Active Authorization Rules for Enforcing
Role-Based Access Control and its Extensions*

Raman Adaikkalavan and Sharma Chakravarthy
Information Technology Laboratory and Department of Computer Science & Engineering
The University of Texas at Arlington
{adaikkal, sharma} @cse.uta.edu

Abstract

Dynamically monitoring the state changes of an underly-
ing system, detecting and reacting to changes without delay
are crucial for the success of any access control enforce-
ment mechanism. With their inherent nature, active (Event-
Condition-Action or ECA) rules are prospective candidates
to carry out change detection and to provide access control.
Current systems or models do not provide a flexible mecha-
nism for enforcing Role-Based Access Control (RBAC) stan-
dard and its extensions in a seamless way, and do not adapt
to policy or role structure changes in enterprises, which are
indispensable to make RBAC usable in diverse domains.

In this paper we will show how On-When-Then-Else au-
thorization rules (or enhanced ECA rules) are used for en-
forcing RBAC standard and its extensions such as general-
ized temporal RBAC, control flow dependency constraints,
privacy-aware RBAC, and so forth in a seamless way. Fur-
thermore, these rules also provide active security. Large
enterprises have hundreds of roles, which requires thou-
sands of rules for providing access control, and generating
these rules manually is error-prone and a cognitive-burden
for non-computer specialists. Thus, in this paper, we will
discuss briefly how these authorization rules can be auto-
matically (or semi-automatically) generated from high level
specifications of enterprise access control policies. We will
also discuss the implementation using Sentinel+, an active
object oriented system.

1 Introduction

With the ever growing impact of computing systems on
our daily activities, security and privacy have a greater role
to play. Role-Based Access Control [18, 29], where ob-
ject accesses are controlled by roles (or job functions) in
an enterprise rather than a user or group, has proven to be

*This work was supported, in part, by NSF grants IIS-0326505 and
11S-0123730.

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

a positive alternative to traditional access control mecha-
nisms. RBAC does not provide a complete solution for all
access control issues, but with its rich specification it has
proven to be cost effective [26] by reducing the complex-
ity in authorization management of data. Lately, RBAC has
been standardized [21] and is being extended for handling
various constraints such as temporal [22, 23], context-aware
[25, 5], privacy-aware [19], control flow dependency [23],
and so forth, so that it can support diverse domains in au-
thorization management of data.

Even though lot of work has been carried out in the spec-
ification of RBAC and its extensions, there are still lots of
work that need to be carried out in enforcing these spec-
ifications in a seamless way, which is essential for mak-
ing RBAC better-suited for enterprises in diverse domains.
Enterprises can formalize their access control (or security)
policies using RBAC or its extensions that provide addi-
tional constraints. Enterprises in different domains have
different requirements; for example, health care domain
requires extensive temporal [22] and context-aware con-
straints (e.g., emergency room, intensive care).

Current systems and models do not provide a general-
ized approach for enforcing RBAC and its extensions in a
seamless manner. For example, some systems just support
separation of duty (SoD) relations, but without role hierar-
chies. Similarly they do not adapt to policy or role struc-
ture changes in enterprises, which is indispensable for mak-
ing RBAC usable. For example, when an enterprise wants
to change its working hours of a role, then the low level
semantic descriptors! have to be modified. In the current
systems it is a burden on the administrator to modify and
maintain these low level semantic descriptions such as au-
thorization rules, manually.

Taking timely actions based on the state changes of the
underlying system over a period of time and alerting the ad-
ministrator regarding the malicious activities will comple-

'In this paper we refer to authorization rules, java classes, and other
mechanisms that are used to enforce the access control as low level seman-
tic descriptors.

YF]',F.

COMPUTER

SOCIETY

ment the access control system. For example, all the con-
straints that are satisfied by an user when activating a role
should hold TRUE until the role is deactivated. When any
one of the constraints become FALSE before deactivation,
then that role should be deactivated. Prevention of mali-
cious activities in the system plays a major role while pro-
viding security. Enterprises require the detection and pre-
vention of malicious activities from causing damage, with-
out human intervention. Furthermore it will ameliorate the
security of the underlying system so that enterprises can be
more secure. For example, when access requests by unau-
thorized roles for some files are more than a certain number
of times within a duration, an internal security alert is trig-
gered and some critical authorization rules are disabled” and
the administrators are alerted.

