
A Role-Based Access Control Policy Verification Framework for Real-Time Systems

Basit Shafiq Ammar Masood James Joshi Arif Ghafoor

Purdue University Purdue University Univ. of Pittsburgh Purdue University
shafiq@ecn.purdue.edu ammar@ecn.purdue.edu joshi@mail.sis.pitt.edu ghafoor@ecn.purdue.edu

Abstract

This paper presents a framework for verifying the
access control requirements of real-time application

systems such as workflow management systems and

active databases. The temporal and event-based

semantics of these applications can be expressed using

event-driven Role Based Access Control (RBAC)

model. Any comprehensive access control model such
as RBAC requires verification and validation

mechanisms to ensure the consistency of access control

specification. An inconsistent access control

specification exposes the underlying system to

numerous vulnerabilities and security risks. In this
paper, we propose a Petri-Net based framework for

verifying the correctness of event-driven RBAC

policies.

1. Introduction

Role based access control (RBAC) has emerged as a

promising alternative to traditional discretionary and

mandatory access control (DAC and MAC) models,

which have some inherent limitations [9, 15]. Several

beneficial features such as policy neutrality, support

for least privilege, efficient access control

management, are associated with RBAC models [9,

16]. The concept of role is associated with the notion

of functional roles in an organization, and hence

RBAC models provide intuitive support for expressing

organizational access control and are suitable for

handling access control requirements of diverse

organizations and emerging service-based applications

such as e-commerce, healthcare-systems, etc. [5, 9].

Furthermore, use of role hierarchies and grouping of

objects into object classes based on responsibility

associated with a role simplifies management of access

permissions. RBAC constraints allow expressing user-

specific access control policies, and DAC and MAC

policies, thus, increasing the applicability of RBAC

models. In particular, many separation of duty (SoD)

constraint can be easily specified to cater to the access

control needs of many commercial applications [1, 14].

By configuring the assignment of the least set of

privileges from a role set assigned to a user when the

user activates the role, inadvertent damage can be

minimized in a system. RBAC models have also been

found suitable for addressing security issues in the

Internet environment, and show promise for newer

heterogeneous multi-domain environments that raise

serious concerns related to access control across

domain boundaries [2, 9, 10].

RBAC has been widely researched and has been

extended by several researchers [16, 14, 7]. One such

crucial extension is an RBAC model with temporal

constraints, which was proposed in Temporal RBAC

model [4] and later generalized into Generalized-

TRBAC [10]. GTRBAC distinguishes among various

states of a role - such as disabled, enabled and active

states - and extends the notion of RBAC events

introduced in TRBAC. An event-based of TRBAC

approach is particularly suitable for time-based access

control requirements and for dynamic access control

models [10, 11].

In this paper, we combine the event-based approach

taken in GTRBAC with the Petri-net based modeling

approach to develop a framework for modeling and

analysis of non-temporal RBAC policies. The approach

is particularly novel because of the intuitive way in

which Petri-nets capture both system states and events,

thus allowing state-based analysis for policy

verification and assisting in deriving an event based

execution model of an RBAC system in order to ensure

safety. Furthermore, several formal tools and

techniques are available for Petri-nets that can be

utilized to carry out relevant analysis for correctness

verification of specification.

An essential feature of RBAC is that it allows

specification of various SoD constraints that are

needed in many commercial applications [1,5]. SoD

constraints aim at eliminating any possibility of users

committing a fraud in a system by preventing a user

from acquiring enough access privileges to commit

fraud.

The paper is organized as follows. In section 2, we

present relevant background on RBAC models on

which we build our Petri-net framework. In section 3,
This work was supported in part by NSF award IIS 0209111.

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

we provide a classification of consistency rules. The

colored Petri-net model of RBAC and the policy

analysis framework are presented in section 4. In

section 5, we discuss related work. Section 5 concludes

the paper and provides future directions.

