborate the above elements of 

CPN within the context of RBAC. 

Color set Σ: For the RBAC formulation, the 

elements of the color set Σ with the corresponding data 

type are listed below. 

Color USER = integer,      Color ROLE = integer. 

Color SESSION = integer.   

Color COMMAND = {assign, de-assign, enable, 

disable, activate, deactivate} 

Color UR = product USER * ROLE * ROLE; Color 

URS = product USER * ROLE * SESSION; 

Color CMD = product COMMAND * USER * ROLE 

* SESSION.  

Based on the above set of colors, following tokens 

are defined for RBAC mode: 

• User token:  <u>::color USER 

• Role token:   <r>:: color ROLE 

• User-role assignment token: <u,r,r’>::color UR. 

• User-role activation token: <u,r,s>::color URS. 

• Command token: <cmd, u, r, s>:: color CMD. 

Places P: Following CPN places are used to capture 

the state information for RBAC modeling: 

1. Event token generator (ETG): This place stores 

command tokens for user-role assignment and de-

assignment, role enabling and disabling, and role 

activation and deactivation. For any transition to 

get enabled, there must be a corresponding token 

in the place ETG. In this sense, this place act as a 

transition firing controller that helps in analyzing 

all possible system states against a given 

command list.     

2. Disabled Roles (DR): This place can only store 

role tokens (C(DR) = ROLE). A token <ry> in this 

place implies that role ry is in disable state. 

3. Enabled Roles (ER). This place can only store role 

tokens (C(ER) = ROLE). A token <ry> in ER 

place implies that role ry is in enable state. 

4. User Role Assignment/Authorization (UR). This 

place contains tokens of color UR (C(UR) = UR). 

A token <u,ry,rx> in this place means that user u is 

authorized for role ry. This authorization can be as 

a result of direct assignment of role ry to user u (rx

= ry), or because of assignment of role rx to user u

such that rx inherits ry (rx ≥ ry and rx ry).

5. User Role Session activation (URS). This place 

stores tokens of color URS. . Each <u,r,s> token 

stored in this place implies that session s is being 

activated by user u who has assumed role r.

6. Role Cardinality (RC): This place contains role 

tokens only (C(RC) = ROLE). It enforces 

assignment time role cardinality constraint, i.e., 

limits the number of users authorized for a given 

role. If there are ni number of <ry> tokens in place 

RC then at most ni number of users can be 

authorized for ry.

7. User Cardinality (UC): This place contains user 

tokens only (C(UC) = USER). It enforces 

assignment time user cardinality constraint, i.e., 

defines an upper bound on the number of 

authorized roles for a given user. 

8. Role Activation cardinality (RAC): Place RAC 

stores token of type ROLE (C(RAC) = ROLE). It 

enforces activation time role cardinality constraint, 

i.e., limits the number of concurrent activations of 

a given role. If there are ni number of <ry> tokens 

present at RC, then at most ni more copies of role 

ry can be activated concurrently. 

9. User Activation cardinality (UAC): Place UAC 

stores token of type USER (C(UAC) = USER). 

This place enforces activation time user cardinality 

constraint, i.e., limits the number of concurrent 

activations of roles for a given user. If there are mj

number of <uz> tokens present in the place UAC, 

then user uz can make mj activations concurrently. 

These activations may involve activating same 

role multiple times or multiple roles for any 

number of times provided that the total number of 

such concurrent activation of roles by user uz do 

not exceed the user activation cardinality mj.

Arcs and arc expression: Arc, arc expressions and 

guard functions are used to model constraints including 

cardinality, SoD, inheritance, precedence and 

dependency constraints as discussed in section 3.1. 

Transitions:Transitions in this framework represent 

all four components of Fig. 1 including user-role 

assignment/de-assignment, role-permission 

assignment/de-assignment, role enabling/disabling and 

role activation/deactivation. In this CPN 
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representation, each role ry has the following six 

transitions: 

1. Assignry: assigns user u ∈USERS to role ry. By 

virtue of this role assignment user u is authorized 

for all roles inherited by role ry.

2. De-assignry: Cancels all the user role assignment 

between user u and role ry. It also nullifies u’s

authorization for all junior roles that are on u’s

authorization list by virtue of its assignment to role 

ry.