Existing systems (or models) [9, 30, 32, 2, 31, 13, 17, 14]
enforcing RBAC are custom-implemented, domain-specific
and are confined to particular form of constraints. All these
systems neither enforce complete RBAC standard nor pro-
vide a generalized approach for enforcing it. Furthermore,
they do not provide an approach for enforcing RBAC exten-
sions in a seamless manner. Thus, systems (or models) that
need to enforce RBAC in a generalized manner should be
able to provide uniform and transparent handling of RBAC
standard and its extensions, adapt to policy and role struc-
ture changes in an enterprise, and support high level speci-
fication of enterprise access control policies.

In this paper we will address the following; i) intro-
duce Event-based active authorization rules or OWTE rules,
i) synthesis of active authorization rules for access control
enforcement, iii) discuss how RBAC standard and its ex-
tensions are enforced in a seamless way, iv) how active se-
curity is provided, and v) show how initial set of rules are
created using Sentinel+ based on an enterprise access con-
trol policy and show how the rules are regenerated when
there is a change in the access control policies. Sentinel+ is
an enhanced version of Sentinel [15, 12], an active object-
oriented system.

The rest of the paper is as follows. Brief introduction
for RBAC is given in Section 2. Event-Based active au-
thorization rules are introduced in Section 3. Synthesis of
active authorization rules for access control enforcement,
rules illustrating the enforcement of RBAC, its extensions,
and active security are provided in Section 4. Implemen-
tation, generation and regeneration of rules are briefly ex-
plained in Section 5. Related work is presented in Section
6. Conclusions are provided in Section 7.

2 Role-Based Access Control

NIST RBAC Standard [21] is defined in terms of
four model components and their restricted combinations:
1) Core RBAC: defines relationships between three basic

2 Actions are predefined by the security administrators.

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

elements (i.e., users, roles, permissions). Permissions con-
sist of objects and associated operations that can be per-
formed on those objects. 2) Hierarchical RBAC: defines
hierarchies between roles. “A hierarchy is mathematically
a partial order defining a seniority relation between roles,
whereby senior roles acquire the permissions of their ju-
niors, and junior roles acquire the user membership of their
seniors” [21]. 3) Static Separation of Duty (SoD) Relations:
used to enforce conflicts of interest policies which may arise
as a result of user gaining permissions to conflicting roles.
Static SoD relations prevent these conflicts between roles
by placing constraints on the assignment of users to roles.
and 4) Dynamic SoD Relations: these are similar to the
static SoD that limits user permissions, but they differ by
the context in which the constraints are placed. A user can
be assigned to M (i.e., two or more) mutually exclusive
roles, but cannot be active in A/ or more mutually exclusive
roles at the the same time, where N’ > 2 and N < M.

3 Event-Based Active Authorization Rules

We will introduce On-When-Then-Else or OWTE autho-
rization rules, which are Event-Condition-Action or ECA
rules enhanced with additional functionalities such as alter-
native actions and enhanced operator semantics to support
authorization management of data. (Note: In this paper we
will use active authorization rules, active rules, authoriza-
tion rules, and OWTE rules interchangeably.)

Active authorization rules consist of five components
and they are 1) Rule name (or Rygme), 2) “O” an event
(or an occurrence of interest) &; that triggers a set of rules,
3) “W” checks the conditions < Cy,Cs,...C,> when an
associated event is triggered, 4) “T” triggers a set of ac-
tions < A1, As, ... A,> when the conditions evaluate to
TRUE, and 5) “E” triggers a set of alternative actions
< AA1, AA,, ... AA,> when the conditions evaluate to
FALSE. An event occurrence can trigger rules that can be
in the form of multiple rules, nested/cascaded rules, prior-
itized rules, and causality rules. OWTE rules are specified
as shown below

RULE [Rpame
ON Event < £;>
WHEN < C1,Ca,...Cpn>
THEN < Aq,As, ... A,>
ELSE < AA;, AAz, ... AA,>]
Simple Events: An event is an occurrence of interest in an

application or a system. All the events that are predefined
in the underlying system (i.e., domain-specific) are known
as primitive or simple events. File operations (i.e., opening,
closing, etc.) in operating systems, method execution by
objects in object oriented systems, data manipulations such
as insert, delete and update in relational database manage-
ment systems, system clock of the underlying system (i.e.,
absolute or relative temporal events), external events (i.e.,
based on the data from sensors), and so forth are all sim-

YF]',F.