2. Overview of Role Based Access Control

In this section, we provide relevant background on

the RBAC and GTRBAC models that we refer to in

this paper. The RBAC model as proposed by Sandhu

et. al. in [16], currently being used as the basis for the

NIST RBAC model, consists of the following four

basic components: a set of users Users, a set of roles

Roles, a set of permissions Permissions, and a

set of sessions Sessions. A user is a human being or

a process within a system. A role is a collection of

permissions associated with a certain job function

within an organization. A permission is an access

mode that can be exercised on a particular object in the

system. A session relates a user to possibly many roles.

When a user logs in the system the user establishes a

session by activating a set of enabled role that the user

is entitled to activate at that time. If the activation

request is satisfied, the user issuing the request obtains

all the permissions associated with requested role. On

Roles, a hierarchy is defined, denoted by ≥. If ri ≥ rj,

ri, rj ∈ Roles then ri inherits the permissions of rj. In

such a case, ri is a senior role and rj a junior role.

The RBAC model does not explicitly model

different states of a role and hence does not capture

various events that are typical of an RBAC system.

Such event based approach was used by Bertino et. al.

in TRBAC model [4] and later extended by Joshi et. al.
in GTRBAC [10], primarily to capture the different

transitional actions needed in the context of temporal

constraints. The GTRBAC model provides a temporal

framework for specifying an extensive set of temporal

constraints and uses a language-based framework [10].

GTRBAC allows various types of temporal constraints

such as temporal constraints on role

enabling/disabling, temporal constraints on user-role
and role-permission assignments/de-assignments, role

activation-time constraints, etc. These constraints are

useful in capturing the dynamic behavior of systems

that employ RBAC.

Fig. 1 highlights four key components of GTRBAC

model that include user-role assignment/de-

assignment, role-permission assignment/de-

assignment, role enabling/disabling, and role

activation/deactivation. The latter two events allows

one to define fine-grained access constraints based on

system events as well as states. Such events, in

particular, are useful in describing various dependency

constraints. For instance, a role can be enabled only if

some other roles are enabled, defining a precedence

relation between them.

In this paper, we use an event based approach to

model RBAC. This event based RBAC model

corresponds to a selected set of temporal constraints of

GTRBAC. The motivations for this are two fold:

User-Role

Assignment/

De-assignment

Permission-

Role

Assignment/

De-assignment

Role enabling/

Disabling
Role Activation/

Deactivation

User-Role

Assignment/

De-assignment

Permission-

Role

Assignment/

De-assignment

Role enabling/

Disabling
Role Activation/

Deactivation

Figure 1. Components corresponding to event set of

GTRBAC

1. Such an event-based realization of traditional

RBAC system allows capturing the dynamic

properties of the system that can be used to verify

the correctness of an RBAC specification.

2. Our future goal is to extend the proposed Petri-net

modeling framework to model the GTRBAC

system and then, to develop techniques for

validating and verifying the correctness properties

of GTRBAC Policies pertaining to the four

components of Fig. 1.

3. A Verification Model for RBAC

Our main objective in this paper is to model RBAC

using a Petri net based framework and then use this

framework to verify the correctness of the underlying

security policies.

3.1. Policy Considerations in RBAC

A policy is a set of rules that defines the expected

behavior of the system employing that policy. The

system is said to be in conformance with the

underlying policy if every state of the system can be

deduce from the set of rules/axioms comprising the

policy. An inconsistent state or erratic system behavior

can be attributed to a potential flaw in the policy

specification. This flaw may be because of

inconsistency in the policy itself or because of

incompleteness. An inconsistent policy is the one in

which two or more rules from a given set of rules

comprising the policy contradict each other.

Incompleteness implies that the given set of rules

defining the policy is not sufficient to capture all states

of the system. In this context, security verification can

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

be stated as the process of proving that the properties

or rules specified in a security policy are enforced in

the information system.

Gavrila et. al. [7] state a set of consistency rules for

information systems employing RBAC as an access

control mechanism. These rules are defined as

consistency rules because the information system is

expected to satisfy these rules in all possible states it

may take. These consistency rules although specify

most of the constraints for the traditional RBAC model

[7], do not capture the constraints required in modeling

event-based systems. For example precedence and

dependency constraints cannot be modeled using the

consistency rules specified in [7]. For an RBAC

system constraints can be grouped into following

classes: 1) cardinality constraints, 2) separation of

duties (SoD) constraints, 3) inheritance constraints, and

4) precedence and dependency constraints.