3. Enablery: This transition enables role ry. Upon 

firing, a token ry is inserted in place ER from DR, 

implying that role ry is enabled and can be 

activated by a user who is authorized for role ry.

Fig. 2 shows enable transition for role ry.

4. Disablery: This transition disables role ry. Upon 

firing, ry is removed from place ER and inserted in 

place DR, implying that role ry can not be 

activated by any user. 

5. Activatery: This transition establishes an active 

session between user u and role ry.

6. Deactivatery : This transition deactivates role ry

from the an active session between user u and role 

ry.

 Firing of any of the above transitions changes the 

state of the system. A transition can fire anytime after 

its enabling. Enabling of a transition implies that all the 

constraints associated with the event, the transition is 

modeling, are satisfied. For brevity in presentation, we 

list the enabling/firing rules for assignment of roles 

only. For the remaining transitions, interested readers 

are referred to [17].    

Enabling/firing rules of transition assignry: This 

transition upon firing inserts the set of tokens {<u, rx,

ry>: ry≥ rx} in the place UR which implies that the role 

ry is assigned to user u, and user u is authorized for role 

ry and all roles rx junior to role ry. The transition 

assignry and its connecting places are shown in Fig. 2 

and the corresponding arc expressions and guard 

functions are listed in Table 1. 

This transition gets enabled if the following 

constraints are satisfied: 

• There is a token <assign, uz, ry> in place ETG 

implying that role ry be assigned to user uz.

• Assignment time role cardinality constraint 

specified by the arc expression E3: ry+ry1+…ryn,

where, all ryi < ry and i  n, is satisfied. 

Alternatively, tokens ry,ry1,…,ryn are present in 

place RC.  

• Assignment time user cardinality constraint 

specified by the arc expression E4: (n+1)uz is 

satisfied, where n is the number of roles that are 

junior to ry in the role hierarchy.  

• Assignment time conflicting roles constraint 

specified by the arc expression (inhibitor) E6: <uz,

rc, any r > and the transition guard function G2: 

conflict_role_assign(ry rc) is satisfied. That is 

Place UR does not contain any token <uz, rc, any r

> for which the above guard function evaluates 

true.  

• Assignment time conflicting users constraint 

specified by the arc expression (inhibitor) E7:<uc,

rz, any r> and the  transition guard function G3: 

conflict_user_Assign(ry,uz,uc) is satisfied. That is 

Place UR does not contain any token <uc, rz , any

r> for which the above guard function is true.  

• Place UR does not contain any token <uz, ry, any r
>. This is specified by the inhibitor arc expression 

E3 and guard function G1.  

• The following two constraints are optional and are 

only defined for roles which have assignment time 

precedence constraint(s). Assignment time 

precedence constraint can be of two types: same 

user assignment constraint and any user 

assignment constraint. A given role may have one, 

both or none of these precedence constraints.  

1. Same user assignment constraint requires that 

a user uz can be assigned role ry only if role r’

∈ prec_su_assignset(ry) is assigned to user uz.

This constraint is specified by the read arc 

expression E8 and the transition guard 

function G4: prec_su_assign(ry,{r}).

2. Any user assignment constraint requires that a 

user uz can be assigned role ry only if role 

r’’.∈ prec_au_assignset(ry ) is assigned to 

some user. This constraint is specified by the 

read arc expression E9 and the transition 

guard function G5: prec_au_assign(ry,{r}).

The guard functions and arc expressions 

corresponding to Fig. 2 are listed in Table 1. Fig. 2 

shows a CPN representation of user to role 

assignment/de-assignment with transition assignry and 

deassignry modeling the assignment and de-

assignement events for role ry respectively. The set of 

places in Fig. 2 shows the current state of the system in 

terms of number of users assigned to role ry, the 

number of active sessions associated with role ry etc. 

The arcs and guard expressions specify the assignment 

time cardinality, Sod, precedence and dependency 

constraints.  
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A6
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A9

ETG
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A12

A13

A14

A15

A16

( ∀<u,r,r’>∈ UR, ¬G1 ∧ ¬ G2∧ ¬ G3) ∧ G4 ∧ G5

( ∀<u,r,s>∈ URS, ¬G6) ∧
(∀<u,r,r’>∈ UR , ¬ G7∧ ¬G8)

Figure 2. CPN construction for user-role 

assignment/de-assignment.