COMPUTER

SOCIETY

ple events. For instance, below shown is an event &; that
is detected when a function F is invoked by an object Uf.
Parameters (< P.A;, PAs, ... PA,>) are used by OWTE
rules for checking conditions and performing actions.

Event &, =U— F(< PA1, PAy, ... PA,>)

Some of the above mentioned events are used to enforce
various functionalities of RBAC. For example, when a user
moves from one location to another, external events can
trigger some rules that can “activate/deactivate” roles.

Conditions: Multiple conditions i.e., < C1,Ca,...Cp>
can be associated with an event. These conditions are eval-
uated when an event occurs. For example, when an user
tries to open a protected file in a pervasive computing do-
main, the system can check whether the network is secure
or insecure and can take decisions accordingly.

Actions and Alternative Actions: Once events are
detected and all the associated conditions are evalu-
ated to TRUE, predefined system critical actions (i.e.,
< Ay, As, ... A,>) are performed. For example, when
an internal security is triggered, the system has to take the
following actions; i) generate reports and alert administra-
tors, ii) deactivate a set of roles, iii) demote certain roles’
permissions, and iv) block access requests or impose cer-
tain access restrictions. On the other hand, current event
processing models do not handle when the conditions are
evaluated to FALSE. In OWTE rules, alternative actions
< AA;, AAs, ... AA,> are triggered when the condition
evaluation returns FALSE. Alternative actions are critical in
authorization management of data. For example, when the
user is in the insecure network then the protected file access
should be denied.

Rule 1 (Rule with a Simple Event) Create a rule that
checks for permissions when user Bob tries to open a file
“patient.dat” using the command 3 “vi (patient.dat)”.

EVENT E, = Bob — vi(patient.dat)
RULE [S1
ON E;

WHEN if (checkaccess(Bob, patient.dat) is TRUE)
return TRUE; else return FALSE;

THEN < allowopening patient.dat >

ELSE raise error “insufficient privileges”]

When user Bob opens the file i.e., O, permissions are
checked using “checkaccess” i.e., W; if Bob has the permis-
sion (i.e., if condition returns TRUE), Then file is opened,
Else error is raised.

Complex Events: In addition to simple events, complex
events are often required in many situations. Using complex
or composite events additional constraints can be placed on
event occurrences while providing access control. Complex
events are composed of more than one simple or complex

3We have used vi(patient.dat) to indicate that the file is opened using vi
editor. This is just for understanding and it is not the case always.

event using event operators [1, 11]. Some of the event op-
erators are AND, OR, NOT, SEQUENCE, Periodic, Ape-
riodic, and PLUS. We have enhanced the event operators
so that they can support access control. We have explained
some of these operators below in the context of RBAC and
its extensions even though all of them are critical in access
control.

SEQUENCE (F1, E5): When two events* E; and E5 oc-
cur (i.e., “O”), a SEQUENCE event is detected and the cor-
responding rules are triggered. With this event operator, £y
should occur before F5. The condition that a user should
be active in role A to activate role B (i.e., prerequisite roles
in RBAC) can be specified using this event operator.

OR (F;, E5): This event is detected when any one of
the two events F; and Es occur and the corresponding rules
are triggered.

PLUS (F1, A): This event is a relative temporal event.
A simple or composite event occurrence starts a PLUS event
(i.e., at time “I™). After the specified time interval or dura-
tion “A” (i.e., at time “T"+ A”) the PLUS event is detected.
For example, a user can be deactivated from a role after a
certain duration “A” using this operator.

APERIODIC (F1, E», E3): This event is detected when-
ever event Fy occurs between two other events F; and Fs.
Event F; starts the Aperiodic event and F5 terminates the
same. Event occurrences of Fy cannot detect an Aperiodic
event before the occurrence of event F; or after F’5. Only
when event F; occurs within £ and E3, an Aperiodic event
is detected and the corresponding rules are triggered. For in-
stance, using Aperiodic a role can be allowed to be enabled
only between a transaction.