Cardinality, inheritance and SoD constraints are

addressed in literature for traditional RBAC [7],

however these approaches are primarily static in
nature and do not take into account various

authorization related RBAC events allowed in a system

non-deterministically. These events include user-role

assignment enabling/disabling of a role, and

activation/deactivation of a role as described in [10].
A SoD constraint in an event-based environment may

prohibit two conflicting roles to be enabled at the same

time, or inhibit two conflicting users of some role to

activate that role concurrently. Similarly, inheritance

and cardinality constraints have new semantics in this

(event-based) environment that may not be captured by
static approaches. Precedence and dependency

conditions are required to model the relative ordering

of events. The following two examples describe

situations where precedence and dependency

constraints are required:

1. A junior employee of an office is allowed to

activate the Junior_Employee role in the system

only if the manager of the office has activated the

Manager role. This condition can be modeled by

the precedence constraint.

2. A trainee doctor is authorized to activate his/her

role only in presence of a senior doctor. In this

case the senior doctor cannot deactivate his/her

role if there is an active trainee doctor role. This

example represents a dependency constraint.

In [17], a set of consistency rules are proposed which

are major extensions of consistency rules defined by

Gavrila in [7]. This extended set of rules allows

modeling of various constraints of RBAC with an

event-based approach. These set of rules mainly cover

the cardinality, inheritance, SoD and precedence and

dependency constraints. In the context of these

consistency rules, the correctness of a system state is

verified against these rules. Due to space limitations,

we do not list all the consistency rules, however, for

clarity in presentation, we briefly describe a few of

them; this will also facilitate the reader in

understanding the examples given in section 4.2.

a. User activation cardinality constraint: The

number of roles activated by any user u does not

exceed the maximum number of roles the user is

entitled to activate at any time.

, | _ () |

 _ _ ().

u USERS active roleset u

activation user card u

∀ ∈
≤

Where, active_roleset(u) describe the set of

roles currently being activated by user u, and

activation_user_card(u) gives the total number

of roles the user is authorized to activate in

concurrent sessions.

b. Activation time user-based SoD constraint: Role

r cannot be concurrently activated by users u1

and u2, if they are activation time conflicting

users for role r. Formally:

1 2

1 2

, , _ _ ()

_ () _ ()

r ROLES u u conflict user activeset r

r active roleset u active roleset u

∀ ∈ ∀ ∈

Ý ∉
 Where, conflict_user_activeset(r) returns the set

of activation time conflicting users for role r.

c. Activation time dependency constraint: A role rz

having an activation time dependency on role ry

can be activated by user u only if role ry is in the

active role set of some user u’. Furthermore,

role ry cannot be deactivated if role rz is in active

role set of any user. Formally:

'

_ () [_ ()

 _ (')]

z y z

y

u USERS

r dep activeset r r active roleset u

r active roleset u
∈

∈ Ý ∈ →

∈

Where, dep_activeset(ry) gives a set of roles that have

activation time dependency on role ry. The second

example, given above, describes the activation time

dependency between the trainee doctor and senior

doctor. The above constraints give a synopsis of a

comprehensive set of constraints described in [17].

3.2. Colored Petri-Net model of RBAC

In this section, we present a Colored-Petri-net (CPN)

based framework to model RBAC. We first present a

brief background on CPNs followed by the detailed

description of the RBAC components and its CPN

representation.

CPN Formulation of RBAC: A CPN [8] is a tuple

CP = (Σ, P, T, A, N, C, G, E, I), where:

a. Σ is a finite set of non-empty types, called
color sets;

b. P is a finite set of places;

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

c. T is a finite set of transitions;

d. A = NA ∪ RA ∪ IA is a finite set of arcs such

that: P ∩ T = P ∩ A = T ∩ A = ∅; where NA
is a set of Normal Arcs, RA is a set of Read

Arcs and IA is a set of Inhibitor Arcs.

e. N is a node function. N:A → P × T ∪ T × P.

f. C: is a color function. C:P→ Σ.
g. G is a guard function. It is defined from T

into expressions such that:

∀t∈T: [Type(G(t)) = Β and Type(Var(G (t))

⊆ Σ].
h. E is an arc expression function. It is defined

from A into expressions such that:

a∈A: [Type(E(a)) = E(G(a))MS and

Type(Var(E(a)) ⊆ Σ]. Here p(a) is the place
of N(a).

i. I is an initialization function. It is defined

from P into closed expression such that:

∀p∈P: [Type(I(p)) = C(p(a))MS].
In the following, we elaborate the above elements of

CPN within the context of RBAC.

