156 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.2, APRIL-JUNE 2006

Role-Based Access Control for
Grid Database Services Using the
Community Authorization Service

Anil L. Pereira, Vineela Muppavarapu, and Soon M. Chung, Member, IEEE

Abstract—In this paper, we propose a role-based access control (RBAC) method for Grid database services in Open Grid Services
Architecture-Data Access and Integration (OGSA-DAI). OGSA-DAI is an efficient Grid-enabled middleware implementation of
interfaces and services to access and control data sources and sinks. However, in OGSA-DAI, access control causes substantial
administration overhead for resource providers in virtual organizations (VOs) because each of them has to manage a role-map file
containing authorization information for individual Grid users. To solve this problem, we used the Community Authorization Service
(CAS) provided by the Globus Toolkit to support the RBAC within the OGSA-DAI framework. The CAS grants the membership on VO
roles to users. The resource providers then need to maintain only the mapping information from VO roles to local database roles in the
role-map files, so that the number of entries in the role-map file is reduced dramatically. Furthermore, the resource providers control the
granting of access privileges to the local roles. Thus, our access control method provides increased manageability for a large number of
users and reduces day-to-day administration tasks of the resource providers, while they maintain the ultimate authority over their
resources. Performance analysis shows that our method adds very little overhead to the existing security infrastructure of OGSA-DAI.

Index Terms—Open Grid Services Architecture-Data Access and Integration (OGSA-DAI), Grid database services, fine-grain
authorization, Community Authorization Service (CAS), role-based access control (RBAC).

1 INTRODUCTION

GRID has emerged recently as an integration infrastruc-
ture for sharing and coordinated use of diverse
resources in dynamic, distributed virtual organizations
(VOs) [3], [6], [13], [14], [36], [37]. Distributed data sources
can be diverse in their formats, schema, quality, access
mechanisms, ownership, access policies, and capabilities.
To efficiently manage these, technical solutions and
standards are needed for data discovery and access, data
exploration and analysis, resource management, and
security [16]. To date, most work on data storage, access
and transfer on the Grid has focused on files [31], but the
Grid can also be used to integrate various distributed
heterogeneous databases and supports query/transaction
processing on them through a uniform interface [31], [32].
However, the use of databases in Grids presents different
security needs and access policies compared with the use of
computational resources. For example, certain applications
may be authorized to access only a certain part of a
database.

The Data Access and Integration Services Working
Group (DAIS-WG) of the Global Grid Forum (GGF) is
currently establishing the standards for Grid interface to
data resources [20]. The Open Grid Services Architecture-
Data Access and Integration (OGSA-DAI) provides the first
implementation for these emerging standards. Currently,

e The authors are with the Department of Computer Science and
Engineering, Wright State University, Dayton, OH 45435.
E-mail: {pereira.3, muppavarapu.2, soon.chungl@uwright.edu.

Manuscript received 5 May 2005; revised 6 Feb. 2006; accepted 15 Feb. 2006,
published online 4 May 2006.

For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0062-0505.

1545-5971/06/$20.00 © 2006 IEEE

OGSA-DALI supports role-based access control (RBAC) [9],
[30] via a role-map file that maps individual Grid users to
database roles. In other words, permissions are associated
with roles, and users are made members of appropriate
roles, thereby acquiring the roles” permissions [29]. In this
case, each resource provider has to maintain a role-map file
to authorize access to its resources. This method of access
control is not suitable for VOs, because both users and
resources are dynamic in VOs. Multiple entries in multiple
role-map files may need to be updated if new users are
allowed to access multiple data resources or if the access
privileges of current users change. This puts an unnecessary
burden on the resource providers in managing the role-map
files, especially when both the users and resource providers
belong to multiple VOs.

In this paper, we describe how the security mechanism
in OGSA-DAI can be enhanced by using the Community
Authorization Service (CAS) provided by the Globus
Toolkit [11]. The CAS records user groups and their
permissions on resources and it targets access control for
computational and file-based storage resources. But, we
demonstrate that the CAS can also support RBAC for
multiple VOs to access Grid databases within the OGSA-
DAI framework. We extended the RBAC approach sup-
ported by OGSA-DAI to allow users to be assigned
memberships on VO roles and also to allow role hierarchies.
With our method, the CAS grants users memberships on
VO roles and then authorizes them in those roles. The
resource providers need to maintain only the mapping
information from VO roles to local database roles, thus the
number of entries in the role-map file is reduced dramati-
cally. When users join/leave a VO, the resource providers
do not have to bother about individually adding/removing

Published by the IEEE Computer Society

PEREIRA ET AL.: ROLE-BASED ACCESS CONTROL FOR GRID DATABASE SERVICES USING THE COMMUNITY AUTHORIZATION SERVICE 157

their information in the role-map files because the
CAS server can just grant/revoke their memberships on
the VO roles. Furthermore, the resource providers can grant
or refuse the access requests of specific users by maintain-
ing their authorization information separately in the role-
map files. This enables the resource providers to have the
ultimate authority over their resources.

We have implemented our proposed method and
analyzed its performance. In our implementation, users
obtain CAS credentials based on user credentials. The user
credential is formed by an X.509 certificate and the
associated public/private keys and is issued by a Certificate
Authority (CA) trusted by all entities in a Grid [5]. The
CAS credentials contain the authorization information for
the user in terms of his/her VO roles. We have extended the
client-side implementation of OGSA-DAI to pass the
CAS credential and extended the server-side to parse the
credential to obtain the VO role (in which the user is to be
authorized) and to map it to a local database role. We have
evaluated our solution in terms of the overheads incurred
when security contexts are set up between a client and a
server. This has been done with respect to the original
security mechanism in OGSA-DALI

The organization of the paper is as follows: Section 2
contains background information. In Section 3, we explain
the current authorization mechanism in OGSA-DAIL In
Section 4, we describe our approach to RBAC using CAS in
OGSA-DAL Section 5 describes the implementation details,
and Section 6 describes the results of performance analysis.
Section 7 contains some conclusions and future work.