PERIODIC (F4, 7, E3): This event is similar to Aperi-
odic event except that it is detected at a regular time interval
“7” between two other events F; and Es. This event op-
erator can be used to periodically monitor the underlying
system and generate reports.

All the above mentioned operators are critical and are
necessary for providing authorization management of data.
Apart from the examples provided, all the operators are also
used for supporting various other functionalities of RBAC.
Even though there are other operators, we have explained
only a few in the context of RBAC and its extensions. A
rule involving event operator PLUS is shown below.

Rule 2 (Rule with Complex Event) Create a rule for re-
stricting user Bob from keeping the file “patient.dat” open
Sfor more than 2 hours (i.e., A). In other words, close the
file forcefully after 2 hours.

RULE [C;
ON PLUS(E, 2 hours)
WHEN TRUE

THEN < Closefile >]

“Events are represented as E; in all the operators and they can be both
simple and complex.

YF]',F.

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)

COMPUTER
1084-4627/05 $20.00 © 2005 IEEE

SOCIETY

In the above rule, PLUS event’ is started when user Bob
opens the file “patient.dat” using the “vi” editor (i.e., event
FE; from Rule 1). This event is detected when the duration
A (i.e., 2 hours) is elapsed, and the file is closed forcefully.

4 Synthesis of Active Authorization Rules for
Access Control Enforcement

In this section we show the mapping between the basic
elements in RBAC and its extensions and the OWTE rule
specification. In doing so, we are establishing OWTE rules
as an enforcement mechanism for the realization of access
control policies. In addition we will demonstrate the fol-
lowing; 1) rules enforcing RBAC, 2) rules enforcing RBAC
extensions, and 3) rules supporting active security.

4.1 Entity Relationship Modeling

RBAC contains three basic element sets namely users
(or U), roles (or R), and permissions (or P). In addition
to these basic elements, RBAC extensions have additional
elements such as “purpose” and “object-policy” in privacy-
aware RBAC [19] and so forth. I/ represents humans, user
applications and so forth, R represents a job function in
an enterprise, P represents the operations that can be car-
ried out on objects by R, and “purpose” represents business
purposes®. All the basic elements are considered as entities
as they represent something that has a separate existence or
conceptual reality. All the users (i.e., humans, user agents,
etc.) and roles (e.g., manager, cashier, etc.) in an enterprise
are modeled as entity instances of the basic entities ¢/ and
R, respectively.

Entities &/ and R have M:N (i.e., many-to-many) rela-
tionship. Similarly, entities can be associated with other
entities by the means of role-permission assignments, role
hierarchies, purpose hierarchies, and so forth. Thus, asso-
ciations between the entities represents their relationships
forming an Entity Relationship [28] like model. In this pa-
per we will consider only the entities &/ and R and their
relationships while discussing our approach. On the other
hand, constraints such as separation of duty relations, tem-
poral, context-aware, active security, and others are placed
on the relationships 7 so that only entity instances that sat-
isfy the constraints are allowed to take part in the relation-
ship. For example, constraints that are placed on user-role
activation are checked when an instance of entity ¢/ needs
to take part in the relationship with an instance of entity R.

4.2 Mapping OWTE and RBAC Elements

Active authorization rules are triggered when an event
(i.e., “O”) is detected. In RBAC, only instances of entity I/

5In Rule 2, the PLUS event in the “ON” clause can be a named event
as in Rule 1 i.e., “ON E3”, where Event E5 = PLUS(F1, 2hours).

The purpose for which an operation is executed [19].

Tthese are similar to descriptive attributes [28] in ER model but for
different purposes

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

can trigger simple events as they alone can request accesses,
assignments, activations, and so forth. On the other hand,
temporal events, external events such as locations from sen-
sors, and so forth can trigger simple events with RBAC ex-
tensions and active security. For example, when an user
(i.e., instance of Uf) tries to activate a role, it will triggering
an event (i.e., “O”). Similarly, complex events are always
triggered by simple events as they compose more than one
simple or complex event.

All the constraints that can be specified in RBAC and its
extensions can be enforced by placing them appropriately
either in the condition part (i.e., “W”) of the rule or by using
complex event operators. For example, when a user tries to
activate a role by triggering an event, conditions will check
whether U has the permissions to be active in R. On the
other hand, constraints such as prerequisite roles, maximum
number of active roles for an user, how long a user can be
active in a role, etc. can be specified using complex events.