Color set Σ: For the RBAC formulation, the

elements of the color set Σ with the corresponding data

type are listed below.

Color USER = integer, Color ROLE = integer.

Color SESSION = integer.

Color COMMAND = {assign, de-assign, enable,

disable, activate, deactivate}

Color UR = product USER * ROLE * ROLE; Color

URS = product USER * ROLE * SESSION;

Color CMD = product COMMAND * USER * ROLE

* SESSION.

Based on the above set of colors, following tokens

are defined for RBAC mode:

• User token: <u>::color USER

• Role token: <r>:: color ROLE

• User-role assignment token: <u,r,r’>::color UR.

• User-role activation token: <u,r,s>::color URS.

• Command token: <cmd, u, r, s>:: color CMD.

Places P: Following CPN places are used to capture

the state information for RBAC modeling:

1. Event token generator (ETG): This place stores

command tokens for user-role assignment and de-

assignment, role enabling and disabling, and role

activation and deactivation. For any transition to

get enabled, there must be a corresponding token

in the place ETG. In this sense, this place act as a

transition firing controller that helps in analyzing

all possible system states against a given

command list.

2. Disabled Roles (DR): This place can only store

role tokens (C(DR) = ROLE). A token <ry> in this

place implies that role ry is in disable state.

3. Enabled Roles (ER). This place can only store role

tokens (C(ER) = ROLE). A token <ry> in ER

place implies that role ry is in enable state.

4. User Role Assignment/Authorization (UR). This

place contains tokens of color UR (C(UR) = UR).

A token <u,ry,rx> in this place means that user u is

authorized for role ry. This authorization can be as

a result of direct assignment of role ry to user u (rx

= ry), or because of assignment of role rx to user u

such that rx inherits ry (rx ≥ ry and rx ry).

5. User Role Session activation (URS). This place

stores tokens of color URS. . Each <u,r,s> token

stored in this place implies that session s is being

activated by user u who has assumed role r.

6. Role Cardinality (RC): This place contains role

tokens only (C(RC) = ROLE). It enforces

assignment time role cardinality constraint, i.e.,

limits the number of users authorized for a given

role. If there are ni number of <ry> tokens in place

RC then at most ni number of users can be

authorized for ry.

7. User Cardinality (UC): This place contains user

tokens only (C(UC) = USER). It enforces

assignment time user cardinality constraint, i.e.,

defines an upper bound on the number of

authorized roles for a given user.

8. Role Activation cardinality (RAC): Place RAC

stores token of type ROLE (C(RAC) = ROLE). It

enforces activation time role cardinality constraint,

i.e., limits the number of concurrent activations of

a given role. If there are ni number of <ry> tokens

present at RC, then at most ni more copies of role

ry can be activated concurrently.

9. User Activation cardinality (UAC): Place UAC

stores token of type USER (C(UAC) = USER).

This place enforces activation time user cardinality

constraint, i.e., limits the number of concurrent

activations of roles for a given user. If there are mj

number of <uz> tokens present in the place UAC,

then user uz can make mj activations concurrently.

These activations may involve activating same

role multiple times or multiple roles for any

number of times provided that the total number of

such concurrent activation of roles by user uz do

not exceed the user activation cardinality mj.

Arcs and arc expression: Arc, arc expressions and

guard functions are used to model constraints including

cardinality, SoD, inheritance, precedence and

dependency constraints as discussed in section 3.1.

Transitions:Transitions in this framework represent

all four components of Fig. 1 including user-role

assignment/de-assignment, role-permission

assignment/de-assignment, role enabling/disabling and

role activation/deactivation. In this CPN

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

representation, each role ry has the following six

transitions:

1. Assignry: assigns user u ∈USERS to role ry. By

virtue of this role assignment user u is authorized

for all roles inherited by role ry.