2 BACKGROUND

Grid integrates several communities of resource providers
and resource consumers. This integration can be technically
challenging because of the need to achieve various qualities
of service when running on top of different native plat-
forms. Open Grid Services Architecture (OGSA) addresses
these challenges and defines uniform exposed service
semantics, the Grid Service [15]. OGSA integrates Grid
and Web services technologies and defines standard
interfaces and behaviors for distributed system integration
and management [16]. Version 3 of the Globus Toolkit and
its accompanying Grid Security Infrastructure (GSI) provide
the first implementation of OGSA mechanisms and cast
security functions as OGSA services. This version of the
Globus Toolkit also publishes service security policies and
specifies standards for interoperability [38].

2.1 Grid Databases

Current research in the area of Grid databases is undertaken
by Project Spitfire associated with the European Data Grid
[4] and the Open Grid Services Architecture-Data Access and
Integration (OGSA-DAI) [2]. Project Spitfire provides access
control based on authorization tags specified within XML-
based query files. These tags are mapped by a database
resource to local roles via a role-database that it maintains.
A drawback of their approach is that the role-database
contains the mapping to local database roles for all Grid
users that have access to that database resource. Multiple
entries in multiple role-databases may need to be updated if

new Grid users are allowed to access multiple data
resources or if the access privileges of current users change.

OGSA-DAI is an efficient Grid-enabled middleware
implementation of interfaces and services to access and
control data sources and sinks [2]. In order to expose
physical data resources to the Grid, by extending the
interfaces defined by the Open Grid Services Infrastruc-
ture (OGSI) [35], OGSA-DAI introduced the following
services [2]:

1. Grid Data Service Factory (GDSF): Represents a data
resource, and exposes its capabilities and metadata.

2. Grid Data Service (GDS): Created by a GDSF and
holds the client session with the data resource.

3. DAI Service Group Registry (DAISGR): Clients can
discover service/data by locating GDSFs registered
with a DAISGR.

2.2 Issues for Access Control in Grids

The overall direction for access control architectures in Grid
computing is toward the need for leveraging IT infrastruc-
ture as it emerges. Integration with Web services and
hosting environment technologies introduces opportunities
to leverage emerging security standards and technologies
such as the Security Assertion Markup Language (SAML)
[23] and Web Services Security (WSS) [25]. Participating
organizations within a Grid often have significant invest-
ment in existing security mechanisms and infrastructure,
and Grid services could be built on sophisticated container-
based hosting environments such as J2EE or .Net. Grid
security mechanisms should interoperate with, rather than
replace, those mechanisms [38].

Most security functionality should be placed in the hosting
environments, so that application development will be
simplified and security functionality can be upgraded
independently of applications [38]. Participating organiza-
tions may have different security models. It is important for
these models to interoperate based on different levels of trust.
The WSS specifications address this issue. WSS is a standard
mechanism for interoperability and enables the interaction
between different platforms and security models. WSS
standard can be used to transport credentials from a client to
a server, such as the ones represented by SAML attribute
assertions [33].

Resource providers must understand and support
mechanisms and policies that are not strictly under their
control. A VO spanning across multiple sites can use a
single security mechanism, but, usually, it needs to
accommodate multiple security mechanisms [17]. While
acknowledging and respecting the site autonomy, there are
a number of requirements to be met for Grid security in
order to achieve the goals of the VOs. Users need globally
defined names that are recognized at all sites they access. A
user’s identity needs to be passed securely and transpar-
ently between sites as jobs progress [17].

Users must be able to access resources dynamically
without any administrator intervention. These resources
must be coordinated properly and must interact securely
with other services. Thus, resources must have global
identities, and they should be accessed without violating
their local policies. Trust should be established not only

158 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.2, APRIL-JUNE 2006

among users and resources, but also among the resources
themselves, so that they can be coordinated. These trust
domains can span across multiple organizations and must
adapt dynamically as participants join or leave and
resources are accessed or released [38].

Significant challenges remain for privacy management
and cross-domain auditing [17]. Also, the typical identity-
based authorization used today is not scalable because
authorization information should be maintained for each
user. RBAC is clearly an emerging direction in Grid
computing [33]. In RBAC, authorization information is
associated with roles, not with individual users.

The GridShib project [39] leverages the local security
infrastructures of different organizations so that users can
be authenticated to Grid resources by using methods
already supported at their home organizations. The goal
of GridShib is to create a distributed authorization
framework that supports anonymous interactions between
users and, hence, protects their privacy. The rights of the
users can be expressed using attributes such as institu-
tional affiliation, group membership, or their role in
collaboration [39].

GridShib incorporates the Shibboleth [8], which is an
Attribute Authority service, developed by the Internet2
community for cross-organization identity federation [39].
The Shibboleth service maps a user name and attributes
onto a unique identifying handle. To protect the user’s
privacy, the service can restrict the information about the
holder of the handle depending on who is asking for the
information. For example, it does not release the user’s name
except to those requestors who have been authorized [17].

In addition to GridShib, PERMIS [26] and the Virtual
Organization Membership Service (VOMS) [1] are also
attribute-based authorization services. They use assertions
that bind the attributes to users for authorization, as
opposed to the typical identity-based authorization used
today [33]. However, currently there is no standard for how
attributes are transferred from the attribute authority to the
Grid services and no standard for expressing the policy
regarding those attributes [33]. SAML [23] can be used to
express authorization queries, and Extensible Access Con-
trol Markup Language (XACML) [24] can be used to
express authorization policy statements.