When an event is detected and all the constraints are
satisfied, the user should be allowed to be perform the re-
quested operation. When “W” returns FALSE alternative
actions are taken and the user request is denied.

Thus, instances of entity U/, clock-events, etc. act as
events, constraints are placed using complex events and
conditions, and operations such as allowing/denying ac-
cess requests, assignments, activations/deactivations, and so
forth act as the actions and alternative actions.

4.3 Enforcement using Active Rules

In this section we will demonstrate the use of active rules
for enforcing certain functionalities of RBAC and its exten-
sions, and for providing active security. On the other hand,
OWTE rules shown in this section are not created manually
by administrators. Generation of authorization rules along
with their implementation are discussed in Section 5.

All the active authorization rules that are generated form
a rule pool. Three kinds of rules are available in the rule
pool and they are i) administrative rules, ii) activity control
rules, and iii) active security rules. Administrative rules are
used with high level specification of access control policies,
activity control rules are used to control the activities that
can be performed by the instances of ¢/, and active security
rules are used for monitoring the state changes and taking
preventive measures. Rules are generated at different gran-
ularities within each classification. Specialized rules that
are specific to an instance of U (e.g., Bob), localized rules
are specific to a particular role and are created based on the
role properties, and globalized rules are generalized and are
not specific to any role.

Let us take three simple scenarios; 1) user Jane should
be restricted to a maximum of five active roles at a time,
2) role Programmer can be activated only by five users at a
time, and 3) user Jim needs to be assigned to a role. Au-

YF]',F.

COMPUTER

SOCIETY

thorization rule corresponding to scenario 1 is a specialized
rule as it restricts a particular user Jane from being active
in more than five roles. On the other hand, for scenario 2,
the rule should be based on the role as there can be many
users who can be active in a role. Thus, a localized rule that
correspond to a particular role is created to limit the num-
ber of active users. On the contrary, for scenario 3, user Jim
should be assigned to a role and it can be any role. This
rule can be globalized so that it can control all the user-
role assignments (i.e., same rule is invoked with different
parameters). Rules corresponding to scenarios 1 and 2 are
activity control rules whereas 3 is an administrative rule.

4.3.1 Rules llustrating RBAC Enforcement

We will demonstrate the enforcement of core, role hierar-
chies, static SoD, and dynamic SoD with the following ac-
tive authorization rules (due to lack of space we will only
provide some sample rules that demonstrates the ability of
OWTE rules).

Rule 3 (Add Active Role) Assume that a user is assigned
to role R1. In order to perform some operations that are
allowed for RI he has to activate R1. The rule activates R1
by adding R1 to the active role set of that user session.

EVENT FEs = user — AddActiveRoleR1(sessionld)

When the user tries to activate role R1, the function “Ad-
dActiveRoleR1” is invoked with the users session identifier
(or sessionld) as its parameter. This raises event Fo, which
in turn triggers the rule that checks whether the user can be
activated in role R1. Below shown are four rules that corre-
spond to different role properties;

RULE [AAR,
ON E>
WHEN (user IN userL) && (sessionld IN sessionL) &&
(sessionld IN checkUserSessions(user)) &&
(R1 NOT IN checkSessionRoles(user)) &&
(checkAssignedR 1(user) IS TRUE)
addSessionRoleR 1(sessionId)
raise error “Access Denied Cannot Activate”]

THEN
ELSE

Rule AAR; is used when role R1 does not take part
in any relationship (i.e., core RBAC) such as hierarchies
and SoD relations. First it checks whether user is avail-
able in list userL®, then it checks whether the sessionld ex-
ists in list sessionL. and whether the session is owned by
that user. Once verified, it checks whether the user is as-
signed to role R1 using the function “checkAssignedR1”
as a user should be assigned in order to activate any
role. It then checks whether the role R1 is not acti-
vated in that session using “checkSessionRoles”. Once
all the above conditions are verified, role R1 is activated
in that user session by invoking the function “addSes-
sionRoleR1” and adding it to the active role set’.

8We assume that users lists, role lists, session lists that contain user, role
and session information, respectively, are already available. In addition we
also assume that other functions that are used in the rule are also available.
9The set containing all the active roles for an user.