2. De-assignry: Cancels all the user role assignment

between user u and role ry. It also nullifies u’s

authorization for all junior roles that are on u’s

authorization list by virtue of its assignment to role

ry.

3. Enablery: This transition enables role ry. Upon

firing, a token ry is inserted in place ER from DR,

implying that role ry is enabled and can be

activated by a user who is authorized for role ry.

Fig. 2 shows enable transition for role ry.

4. Disablery: This transition disables role ry. Upon

firing, ry is removed from place ER and inserted in

place DR, implying that role ry can not be

activated by any user.

5. Activatery: This transition establishes an active

session between user u and role ry.

6. Deactivatery : This transition deactivates role ry

from the an active session between user u and role

ry.

 Firing of any of the above transitions changes the

state of the system. A transition can fire anytime after

its enabling. Enabling of a transition implies that all the

constraints associated with the event, the transition is

modeling, are satisfied. For brevity in presentation, we

list the enabling/firing rules for assignment of roles

only. For the remaining transitions, interested readers

are referred to [17].

Enabling/firing rules of transition assignry: This

transition upon firing inserts the set of tokens {<u, rx,

ry>: ry≥ rx} in the place UR which implies that the role

ry is assigned to user u, and user u is authorized for role

ry and all roles rx junior to role ry. The transition

assignry and its connecting places are shown in Fig. 2

and the corresponding arc expressions and guard

functions are listed in Table 1.

This transition gets enabled if the following

constraints are satisfied:

• There is a token <assign, uz, ry> in place ETG

implying that role ry be assigned to user uz.

• Assignment time role cardinality constraint

specified by the arc expression E3: ry+ry1+…ryn,

where, all ryi < ry and i n, is satisfied.

Alternatively, tokens ry,ry1,…,ryn are present in

place RC.

• Assignment time user cardinality constraint

specified by the arc expression E4: (n+1)uz is

satisfied, where n is the number of roles that are

junior to ry in the role hierarchy.

• Assignment time conflicting roles constraint

specified by the arc expression (inhibitor) E6: <uz,

rc, any r > and the transition guard function G2:

conflict_role_assign(ry rc) is satisfied. That is

Place UR does not contain any token <uz, rc, any r

> for which the above guard function evaluates

true.

• Assignment time conflicting users constraint

specified by the arc expression (inhibitor) E7:<uc,

rz, any r> and the transition guard function G3:

conflict_user_Assign(ry,uz,uc) is satisfied. That is

Place UR does not contain any token <uc, rz , any

r> for which the above guard function is true.

• Place UR does not contain any token <uz, ry, any r
>. This is specified by the inhibitor arc expression

E3 and guard function G1.

• The following two constraints are optional and are

only defined for roles which have assignment time

precedence constraint(s). Assignment time

precedence constraint can be of two types: same

user assignment constraint and any user

assignment constraint. A given role may have one,

both or none of these precedence constraints.

1. Same user assignment constraint requires that

a user uz can be assigned role ry only if role r’

∈ prec_su_assignset(ry) is assigned to user uz.

This constraint is specified by the read arc

expression E8 and the transition guard

function G4: prec_su_assign(ry,{r}).

2. Any user assignment constraint requires that a

user uz can be assigned role ry only if role

r’’.∈ prec_au_assignset(ry) is assigned to

some user. This constraint is specified by the

read arc expression E9 and the transition

guard function G5: prec_au_assign(ry,{r}).

The guard functions and arc expressions

corresponding to Fig. 2 are listed in Table 1. Fig. 2

shows a CPN representation of user to role

assignment/de-assignment with transition assignry and

deassignry modeling the assignment and de-

assignement events for role ry respectively. The set of

places in Fig. 2 shows the current state of the system in

terms of number of users assigned to role ry, the

number of active sessions associated with role ry etc.

The arcs and guard expressions specify the assignment

time cardinality, Sod, precedence and dependency

constraints.