An audit mechanism can be used to determine whether
or not the access control policies have been administered
properly. The audit mechanism is responsible for producing
records which track security related events [22]. And, for
this purpose, it is essential to keep a log of the access
requests and the enforced security policies. In traditional
systems, the audit mechanism is local to each server;
however, on the Grid, either the audit mechanism should be
distributed or the audit records should be transmitted to a
location where a higher level view of the system can be
constructed [12]. Standards are required to facilitate the
audit and to reconcile different audit trails that are
distributed among different organizations. It is extremely
difficult to browse the audit logs if they are in different
formats and in different administrative domains. Also, the
access control mechanism should be able to match the audit
entries in different audit logs and administrative domains.

Auditing also depends on authentication because audit
records usually associate individuals with the actions they
have taken, and the identity of the user must be determined
if these entries are to be trusted [12]. The user identity
represented in the user credential can be used to identify
the user who initiated the request. The request can be
logged at the resource along with the mapping information
and the subsequent actions performed. This information
can be used to find patterns that fit the profile of a system
intrusion or the activities that do not fit the profiles of
legitimate users [12].

3 CURRENT AUTHORIZATION MECHANISM IN
OGSA-DAI

User authorization is one of the most challenging issues in
Grid computing. Current authorization mechanisms cannot
address all the issues that arise in dynamic Grid environ-
ments which often encompass multiple organizations, each
with its own security policy [19]. RBAC shows clear
advantages over traditional discretionary and mandatory
access control models in such environments, because it
allows the uniform representation of diverse security
policies and ensures that no security violations occur
during interdomain access [19].

Furthermore, RBAC is distinguished by its inherent
support for the Principle of Least Privilege [21]. The
Principle of Least Privilege requires that a user be given
no more privileges than necessary to perform a job [9]. It
can be easily enforced by first identifying the roles in an
organization correctly and then assigning only those
privileges to each role that allow the role members to
perform their tasks. Hence, some Grid authorization
mechanisms have adopted the RBAC model. With our
method, users can request a particular role among those
they are entitled to and, hence, gain the specific permissions
tied with that role.

The current security infrastructure of OGSA-DAI uses a
role-map file for authorizing a Grid user’s request. The role-
map file contains the information for mapping a Grid user
credential to a username and a password that are used to
connect to a database at a particular authorization level.
Multiple entries in multiple role-map files may need to be
updated if new Grid users are allowed to access multiple
data resources or if the access privileges of current users
change. Thus, managing the entries in a role-map file is
difficult. With these considerations in mind, we propose an
efficient access control mechanism for Grid database
services in OGSA-DAIL

4 A RoLE-BAseD Access ConTRoL (RBAC)
MeTHOD FOR OGSA-DAI

We enhanced the existing implementation of OGSA-DAI to
use the Community Authorization Service (CAS) provided
in the Globus Toolkit. CAS provides a scalable mechanism
for specifying and enforcing complex and dynamic policies
that govern resource usage within Grids. It allows resource
providers to delegate some of the authority for maintaining

PEREIRA ET AL.: ROLE-BASED ACCESS CONTROL FOR GRID DATABASE SERVICES USING THE COMMUNITY AUTHORIZATION SERVICE 159

fine-grain access control policies to communities, while still
maintaining the ultimate authority over their resources [27].

4.1 Community Authorization Service (CAS)

A community runs a CAS server to keep track of its
membership and fine-grain access control policies. A user
accessing community resources contacts the CAS server,
which delegates rights to the user based on the request and
the user’s role within the community. These rights are in the
form of capabilities, which users can present at a resource to
gain access on behalf of the community. The user effectively
obtains the intersection of the set of rights granted to the
community by the resource provider and the set of rights
defined by the capabilities granted to the user by the
community. The CAS server uses a backend database to
store the capabilities of the users. The CAS architecture
builds on the public key authentication and delegation
mechanisms provided by the Grid Security Infrastructure
(GSI) [27]. The CAS server contains policy statements that
specify who (which user or group) has the permission,
which resource or resource group the permission is granted
on, and what permission is granted [27]. The permission is
denoted by a service type and an action. The action
describes the operation (e.g., read, write, or execute
program), and the service type defines the namespace in
which the action is defined (e.g., file). Different resource
providers may recognize different service types, but all
resource providers that recognize the same service type
should have the same interpretation of that service type’s
actions [27].

If a user of a community needs to gain access to a
resource, the user generates a proxy credential which is
signed by his/her own user credential. The proxy credential
is presented to the CAS server which returns a new
credential, known as a CAS proxy credential. This
credential contains the CAS policy assertions representing
the user’s capabilities and restrictions as an extension.
SAML is used as the format for the policy assertions. The
CAS proxy credential is presented to the resource provider.
The resource provider verifies the validity of the proxy
credential, and then parses the CAS policy assertions to
obtain the restrictions imposed by the CAS server. Thus, the
CAS credential facilitates the mapping of the user to a local
account, and the restrictions determine the operations the
user is allowed to perform.

4.2 Advantages of Using CAS

With the CAS structure and RBAC, our method provides
scalability in terms of the number of users and VOs. The
CAS structure reduces the number of necessary trust
relationships from C x P to C+ P, when there are
C consumers and P providers. Each consumer needs to
be known and trusted by the CAS server, but not by each
provider. Similarly, each provider needs to be known and
trusted by the CAS server, but not by each consumer [27]. A
single CAS server can support the authorization for multi-
ple VOs. Also, it has been shown that the cost of
administering RBAC is proportional to U + P per role,
while the cost of associating users directly with permissions
is proportional to U x P, where U is the number of
individuals in a role and P is the number of permissions
required by the role [10], [40].

However, in terms of the actual number of access
requests on resources, using a single CAS server may not
be quite scalable. A single CAS server can be a bottleneck if
a large number of users attempt to access it at the same
time, and it can be a single point of failure. A possible
solution for these problems depends on how frequently the
community policies change. If the community policies do
not change frequently, a single master server can be
maintained to accept the changes and then routinely
replicate the policies to one or more read-only slave servers.
If the community policies change frequently, multiple peer
servers can be used. All the servers update the policies, so
that the failure of any one server will not lead to a loss of
functionality [27].