RULE [AAR:2

ON E>

WHEN (user IN userL) && (sessionld IN sessionL) &&
(sessionld IN checkUserSessions(user)) &&
(R1 NOT IN checkSessionRoles(user)) &&
(checkAuthorizationR 1(user) IS TRUE)

addSessionRoleR 1 (sessionld)

raise error “Access Denied Cannot Activate”]

THEN
ELSE

Rule AAR; is used when role R1 takes part in general
role hierarchies. All the conditions are same as in rule
AAR; except one condition that checks whether the user
is authorized to that role using the function “checkAutho-
rizationR1” instead of “checkAssignedR1” . This is carried
out as the user can activate role R1 if he is assigned to role
R1 or to any of its senior role.

AAR3

ON FE>

WHEN (user IN userL) && (sessionld IN sessionL) &&
(sessionld IN checkUserSessions(user)) &&
(R1 NOT IN checkSessionRoles(user)) &&
(checkAssignedR1(user) IS TRUE) &&
(checkDynamicSoDSet(user, R1) IS TRUE)

addSessionRoleR 1(sessionld)
raise error “Access Denied Cannot Activate”]

RULE [

THEN
ELSE

Rule AAR3 shown below is used when role R1 takes
part in a dynamic SoD relation without hierarchies. This
rule is similar to rule A AR but with additional conditions
for checking whether the dynamic SoD constraints are satis-
fied. Function “checkDynamicSoDSet” checks whether the
addition of role R1 to the old active role set of the user sat-
isfies the mutual exclusive constraints discussed in Section
2.

RULE [AAR4

ON E>

‘WHEN (user IN userL) && (sessionld IN sessionL) &&
(sessionld IN checkUserSessions(user)) &&
(R1 NOT IN checkSessionRoles(user)) &&
(checkAuthorizationR 1(user) IS TRUE) &&
(checkDynamicSoDSet(R1) IS TRUE)

addSessionRoleR 1 (sessionld)

raise error “Access Denied Cannot Activate”]

THEN

ELSE

Rule AAR, is used when role R1 takes part in dynamic

SoD relation with hierarchies. This rule is similar to AAR >

but with additional conditions for checking whether dy-
namic SoD constraints are satisfied, similar to AAR 5.

Similar to all the above scenarios activating a role that
has static SoD relation will use rule AAR if role R1 takes
part in role hierarchies or rule AAR; is used if it does not
take part.

Rule 4 (Cardinality Constraints) Restrict the number of
users who can be active in a role at the same time. For
instance, there is only one person in the role of a university
president. Below shown rule allows only five users to be
active in role R1 at a time. Similarly, the number of roles a
user can be active at the same time can also be restricted.

EVENT
EVENT

E3 = addSessionRoleR1(sessionld)
E4 = removeSessionRoleR1(sessionld)

YF]',F.

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

COMPUTER
SOCIETY

RULE [CCy

ON E3

WHEN if (CardinalityR1(INCR) IS TRUE) return TRUE

else return TRUE

THEN perform action <add role R1 to session with sessionld>

ELSE raise error “Maximum Number of Roles Reached”]
RULE [CCs

ON E4

WHEN TRUE

THEN CardinalityR1(DECR)]

Cardinality constraint for the above mentioned scenario
requires to restrict the role activation so that no more than
5 users are activated. When the user tries to activate role
R1 it triggers any one rule from AAR; ... AAR, based on
the access control policy and role property, since these rules
are used to activate the role R1. When the user satisfies all
the conditions then the function “addSessionRoleR1” is in-
voked in order to add the role R1 to active role set of that
user session. This function raises event 3 which in turn
raises rule CC; shown above. It checks whether the max-
imum limit of 5 users is reached by invoking the function
“CardinalityR1” with value INCR indicating the addition of
a user. If the maximum number of users for role R1 is not
reached, then the role is activated, else the error “Maximum
Number of Roles Reached” is raised by rule CC;. Similarly,
when the role R1 is deactivated event F is detected and the
function “CardinalityR1” is invoked with DECR as the pa-
rameter, which reduces the count of the number of users
active in role R1 by one so that new users can be activated.

Rule 5 (Check Access) Check whether the subject (i.e., in-
stance of U) of a given session is or is not allowed to per-
form a given operation (e.g., read, write, etc.) on a given
object (e.g., .dat file, etc.)