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

{niri}

RC

{miui}

UC

{<ui,rj,rk>}

UR

A3

A2

A1

A5

A4

A7

Assign ry

{<ui,rj,sl>}

URS

Deassign ry

A11

A6

A8

A9

ETG

A10
A12

A13

A14

A15

A16

(∀<u,r,r’>∈ UR, ¬G1 ∧ ¬ G2∧ ¬ G3) ∧ G4 ∧ G5

(∀<u,r,s>∈ URS, ¬G6) ∧
(∀<u,r,r’>∈ UR , ¬ G7∧ ¬G8)

Figure 2. CPN construction for user-role

assignment/de-assignment.

Based on the discussions in Section 3, we formalize

the notion of a consistent RBAC state in the following

definition. This notion of consistency is used to capture

the dynamic property of the CPN in Theorem 1.

Definition: The state of an RBAC system is said to

be consistent if all the cardinality, inheritance, SoD,

precedence and dependency constraints are satisfied in

that state.

Theorem 1: Given a PRBAC (CPN structure for

RBAC) structure with an initial consistent state M0, all

states M, reachable from M0 are consistent.

The proof for this theorem requires enumerating all

the consistency rules and is omitted because of the

space limitation. Interested readers are referred to [17].

3.3. Reachability analysis for consistency

verification of RBAC policy

In this section, we elaborate the process of verifying

the consistency of RBAC policy constraints. The

verification is based on the reachability analysis of

CPN proposed in the previous section. We use

occurrence graph method [8] to enumerate all

reachable states of a system employing a given RBAC

policy. Lemma 1 states that our Petri net

representation of RBAC system is bounded and so its

occurrence graph will have finite number of nodes.

However, the exhaustive nature of this method implies

that the problem of verifying that a given state is

reachable from some initial state takes exponential

space and time [13]. Since policy verification can be

done offline and is performed before the deployment of

actual system, so complexity is not a major issue in

using this proposed Petri-net approach.

The following example illustrates the use of

occurrence graph for security policy verification.

Example: Consider three roles r0, r1, and r2 and a

single user u0. Let r1 be junior to r0 (r1 r0 and r1 r0).

Also let r1 and r2 be assignment time conflicting roles,

i.e., r1 and r2 cannot be assigned to the same user

implying that roles r1 and r2 cannot be activated by the

same user concurrently. Fig. 2 shows the sub-graph of

the occurrence graph of the RBAC system. In this sub-

graph all roles (r0, r1, and r2) are considered to be in

enable state and the SoD constraint is only defined

between roles r1, and r2. Note that in Fig. 3, user u0

who is assigned role r0 and r2 is able to activate roles r1

and r2 concurrently. This is a violation of the SoD

constraint defined on these two roles. This

inconsistency arises because of the fact that in the

original specification roles r0 and r2 do not have any

SoD constraint while r1 and r2 are assignment time

conflicting roles. As r0 is superior to role r1 and any

user assigned to role r0 is authorized for role r1, the

SoD constraint must also be defined between roles r0

and r2.

Table 1. Arc and guard expressions

Arc Expression Ei for corresponding arc Ai, where

E1 <assign,uz,ry> E9 {<any u , r’’, any r>}

E2 (n+1)uz E10 <de-assign,uz,ry>

E3
ry+ry1+…ryn

(ryi<ry. for all
E11 <uz rk, any r>

E4 <uz,rh> E12
<uz,ry, ry> + <uz,

ry1,ry>+….+<uz,

r r >

E5

<uz,ry,ry> + <uz,

ry1,ry>+….+<uz,

ryn,ry>

E13
<uz,ri, rdsu> (ri
rdsu)

E6
<uz rc, any r>

A7: <uc rz, any r>
E14

<any u, rj, rdau>

 (rj rdau)

E7 <uc rz, any r> E15 (n+1)uz

E8 {<uz , r’, any r>} E16
ry+ry1+…ryn (ryi<ry.

for all 1 i n)

Guard functions associated with transition Assignry and De-

ssignry
G1 :(rh ry) ry rh) G5 prec_au_assign(ry r’,})

G2 conflict_role_assign(ry,

rc)