However, when policies are changing dynamically, the
complete centralization of policies can achieve better
consistency. Also, in the case that a user credential is
compromised, revocation is easier when a single CAS
server is used because the user needs to be removed only
from that server [27].

CAS comes packaged within the Globus Toolkit and is
easily deployable. CAS also has advantages over the
existing authorization services that support RBAC within
Grids. Among these are Virtual Organization Management
Service (VOMS) [1] and Akenti [34]. Compared with VOMS,
CAS assertions provide the rights directly and do not need
an interpretation by the resource. Even though CAS was
designed primarily for fine-grain policies, it also has been
shown to be capable of asserting coarse-grain group
memberships [7], [28]. As far as Akenti is concerned, it is
targeted on authorizing accesses to web resources and
particularly Websites, so it is not adequate for VOs [1].
Akenti does not provide support for dynamic delegation
[26]. Delegation is a key issue in a VO, wherein a set of
rights can be delegated to a program for it to act on behalf of
a user. A program should also be able to delegate some of
its rights to other programs [13].

4.3 Role-Based Access Control with CAS
in OGSA-DAI

A possible approach for supporting RBAC with CAS is the
use of rights associated with a role to access role-specific
resources [7]. The role of a user is presented in a hierarchical
form. For example, Alpha/admin indicates the adminis-
trator role of a virtual organization Alpha. Alpha could be the
name of a project undertaken by collaborating organizations.

Due to the current implementation of CAS, a drawback of
this approach is the possibility that, while a user acts in a role
which does not possess access privileges for a particular
resource, he/she could be authorized by CAS to access that
resource. As an example, suppose that users of userGroupl
have the membership right on a role “Alpha/programmer”
and also have the read right on “ftp://localhost/tmp/
fileA.txt,” and the users of userGroup2 have the member-
ship right on a role “Alpha/guest” and also have the read
right on “ftp:/ /localhost/tmp /fileB.txt.” If a user “userl” is
in both userGroup1 and userGroup2, as illustrated in Figs. 1
and 2, CAS will authorize him/her in the role “Alpha/
programmer” together with the read access on “ftp://
localhost/tmp/fileB.txt,” but it is not a valid access right for
that role.

160 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.2, APRIL-JUNE 2006

userl user2
read member

Alpha/
programmer

ftp://localhost/tmp
[fileA.txt

Fig. 1. UserGroup1 with a role Alpha/programmer and read access to
ftp://localhost/tmp/fileA.ixt.

userl user3

read /

member

Alpha/guest

Fig. 2. UserGroup2 with a role Alpha/guest and read access to ftp://
localhost/tmp/fileB.txt.

ftp://localhost/tmp
/fileB.txt

Our implementation with CAS is based on the following
idea proposed in [7]: In the CAS database, roles are added
as resources and users are given membership rights on
those roles. In a VO with a large number of users, we could
think of several groups of users, each with different levels
of access (roles). A role has certain privileges associated
with it. When a VO role is mapped to a local role, it will
specify the access a user can have; for example, a specific
table of a database. For mapping, the resource provider can
obtain the policy details through the user’s CAS credential
and interpret it to a known level. A role can be assigned to
any number of users. When users join/leave the VO, the
resource provider does not have to bother about individu-
ally adding/removing them from the role-map files because
the CAS server could just grant/revoke their membership
from the existing VO roles.

userl user2

|
|
|
|
: Local Role
|
membership I
|

In our approach, CAS grants the membership rights on
roles to users by assigning them to appropriate user groups
in the CAS database. However, we do not associate the
rights with roles to access role-specific resources. Instead,
the decision to map a VO role to a local database role and
the assignment of fine-grain privileges to the local role is the
responsibility of the resource provider. The fine-grain
privileges and constraints associated with the local role
can be negotiated between the VO and the resource
provider. But, the resource provider has the control over
the actual assignment of fine-grain privileges to the local
role and the specification of constraints on it. For example, a
resource provider can grant permission to perform basic
database operations (e.g., select) on a particular database
table. The resource provider can also grant permissions for
more complex operations such as executing stored database
procedures.

Furthermore, the resource provider can grant or refuse
the access requests of specific users by maintaining their
authorization information separately in the role-map files.
This enables the resource provider to have the ultimate
authority over its resources. With our method, a user can
delegate a subset of his/her authorized VO roles to certain
applications and Grid Data Services. In this case, the
privileges associated with the delegated VO roles are the
privileges associated with the corresponding local roles.

As shown in Fig. 3, a resource provider can decide to
map the Alpha/supervisor role to a local role that allows
the function viewInventory() to be performed between
19:00 and 5:00 GMT from Monday to Friday during
05.20.2005-07.30.2005. This specified timing constraint can
be enforced by a database trigger, which executes an action
automatically on the occurrence of a predefined event.

5 IMPLEMENTATION DETAILS

Our RBAC method with CAS supports the push model,
where the user directly obtains the permissions from the
authorization server and passes them to the target resources
at the time of making a request. The resource verifies the
authenticity of the user and then authorizes the user based
on the permissions obtained, provided the authority that
issued them is trustworthy. Our decision to use the push

\4
Alpha/supervisor @
| A

|
|
VO Role |
|
|
|

Fig. 3. Specifying VO roles using CAS.

GMT#05.20.2005-07.30.2005#¥MON-FRI#19:00-5:00

viewlnventory()

PEREIRA ET AL.: ROLE-BASED ACCESS CONTROL FOR GRID DATABASE SERVICES USING THE COMMUNITY AUTHORIZATION SERVICE

Creation of

161

Hset proxy Flost Computer IEl Long-lived credential
User 4 .
“—I I:I User Proxy I:l Temporary credential
Cup Cu User’s credential
e 53 ~
U% 8 2.5 Cup Proxy credential
5 g 23
sz 58 Ccas CAS Server credential
sol| |88
RS CAS Proxy Cucasp User’s CAS
Certificate Proxy credential
Authority (CA) Cucasp
Creation of
CAS proxy
CAS Server
Capability —
Cup + details for user —_ Cucap

A4

CAS
Database

Fig. 4. User's normal proxy credential and CAS proxy credential creation.

model is based on the advantage that the user can explicitly
select a role. Also, in the case that the user and the
authorization service belong to the same organization and
are protected by a firewall, the authorization service using
the push model should be deployed because the resources
may not be able to contact the authorization service directly.