EVENT E¢ = wuser — checkAccess(sessionld, operation, object)
RULE [CA;
ON FEg

WHEN (sessionld IN sessionL) &&
(operation IN opsL) && (object IN objL) &&
(For ANY role IN getSessionRoles(sessionld)
(IF checkPermissions(operation,object, role) IS TRUE
return TRUE))
THEN < allow Access >
ELSE raise error “Permission Denied”]

Rule CA, is triggered when the user tries to perform any
operation on any object (i.e., event Ejg). The rule allows the
user requested operation only when at least one role from
his active role set for that session has the required permis-
sion. This is carried out by the “For” statement that retrieves
all the roles from the active role set and checks whether at
least one role has the required permission using the “check-
Permissions” function. Above shown rule is the same for all
roles that do or do not take part in any type of relationships.

4.3.2 Rules Illustrating RBAC Extensions Enforce-
ment

Even though RBAC has been extended extensively with var-
ious constraints, due to lack of space we demonstrate only

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

temporal and control flow dependency constraints. General-
ized Temporal RBAC [22, 23] provides an exhaustive set of
temporal constraints. Control flow dependency constraints
often occur in task oriented systems and are stricter forms
of dependency constraints [23]. We show how a subset of
time based SoD and post-condition constraints from [23]
are supported.

Rule 6 (Disabling Time SoD) Tiwo roles from a given role
set RS cannot be disabled at the same time in the inter-
val (I, P) (NOTE: (1, P) corresponds to ([begin, end], P),
where P is a periodic expression denoting an infinite set
of periodic time instants, and [begin, end] is a time in-
terval denoting lower and upper bounds that are imposed
on instants in P). Role disabling is of main concern where
availability is a primary concern [23]. For instance, both
“Nurse” and “Doctor” roles cannot be disabled at the same
time within the interval ([begin, end), P)'°.

EVENT StartD = event corresponding to date expression
EVENT EndD = event corresponding to date expression
EVENT ET, = roleDisableNurse()
EVENT ET> = roleDisableDoctor()
EVENT ET3; = OR(ET:, ET»)
EVENT ET, = Aperiodic([StartD], ETs, [EndD])
EVENT ETs = Aperiodic([10:00:00/ * / x /%], ETj,
[17:00:00/ / * /«])

RULE [TSOD;

ON ET,

WHEN (if roleDisableNurse == TRUE
((if checkActiveDoctor() IS TRUE) return TRUE
else return FALSE)
else if roleDisableDoctor == TRUE
((if checkActiveNurse() IS TRUE) return TRUE
else return FALSE))
(if roleDisableNurse == TRUE Then disableNurse()
else if roleDisableDoctor == TRUE Then disableDoctor())
ELSE (if roleDisableNurse == TRUE
raise error “Denied as Doctor Already Disabled”
else if roleDisableDoctor == TRUE
raise error “Denied as Nurse Already Disabled”]

THEN

Rule 7SOD; provides time based SoD constraints,
which does not allow both the roles “Nurse” and “Doctor”
to be disabled at the same time in the interval (I, P). We
have represented the interval / and P as [StartD, EndD]
and ([10:00:00/#/*/*], [17:00:00/*/*/*]), but they can any
type of simple or complex event. For example, [StartD] can
be the start of the year and [EndD] can be the end of the
year. Event E'T7 is raised whenever the role “Nurse” needs
to be disabled. This will trigger the event ET3 that is an
OR event, which propagates the same to both the Aperiodic
events ETy and ET5. Event ET) triggers the rule 7SOD;
when an user tries to disable the role Nurse within 10 a.m.
and 5 p.m. and within [begin, end]. Rule 7SOD; deter-
mines whether the role “Nurse” can be disabled by check-
ing whether the role “Doctor” is active, if so it allows to

101 this example we consider P as 10 a.m. to 5 p.m. every day. 10
a.m. every day is represented as [10:00:00/#/#/*], where the general form
is “24h:mi:ss/mm/dd/yyyy”. Periodic expression P in GTRBAC can be
represented using event operators in active rules

YF]',F.

COMPUTER

SOCIETY

disable role “Nurse” else it raises an error. In the similar
way disabling of role “Doctor” is addressed. All the inter-
nal conditions such as checking with role lists are not shown
in the above rule.