G6 rk ry

G3 conflict_user_assign(ry,

uz, uc)

G7 dep_su_assign(rdsu, ry)

G4 prec_su_assign(ry,{r’}) G8 dep_au_assign(rdau,

ry)

4. Related work

RBAC models have been proposed and extended by

several researchers [14, 16, 6], and the efforts in this

direction have resulted in the proposal of a standard

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

model – the NIST RBAC model [6]. Need for

supporting constraints in an RBAC model has been

addressed by many researchers. In particular, the

attention has been in supporting separation of duties

(SoD) constraints [1, 7]. In [1], Ahn et. al. propose

RCL2000 – a role based constraint specification

language. Bertino et. al. have proposed a logic based

constraint specification language that can be used to

specify constraint on roles and users and their

assignments to workflow tasks [3].

Various work address policy analysis and

verification issues related to RBAC models.

Nyanchama et. al. [14] present a graph based RBAC

model, where graphs are used to mainly represent

hierarchies of users, roles and permissions. It does not

address the issue of policy verification. Koch et. al.

[12] present a graph transformation based formalism

for RBAC model and model the SoD constraints

identified in the literature. The model provides a graph

transformation based specification of static and

dynamic consistency conditions of RBAC.

Ahmed et. al. [18] have proposed a model checking

based methodology for verification of the security

requirements of computer supported cooperative work

(CSCW) systems. They use role-based policies to

specify coordination and security constraints of the

CSCW systems. In this sense our work is similar to

[18].

5. Conclusion

We have presented a colored Petri-net based

framework for verifying the consistency of RBAC

policies. The Petri-net model can capture all the

cardinality and separation of duty constraints that have

been previously identified in the literature. Moreover,

the model also allows specification of the precedence

and dependency constraints that we introduce in this

paper. We use the Petri-net reachability analysis

technique for RBAC policy verification. A set of

consistency rules is used as the basis for detecting

undesirable states representing erratic behavior of the

system due to the flaws in policy specification. The

analysis framework can be used by security

administrators to generate correct specification

iteratively.

Initial state: Each role r0, r1 and r2 can be assigned to atmost 3 users.

Each role r0, r1 and r2 can be activated by atmost 3 users.

User u0 can be assigned atmost 3 roles.

User u0 can activate atmost 3 roles.

Invariant: All roles r0, r1 and r2 always remain in enabled state

(r1 assigned to u0)

(r1 assigned to u0)

(ri activated by u0 in s1)

(r2 assigned to u0)
(r0 assigned to u0)

(r0 assigned to u0)
(r0 activated by u0 in s0)

(r0 assigned to u0)

(r0 activated by u0 in s0)
(r1 activated by u0 in s1)

(r0 assigned to u0)
(r1 activated by u0 in s1)

(r2 assigned to u0)

(r0 assigned to u0)

(r2 assigned to u0)

(r0 assigned to u0)

(r0 activated by u0 in

s0)

(r2 assigned to u0)
(r0 assigned to u0)

(r0 activated by u0 in s0)

(r1 activated by u0 in s1)

(r2 assigned to u0)

(r0 assigned to u0)

(r0 activated by u0 in s0)

(r1 activated by u0 in s1)
(r2activated by u0 in s2)

(r2 assigned to u0)

(r0 assigned to u0)

(r0 activated by u0 in s0)

(r2 activated by u0 in s2)

(r2 assigned to u0)

(r0 assigned to u0)

(r1 activated by u0

in s1)

(r2 assigned to u0)

(r0 assigned to u0)

(r1 activated by u0 in s1)
(r0 activated by u0 in s0)

(r2 assigned to u0)

(r0 assigned to u0)

(r1 activated by u0 in s1)

(r2 activated by u0 in s2)

(r2 assigned to u0)

(r0 assigned to u0)

(r2 activated by u0 in s2)

(r2 assigned to u0)

(r0 assigned to u0)

(r2 activated by u0 in s2)
(r0 activated by u0 in s0)

(r2 assigned to u0)

(r2 activated by u0 in s2)

(r2 assigned to u0)

(r2 activated by u0 in s2)

(r0 assigned to u0)

(r2 assigned to u0)
(r2 activated by u0 in s2)

(r0 assigned to u0)

(r1 activated by u0 in s1)

Violation of SoD between r1 & r2

Figure 3. Occurrence graph of the example with

incomplete specification

6. References

[1] G. Ahn, R. Sandhu, “Role-Based Authorization

Constraints Specification”, ACM TISSEC, Vol. 3, No.