Some authorization services, like Akenti, support the
pull model, where the user is authenticated by a target
resource. The target resource contacts the authorization
server to obtain the user’s permissions. An advantage of the
pull model is that it can be deployed easily because users do
not need to interact with the authorization service [39]. We
plan to enhance our method to support the pull model as
well so that the OGSA-DAI services can contact CAS and
obtain the user’s permissions directly. Supporting both
models will allow flexible deployment to meet the needs of
different VOs.

CAS has a backend database for storing information
about users, resources and associated privileges. The VO
members are granted user credentials signed by a Certifi-
cate Authority (CA). CAS issues a certificate to authorize
users based on their requested role, their user credentials,
and the role membership information in the CAS database.
The CAS database administrator can delegate the right to
grant/revoke memberships on roles to other users, and
those users can exercise that right only within the user
groups to which they belong.

CAS provides a set of APIs for managing fine-grain
access policies for resources in a VO [27]. The Service API of
CAS provides an administrative interface for managing the
user groups and associated privileges. This API supports
the user’s role assignments in our method. CAS also
provides a Client API through which users can obtain a

signed SAML assertion and present it to the resource
provider for authorization. The OGSA-DAI client program
uses the Java Generic Security Services API (GSSAPI) to
delegate the CAS credential to a Grid Data Service (GDS).
We configured CAS to incorporate the proposed RBAC
method as described before and modified the OGSA-DAI
implementation to make use of the CAS credentials. The
modifications are made at both client-side and server-side.
The client is modified to delegate the CAS credential
instead of the user proxy credential. The server is modified
to recognize the CAS credential delegated by the client,
obtain the role from it using the GSSAPI libraries, and
perform the role mapping based on the role-map file. The
role-map file has been extended to include the mapping
from a VO role to a database username and a password.
The following is the sequential process of a user
obtaining a CAS credential and accessing a Grid database.
As shown in Fig. 4, a user generates a certificate by making
a request to a Certificate Authority (CA) which is also
trusted by all the entities within the Grid, i.e., all users and
resources. Once the user has obtained the certificate (Cu), a
proxy credential (Cup) is generated based on the certificate.
This generated proxy credential’s life time will be less than
the lifetime of the user certificate. The lifetime of a proxy
credential generated using the Globus Toolkit is 12 hours.
Normally, whenever the user wants to access a resource,
the proxy credential can be used. The resource provider
checks the validity of the user’s proxy credential, authenti-
cates the user, and maps the user to a local account. In order
to use a CAS credential, the user initiates a CAS proxy by
making a request to the CAS server based on the user’s
proxy credential. The CAS server authenticates the user and
obtains the user’s capabilities (in the form of roles) present

162 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.2, APRIL-JUNE 2006

<<Exposes>>
Grid Data |==== === -
Service Factory 1
CAS :
1. Client Server 4. Creates a I
3. Request GDS
makes A for creai 1
assertions to or creation 1
CAS and ota GDS |
receives
capability as -
in Figure 4
T v Grid Data
2. Gets the - Service
. . Client
information
about the
GDSFs A 6. Queries and 5.JDBC
registered results submitted Connection based
and received using on the capability

DAISGR XML documents. provided in the

CAS credential

Fig. 5. Accessing a data resource through OGSA-DAI using a CAS
credential.

in the CAS database. The CAS server then creates a new
proxy credential (Cucasp) by adding these capabilities to
the existing user proxy credential (Cup).

As shown in Fig. 5, once the user has obtained the CAS
credential with the requested assertions, the user can
contact the desired Grid Data Service Factory (GDSF) to
create a Grid Data Service (GDS). The GDS gets the CAS
credential delegated by the user and sets the security
context with the role present in the CAS policy assertions.

As shown in Fig. 6, the user first initiates a user proxy
and then contacts CAS to initiate the CAS proxy. While
making a request to create a CAS proxy credential, the
required role can be explicitly specified by using a file
containing user specific requests. Following from the
previous example that describes the mapping of the
Alpha/supervisor role to a local role, a user makes a
request for the Alpha/supervisor role as shown in Fig. 6.

Fig. 7 shows the SAML representation of a part of the
CAS credential that contains the role Alpha/supervisor.
The SAML representation of the credential can be seen
using Globus/CAS command-line tools. Based on the role, a
JDBC connection is established between the Grid Data
Service and the database exposed by the Grid Data Service
Factory. If no role is specified in the CAS credential, then
the user’s identity is used for mapping. The client can then

<AuthorizationDecisionStatement
Decision="permit"
Resource="roleNamespace|Alpha/supervisor">
<Subject>......cccoinininn </Subject>

<Action
Namespace="group">membership</Action>
</AuthorizationDecisionStatement>

Fig. 7. Authorization information present in the CAS credential
specifying user’s VO role.

submit queries to the Grid Data Service and obtain the
results in XML documents as shown in Fig. 6.

6 PERFORMANCE ANALYSIS

The existing implementation of the OGSA-DALI client has
been modified to delegate a CAS credential, and the server
has been modified to obtain the roles present in the CAS
credential. The overheads incurred with our implementa-
tion are compared with those of the existing implementa-
tion of OGSA-DALI, which does not use the CAS credential.
OGSA-DALI Release 4.0 was deployed on a Jakarta Tomcat
5.0.27/Globus Toolkit 3.2.1 (GT3) stack running on a Linux
machine with a 2.6 GHz Intel Pentium IV processor and
1 GB of RAM. The littleblackbook MySQL database table
distributed with OGSA-DAI was used as a test database,
and it contains 10,000 tuples. The perform document
consisting of a request for a single tuple was used for the
purpose of analysis.