Based on the discussions in Section 3, we formalize 

the notion of a consistent RBAC state in the following 

definition. This notion of consistency is used to capture 

the dynamic property of the CPN in Theorem 1. 

Definition: The state of an RBAC system is said to 

be consistent if all the cardinality, inheritance, SoD, 

precedence and dependency constraints are satisfied in 

that state. 

Theorem 1: Given a PRBAC (CPN structure for 

RBAC) structure with an initial consistent state M0, all 

states M, reachable from M0 are consistent.  

The proof for this theorem requires enumerating all 

the consistency rules and is omitted because of the 

space limitation. Interested readers are referred to [17]. 

3.3. Reachability analysis for consistency 

verification of RBAC policy 

In this section, we elaborate the process of verifying 

the consistency of RBAC policy constraints. The 

verification is based on the reachability analysis of 

CPN proposed in the previous section. We use 

occurrence graph method [8] to enumerate all 

reachable states of a system employing a given RBAC 

policy.  Lemma 1 states that our Petri net 

representation of RBAC system is bounded and so its 

occurrence graph will have finite number of nodes. 

However, the exhaustive nature of this method implies 

that the problem of verifying that a given state is 

reachable from some initial state takes exponential 

space and time [13]. Since policy verification can be 

done offline and is performed before the deployment of 

actual system, so complexity is not a major issue in 

using this proposed Petri-net approach.  

The following example illustrates the use of 

occurrence graph for security policy verification. 

Example: Consider three roles r0, r1, and r2 and a 

single user u0. Let r1 be junior to r0 (r1 r0 and r1 r0). 

Also let r1 and r2 be assignment time conflicting roles, 

i.e., r1 and r2 cannot be assigned to the same user 

implying that roles r1 and r2 cannot be activated by the 

same user concurrently. Fig. 2 shows the sub-graph of 

the occurrence graph of the RBAC system. In this sub-

graph all roles (r0, r1, and r2 ) are considered to be in 

enable state and the SoD constraint is only defined 

between roles r1, and r2. Note that in Fig. 3, user u0

who is assigned role r0 and r2 is able to activate roles r1

and r2 concurrently. This is a violation of the SoD 

constraint defined on these two roles. This 

inconsistency arises because of the fact that in the 

original specification roles r0 and r2 do not have any 

SoD constraint while r1 and r2 are assignment time 

conflicting roles. As r0 is superior to role r1 and any 

user assigned to role r0 is authorized for role r1, the 

SoD constraint must also be defined between roles r0

and r2.

Table 1. Arc and guard expressions 

Arc Expression Ei for corresponding arc Ai, where 

E1 <assign,uz,ry> E9 {<any u , r’’, any r>} 

E2 (n+1)uz E10 <de-assign,uz,ry>             

E3 
ry+ry1+…ryn

( ryi<ry. for all 
E11 <uz rk, any r> 

E4 <uz,rh> E12 
<uz,ry, ry> + <uz,

ry1,ry>+….+<uz,

r r >

E5 

<uz,ry,ry> + <uz,

ry1,ry>+….+<uz,

ryn,ry>

E13 
<uz,ri, rdsu>     (ri
rdsu)

E6 
<uz rc, any r> 

A7:  <uc rz, any r> 
E14 

<any u, rj, rdau>    

 (rj  rdau)     

E7 <uc rz, any r> E15 (n+1)uz

E8 {<uz , r’, any r>} E16 
ry+ry1+…ryn ( ryi<ry.

for all 1 i n) 

Guard functions associated with transition Assignry and De-

ssignry
G1 :(rh  ry) ry  rh) G5 prec_au_assign(ry r’,})

G2 conflict_role_assign(ry,

rc)

G6 rk  ry

G3 conflict_user_assign(ry,

uz, uc)

G7 dep_su_assign(rdsu, ry)

G4 prec_su_assign(ry,{r’}) G8 dep_au_assign(rdau,

ry)

4. Related work 

RBAC models have been proposed and extended by 

several researchers [14, 16, 6], and the efforts in this 

direction have resulted in the proposal of a standard 
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model – the NIST RBAC model [6]. Need for 

supporting constraints in an RBAC model has been 

addressed by many researchers. In particular, the 

attention has been in supporting separation of duties

(SoD) constraints [1, 7]. In [1], Ahn et. al. propose 

RCL2000 – a role based constraint specification 

language. Bertino et. al. have proposed a logic based 

constraint specification language that can be used to 

specify constraint on roles and users and their 

assignments to workflow tasks [3].  