4, Nov. 2000.

[2] J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrila,

and D.R. Kuhn, “Role Based Access Control for the

World Wide Web,” in proc. of the 20th National
Information System Security Conference, 1997.

[3] E. Bertino, E. Ferrari, and V. Atluri, “The

Specification and Enforcement of Authorization

Constraints in Workflow Management Systems,” ACM

TISSEC, Vol. 2, No. 1, Feb. 99, pp. 65-104.

[4] E. Bertino, P. A. Bonatti, E. Ferrari, “TRBAC: A

Temporal Role-based Access Control Model,” ACM

TISSEC, Vol. 4, No. 3, Aug. 2001, pp. 191-233.

 [5] D. F. Ferraiolo, D. M. Gilbert, N Lynch, “An

examination of Federal and Commercial Access

Control Policy Needs,” in Proc. of the National

Computer Security Conference, Baltimore, MD, Sept.

1993, pp. 107-116.

[6] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,

R. Chandramouli, “Proposed NIST Standard for Role-

based Access Control,”ACM TISSEC, Vol. 4, No. 3,

Aug 2001.

[7] S. I. Gavrila , J. F. Barkley, “Formal Specification

for Role Based Access Control User/role and Role/role

Relationship Management,” in Proc. of the 3rd ACM

Workshop on Role-Based Access Control, Oct., 1998,

pp. 81-90.

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

[8] K. Jensen, Coloured Petri Nets: Basic Concepts,

Analysis Methods and Practical Use Volume 1,

Springer Verlag, 1997.

[9] J. B. D. Joshi, W. G. Aref, A. Ghafoor and E. H.

Spafford, “Security Models for Web-based

Applications,” Communications of the ACM, Vol. 44,

No. 2, Feb. 2001, pp. 38-72.

[10] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor,

“A Generalized Temporal Role Based Access Control

,” IEEE Transaction on Knowledge and Data

Engineering, Vol. 17, No. 1, Jan 2005, pp. 4–23.

[11] J. B. D. Joshi, E. Bertino, A. Ghafoor, “Temporal

Hierarchies and Inheritance Semantics for GTRBAC,”

in Proc. of the 7
th ACM Symposium on Access Control

Models and Technologies, June 2002, pp. 74-83.

[12] M. Koch, L. V. Mancini, F. Parisi-Presicce, “A

Graph-based Formalism for RBAC,” ACM
Transactions on Information and System Security, Vol.

5, No. 3, Aug. 2002, pp. 332 – 365.

[13] T. Murata, “Petri Nets: Properties, Analysis and

Application”, Proceedings of IEEE, Vol. 77, No. 4,

1989, pp. 541-580.

[14] M. Nyanchama and S. Osborn, “The Role Graph

Model and Conflict of Interest,” ACM TISSEC, Vol. 2

No. 1, 1999, pp. 3-33.

[15] S. Osborn, R. Sandhu, Q. Munawer, “Configuring

Role-based Access Control to Enforce Mandatory and

Discretionary Access Control Policies,” ACM TISSEC

Vol. 3, No. 2, May 2000, pp. 85-106.

[16] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E.

Youman, “Role-Based Access Control Models,” IEEE

Computer Vol. 29 No. 2, 1996, pp. 38-47.

[17] B. Shafiq, J. Joshi, A. Ghafoor, “A Petri-net

Model for Verification and Validation of Role-based

Access Control Model”, CERIAS TR 2002-33, Purdue

University.

[18] T. Ahmed and A. R. Tripathi, “Static Verification

of Security Requirements in Role Based CSCW

Systems,” in Proc. of the 8th ACM Symposium on

Access Control Models and Technologies, Jun. 2003,

pp. 196-203.

Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’05)
0-7695-2347-1/05 $20.00 © 2005 IEEE