6.1 Profiling Details

A Java method System.currentTimeMillis() is used to get the
current system time in milliseconds. Also, for the server-
side analysis, the Apache Log4j logger, which logs time to a
log file in milliseconds, is used. For more accuracy, the
tomcat container was shut down and restarted before each
client request in order to minimize the caching effects
within GT3 and OGSA-DAI [18]. The main changes from
the original configuration are the way the mapping is done
at the server-side and how the credential is delegated at the
client-side. So, only the security aspects of the client and the
server are profiled and analyzed. The following types of
Grid Data Services are used in the analysis as in [18]:

Initiate a User Proxy

% grid-proxy-init

Enter GRID pass phrase for this identity:

Creating proxy... Done

Your proxy is valid until: Wed Oct 5 20:30:53 2005

#Initiate a CAS Proxy

#Contacting a specific GDSF using CAS capabilities
Yojava uk.org.ogsadai.client.Client -mls -t tag -factory

examples/GDSPerform/JDBC/query/select] Row.xml

Your identity: /O=Grid/OU=GlobusTest/OU=simpleCA-motive.cs.wright.edu/OU=cs.wright.edu/CN=Vineela Muppavarapu

9ocas-proxy-init -¢ http://localhost:8080/ogsa/services/base/cas/CASService -f /home/vinny3k/roleRequest -t tag
#File “roleRequest’ with user specific request for CAS credential used above
Resource: roleNamespace|Alpha/supervisor group membership

http://130.108.17.176:8080/0gsa/services/ogsadai/SecureGridDataServiceFactory

Fig. 6. User session accessing a GDS using CAS.

PEREIRA ET AL.: ROLE-BASED ACCESS CONTROL FOR GRID DATABASE SERVICES USING THE COMMUNITY AUTHORIZATION SERVICE 163

14000
B Perform
12000 - FindServiceData3
P
10000 7 V 0O FindServiceData2
/ / B FindServiceDatal
2 8000 - / / A Credential Creation
g
g / /
E 6000 / /
= / /
4000 - % %
2000 - / /
0 i T - k 5
Signature Signature Encryption Encryption None with None
with CAS without with CAS without CAS without
CAS CAS CAS

Fig. 8. Client-side security.

1. Signature: GDS enforcing GSI Secure Conversation
with Signature. This enforces message integrity
being established between the client and the server.

2. Encryption: GDS enforcing GSI Secure Conversation
with Encryption. This enforces message privacy
being established.

3. None: GDS which does not enforce any security. The
GDS does not provide a secure conversation.

6.2 Client-Side Security

A call is made to each of the above Grid Data Services using
a CAS proxy credential and without using a CAS proxy
credential. In case of using a CAS proxy credential, an
additional overhead for creating the proxy credential is
incurred. The lifetime of the CAS proxy credential is equal
to the time remaining for the expiration of the user proxy
credential, which can last up to 12 hours. However, this
overhead is incurred only once before establishing the
security context initially. Thereafter, the client can make any
number of queries before the proxy credential expires.

The findServiceData method of a GDSF returns the
information about its corresponding data resource. Three
consecutive calls to findServiceData are required: The first
call returns the database schema, the second returns the
activities permitted, and the third returns the product type
(for example, the type of DBMS, say MySQL). The perform
method of a GDS takes the perform document, which
contains the query, and returns the results to the client.

GSI Secure Conversation requires a security context to be
established between the client and the server. The over-
heads incurred in setting up this security context are
analyzed based on the following:

1. Calls made for creating a credential object from the
proxy credential.
2. Calls to the findServiceData and perform methods.
The corresponding time durations are shown in Fig. 8, and,
as observed, the time for creating the credential object is
almost the same regardless of the security enforced by the
GDS. In case of None, there is no such overhead as the

credentials are not used. The first call to the findServiceData
takes longer than the subsequent calls because it includes the
initialization of the GDS regardless of the security type used.

The times recorded in the case of using a CAS proxy
credential and those without using a CAS proxy credential
are almost the same. The reason is that all the security
functions on the client-side remain unchanged except for the
use of a CAS proxy credential instead of a user proxy
credential.

6.3 Server-Side Security

The analysis made on the server-side is based on the
following;:

1. The client credentials accessed using the GT3

infrastructure.

2. Extracting the VO role or Grid identity from the

credential.

3. Mapping a user to a database username and a

password, and creating a JDBC connection.

4. The perform operation.

As shown in Fig. 9, the time for executing the perform
operation remains constant for all the GDSs. It also shows
the time for the credential extraction is very small compared
to the time for executing the perform operation. In Fig. 10,
the credential extraction times are shown clearly, and we
can see that the credential extraction takes more time when
a CAS proxy credential is used for contacting a GDS that
enforces the secure conversation. This is because of the time
taken to obtain the role from the CAS credential. In case of
contacting a nonsecure GDS, there is no difference as no
credential is used.

Fig. 11 shows that there is a constant overhead for
mapping a user to a database username and a password
and then subsequently setting up the database connection.

7 CONCLUSION

In this paper, we enhanced the role-based access control
(RBAC) mechanism of OGSA-DAI by using the Community

164 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.2, APRIL-JUNE 2006

150
M Credential Extraction
0O Perform
100 -
@
E
-]
E
=

50 -

0 T T T T T
Signature Signature Encryption Encryption None with None
with CAS without with CAS without CAS without

CAS CAS CAS
Fig. 9. Server-side security.
2
1.5
B Credential Extraction

g

s 1
£
=

0.5 -

. B H Il
Signature Signature Encryption Encryption None with None
with CAS without with CAS without CAS without

CAS CAS CAS

Fig. 10. Security overheads on the server-side.