Various work address policy analysis and 

verification issues related to RBAC models. 

Nyanchama et. al. [14] present a graph based RBAC 

model, where graphs are used to mainly represent 

hierarchies of users, roles and permissions. It does not 

address the issue of policy verification. Koch et. al.

[12] present a graph transformation based formalism 

for RBAC model and model the SoD constraints 

identified in the literature. The model provides a graph 

transformation based specification of static and 

dynamic consistency conditions of RBAC.  

Ahmed et. al. [18] have proposed a model checking 

based methodology for verification of the security 

requirements of computer supported cooperative work 

(CSCW) systems. They use role-based policies to 

specify coordination and security constraints of the 

CSCW systems. In this sense our work is similar to 

[18].

5. Conclusion 

We have presented a colored Petri-net based 

framework for verifying the consistency of RBAC 

policies. The Petri-net model can capture all the 

cardinality and separation of duty constraints that have 

been previously identified in the literature. Moreover, 

the model also allows specification of the precedence 

and dependency constraints that we introduce in this 

paper. We use the Petri-net reachability analysis 

technique for RBAC policy verification. A set of 

consistency rules is used as the basis for detecting 

undesirable states representing erratic behavior of the 

system due to the flaws in policy specification. The 

analysis framework can be used by security 

administrators to generate correct specification 

iteratively.  

Initial state: Each role r0, r1 and r2 can be assigned to atmost 3 users.

Each role r0, r1 and r2 can be activated by atmost 3 users.

User u0 can be assigned atmost 3 roles.

User  u0 can activate atmost 3 roles.

Invariant:    All roles r0, r1 and r2 always remain in enabled state

(r1 assigned to u0)

(r1 assigned to u0)         

(ri activated by u0 in s1)

(r2 assigned to u0)
(r0 assigned to u0)

(r0 assigned to u0)         
(r0 activated by u0 in s0)

(r0 assigned to u0)         

(r0 activated by u0 in s0)
(r1 activated by u0 in s1)

(r0 assigned to u0)         
(r1 activated by u0 in s1)

(r2 assigned to u0)

(r0 assigned to u0)

(r2 assigned to u0)        

(r0 assigned to u0)        

(r0 activated by u0 in 

s0)

(r2 assigned to u0)        
(r0 assigned to u0)        

(r0 activated by u0 in s0)

(r1 activated by u0 in s1)

(r2 assigned to u0)        

(r0 assigned to u0)        

(r0 activated by u0 in s0)

(r1 activated by u0 in s1)
(r2activated by u0 in s2)

(r2 assigned to u0)        

(r0 assigned to u0)        

(r0 activated by u0 in s0)

(r2 activated by u0 in s2)

(r2 assigned to u0)        

(r0 assigned to u0)        

(r1 activated by u0

in s1)

(r2 assigned to u0)        

(r0 assigned to u0)        

(r1 activated by u0 in s1)
(r0 activated by u0 in s0)

(r2 assigned to u0)        

(r0 assigned to u0)        

(r1 activated by u0 in s1)

(r2 activated by u0 in s2)

(r2 assigned to u0)        

(r0 assigned to u0)        

(r2 activated by u0 in s2)

(r2 assigned to u0)        

(r0 assigned to u0)         

(r2 activated by u0 in s2)
(r0 activated by u0 in s0)

(r2 assigned to u0)          

(r2 activated by u0 in s2)

(r2 assigned to u0)        

(r2 activated by u0 in s2)

(r0 assigned to u0)

(r2 assigned to u0)         
(r2 activated by u0 in s2)

(r0 assigned to u0)        

(r1 activated by u0 in s1)

Violation of SoD between r1 & r2

Figure 3. Occurrence graph of the example with 

incomplete specification 
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