Authorization Service (CAS) so that users are granted
memberships on virtual organization (VO) roles for Grid
database services. The resource providers need to maintain
only the mapping information from VO roles to local
database roles; thus, the number of entries to be managed in
the role-map file is reduced dramatically. When users join
or leave a VO, the resource providers do not need to add or
remove their information individually in the role-map files
because the CAS server can just grant or revoke their
memberships on VO roles. Furthermore, the resource
providers can grant or refuse the access requests of specific
users by maintaining their authorization information
separately in the role-map files. This enables the resource
providers to have the ultimate authority over their
resources. Our performance analysis shows that the

proposed RBAC method using CAS provides a scalable
means of access control for databases in the Grid. Without
taking much extra time to set up the security context
between the client and the server, CAS brings significant
advantages to the authorization mechanism of OGSA-DAI
in terms of the manageability for a large number of users
and reduced administration overheads.

In our future work, we will design and implement an
enhanced RBAC model for Data Grids supported by CAS.
Our current approach uses CAS to specify role member-
ships only and the CAS assertions are interpreted by the
resource provider. Our method can be enhanced to have the
CAS assertions include both role memberships and asso-
ciated privileges so that the resource providers do not need
to interpret the CAS assertions. Furthermore, CAS can also

PEREIRA ET AL.: ROLE-BASED ACCESS CONTROL FOR GRID DATABASE SERVICES USING THE COMMUNITY AUTHORIZATION SERVICE

165

5
45 | B Connection
4 O Mapping
3.5 4
A= 3 n
g
‘g 2.5 4
= 2
1.5
1
0.5
0 T T T T T
Signature Signature Encryption Encryption None with None
with CAS without with CAS without CAS without
CAS CAS CAS

Fig. 11. Mapping and database connection.

be used to specify constraints on a role by defining the
service types and actions appropriately.

While our method provides security in terms of access
control, it does not provide privacy protection for the users
because every CAS credential contains information that
identifies the user. We will investigate various privacy
protection mechanisms in the Grid. For example, to protect
the user’s identity, a pseudonym identity can be used in the
CAS credentials.

ACKNOWLEDGMENTS

This research was supported in part by AFRL/Wright
Brothers Institute (WBI).

REFERENCES

[1] R. Alfieri et al., “Managing Dynamic User Communities in a Grid
of Autonomous Resources,” Proc. Int'l Conf. Computing in High
Energy and Nuclear Physics, 2003.

[2] A. Anjomshoaa et al., “The Design and Implementation of Grid
Database Services in OGSA-DAI,” Proc. UK e-Science All Hands
Meeting, 2003.

[3] A.E. Arenas et al., “Toward Web Services Profiles for Trust and
Security in Virtual Organizations,” Proc. Sixth IFIP Working Conf.
Virtual Enterprises, pp. 26-28, 2005.

[4] W.H. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance, and M.
Silander, “Project Spitfire—Towards Grid Web Service Data-
bases,” informational document, Global Grid Forum, 2002.

[5] R. Butler, V. Welch, D. Engert, I. Foster, S. Tuecke, J. Volmer, and
C. Kesselman, “A National-Scale Authentication Infrastructure,”
Computer, vol. 33, no. 12, pp. 60-66, Dec. 2000.

[6] L.M. Camarinha-Matos and H. Afsarmanesh, “A Roadmap for
Strategic Research on Virtual Organizations,” Proc. Fourth IFIP
Working Conf. Virtual Enterprises, pp. 33-46, 2003.

[71 S.Cannon, S. Chan, D. Olson, C. Tull, V. Welch, and L. Pearlman,
“Using CAS to Manage Role-Based VO Sub-Groups,” Proc. Int’l
Conf. Computing in High Energy and Nuclear Physics, 2003.

[8] S. Carmody, “Shibboleth Overview and Requirements,” Shibbo-
loleth Working Group Document, http://shibboleth.internet2.
edu/docs/draft-internet2-shibboleth-requirements-01.html, 2001.

[9] D. Ferraiolo and R. Kuhn, “Role-Based Access Control,” Proc. 15th
Nat’l Computer Security Conf., 1992.

(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

[22]

(23]

D.F. Ferraiolo,].F. Barkley, and D.R. Kuhn, “A Role-Based Access
Control Model and Reference Implementation within a Corporate
Intranet,” ACM Trans. Information and System Security, vol. 2, no. 1,
pp- 34-64, 1999.

I. Foster and C. Kesselman, “The Globus Toolkit,” The Grid:
Blueprint for a New Computing Infrastructure, 1. Foster, C. Kessel-
man, eds., pp. 259-278, Morgan Kaufmann, 1999.

I. Foster and C. Kesselman, “Security, Accounting, and Assur-
ance,” The Grid: Blueprint for a New Computing Infrastructure, 1.
Foster and C. Kesselman, eds. pp. 395-420, Morgan Kaufmann,
1999.

I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” Int'l |. Supercomputer
Applications and High-Performance Computing, vol. 15, no. 3, pp. 200-
222, 2001.

I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke, “Grid Services
for Distributed System Integration,” Computer, vol. 35, no. 6,
pp- 37-46, June 2002.

I. Foster, C. Kesselman, J., M. Nick, and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration,” Open Grid Service Infrastruc-
ture Working Group, Global Grid Forum, 2002.

I. Foster and R.L. Grossman, “Data Integration in a Bandwidth-
Rich World,” Comm. ACM, vol. 46, no. 11, pp. 50-57, 2003.

M. Humphrey, M.R. Thompson, and K.R. Jackson, “Security for
Grids,” Proc. IEEE, vol. 93, no. 3, pp. 644-652, 2005.

M. Jackson, M. Antonioletti, N.C. Hong, A. Hume, A. Krause, T.
Sugden, and M. Westhead, “Performance Analysis of the OGSA-
DAI Software,” Proc. UK e-Science All Hands Meeting, 2004.

J.B.D. Joshi, R. Bhatti, E. Bertino, and A. Ghafoor, “Access-Control
Language for Multidomain Environments,” IEEE Internet Comput-
ing, vol. 8, no. 6, pp. 40-50, Nov.-Dec. 2004.

S. Malaika, A. Eisenberg, and J. Melton, “Standards for Databases
on the Grid,” ACM SIGMOD Record, vol. 32, no. 3, pp. 92-100,
2003.

T. Mayfield,].E. Roskos, S.R. Welke, and].M. Boone, “Integrity in
Automated Information Systems,” technical report, Nat'l Com-
puter Security Center, 1991.

N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist, V.
Welch, I. Foster, and S. Tuecke, “The Security Architecture for
Open Grid Services,” Open Grid Service Architecture Security
Working Group, Global Grid Forum, 2002.

Assertions and Protocols for the OASIS Security Assertion Markup
Language (SAML) Version 1.1, Organization for the Advancement
of Structured Information Standards (OASIS), http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=security,
2003.

166

(24]

(23]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

[39]

[40]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.2, APRIL-JUNE 2006

Extensible Access Control Markup Language (XACML) Version 1.0,
Organization for the Advancement of Structured Information
Standards (OASIS), http://www.oasis-open.org/committees/
xacml, 2003.

Web Services Security: SOAP Message Security Version 1.0, Organi-
zation for the Advancement of Structured Information Standards
(OASIS), http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=wss, 2004.

S. Otenko and D. Chadwick, “A Comparison of the Akenti and
PERMIS Authorization Infrastructures,” http://sec.isi.salford.
ac.uk/download / AkentiPERMISDeskComparison2-1.pdf, 2003.
L. Pearlman, V. Welch, 1. Foster, C. Kesselman, and S. Tuecke, “A
Community Authorization Service for Group Collaboration,” Proc.
Third IEEE Int'l Workshop Policies for Distributed Systems and
Networks, 2002.

L. Pearlman, C. Kesselman, V. Welch, 1. Foster, and S. Tuecke,
“The Community Authorization Service: Status and Future,” Proc.
Int’l Conf. Computing in High Energy and Nuclear Physics, 2003.

C. Ramaswamy and R.S. Sandhu, “Role-Based Access Control
Features in Commercial Database Management Systems,” Proc.
21st Nat'l Information Systems Security Conf., 1998.

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, “Role-
Based Access Control Models,” Computer, vol. 29, no. 2, pp. 38-47,
Feb. 1996.

J. Smith et al., “Distributed Query Processing on the Grid,” Int'l].
High Performance Computing Applications, vol. 17, no. 4, pp. 353-367,
2003.

H. Stockinger, “Distributed Database Management Systems and
the Data Grid,” Proc. 18th IEEE Symp. Mass Storage Systems and the
Ninth NASA Goddard Conf. Mass Storage Systems and Technologies,
2001.

Globus Toolkit Version 4 Grid Security Infrastructure: A Standards
Perspective, The Globus Security Team, http://www.globus.org/
toolkit/docs/4.0/security / GT4-GSI-Overview.pdf, 2005.

M.R. Thompson, A. Essiari, K. Keahey, V. Welch, S. Lang, and B.
Liu, “Fine-Grained Authorization for Job and Resource Manage-
ment Using Akenti and the Globus Toolkit,” Proc. Int'l Conf.
Computing in High Energy and Nuclear Physics, 2003.

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C.
Kesselman, and P. Vanderbilt, Grid Service Specification, Draft 4,
Open Grid Service Infrastructure Working Group, Global Grid
Forum, 2002.

G. Wasson and M. Humphrey, “Policy and Enforcement in Virtual
Organizations,” Proc. Fourth Int’l Workshop Grid Computing,
pp. 125-132, 2003.

G. Wasson and M. Humphrey, “Towards Explicit Policy Manage-
ment for Virtual Organizations,” Proc. Fourth IEEE Int'l Workshop
Policies for Distributed Systems and Networks, pp. 173-182, 2003.

V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J.
Gawor, C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke,
“Security for Grid Services,” Proc. 12th Int’l Symp. High-
Performance Distributed Computing, pp. 48-57, 2003.

V. Welch, T. Barton, K. Keahey, and F. Siebenlist, “Attributes,
Anonymity, and Access: Shibboleth and Globus Integration to
Facilitate Grid Collaboration,” Proc. Fourth Ann. Public Key
Infrastructure R&D Workshop, 2005.

G. Zhang and M. Parasher, “Dynamic Context-Aware Access
Control for Grid Applications,” Proc. Fourth Int’l Workshop Grid
Computing, pp. 101-108, 2003.

Anil L. Pereira received the BE degree in
electronics engineering from Bombay University,
India, in 1999 and the MS degree in computer
science from Wright State University, Dayton,
Ohio, in 2002. He is a doctoral student in the
Department of Computer Science and Engineer-
ing at Wright State University, Dayton, Ohio. His
current research interests include Grid comput-
ing, databases, and XML.

Vineela Muppavarapu received the bachelor’s
degree in information science and technology in
2003 from Nagarjuna University, India, and the
master's degree in computer science in 2005
from Wright State University. She is currently a
PhD candidate in the department of Computer
Science and Engineering at Wright State Uni-
versity. Her current research areas include Grid
computing and databases.

Soon M. Chung received the BS degree in
electronic engineering from Seoul National Uni-
versity, Korea, in 1979, an MS degree in
electrical engineering from Korea Advanced
Institute of Science and Technology in 1981,
and a PhD degree in computer engineering from
Syracuse University, New York, in 1990. He is
currently a professor in the department of
Computer Science and Engineering at Wright
State University. His current research interests
include database, data mining, Grid computing, text mining, XML, and
parallel and distributed processing. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