Rule 7 (Deactivating a Role after A) Deactivate an acti-
vated role after a duration A. This is similar to limiting car
parking to a fixed number of hours at one time [22]. Below
shown rules restrict the duration constraints on a per user-
role basis, where a role R3 is deactivated after the specified
maximum duration in one activation by user Bob.

EVENT ETs
EVENT ETs
EVENT ET;

Bob — addActiveRoleR3(sessionld)
start EventETy7 (sessionld)
PLUS(ETs, A)

RULE [AAR5

ON ETs

WHEN ...

THEN (...) startEvent T (sessionld)
ELsE ...]

RULE [7S8SOD,

ON ET;
WHEN TRUE
THEN deactivateRoleR3(sessionld)]

Event E'T} is raised whenever the user Bob activates the
role R3. This triggers rule A AR5 which in turn raises the
event F/'Ts. We have not shown all the other clauses of rule
AARs5, intentionally. Event ETj starts the PLUS event
ET;. After the duration A event ET% is detected and rule
TSODs5 is raised, which deactivates the role R3. Event
ET}5 cannot be used to start the PLUS event E7% as event
ET7 should be started only after the role R3 is activated.

Rule 8 (Post-condition CFD) If an event occurs, then the
other event must also occur. For instance, if role “SysAd-
min” role is enabled then role “SysAudit” must also be en-
abled, other wise both the roles should not be enabled.

EVENT ETg
EVENT ETy
EVENT ETyo
EVENT ETy,

enableRoleSysAdmin()

enableRoleSysAudit()
disableRoleSysAdmin()
disableRoleSysAudit()

RULE [CFD;
ON Eg
WHEN (...)
THEN (...) enableRoleSysAudit()
ELSE raise error “Cannot Activate SysAdmin”]

RULE [CFDs
ON Ey
WHEN (...)
THEN (...)
ELSE disableRoleSysAdmin() &&
raise error “Cannot Activate SysAudit”]

As shown above, when the role “SysAdmin” has to be
enabled, it will trigger event E'T3 which will trigger rule
CFD;. This rule enables the role “SysAdmin” and tries to
enable role “SysAudit” by triggering event E'Ty. This event
triggers rule CF D4 which in turn enables the role “SysAu-
dit” when all conditions are met. When it cannot enable

the role “SysAudit” it disables the role “SysAdmin” by in-
voking the function “disableRoleSysAdmin”. As function
“enableRoleSysAudit” is the only function that can enable
the role “SysAudit” OWTE rules overcomes the problems
faced by [23].

4.3.3 Rules Illustrating Active Security

Active security is critical as it detects and monitors the state
changes of the underlying system to take timely actions.

Rule 9 (Transaction Based Activation) Any junior em-
ployee is allowed to activate the role “JuniorEmp” ONLY
IF the role “Manager” is activated. On the other hand, if
the role “Manager” is deactivated, then role “JuniorEmp”
should also be deactivated.

EVENT ETio
EVENT ETi3
EVENT ETi4
EVENT ETis
EVENT ETi6
EVENT ETi7
EVENT ETig

user — addActiveRoleManager(sessionld)
user — addActiveRoleJunior Emp(sessionld)
user — deactivate RoleManager(sessionld)
user — deactivate RoleJunior Emp(sessionld)
startEventETi¢(sessionld)

start BEvent ET7(sessionld)

Aperiodic(ETye, ET 3, ET17)

RULE [ASEC,
ON E1o
WHEN (...)
THEN < activateRoleManager >
<startEvent BT g (sessionld) >
ELSE raise error “Permission Denied”]
RULE [ASEC:
ON FE14
WHEN (...)
THEN < deactivateRoleManager >
if activeJuniorEmp() IS TRUE
< deactivateRoleJunior Emp >
startEvent E'T" 7 (sessionld)
ELSE raise error “Permission Denied”]
RULE [ASEC3
ON FEis

WHEN (...) return (TRUE|FALSE))
THEN < activateJunior Emp >
ELSE raise error “Permission Denied”]

Event ET35 and ET}3 are raised when roles “Manager”
and “JuniorEmp” have to be activated, respectively. Simi-
larly, event E'I14 and E'T)5 are raised when the roles have
to be deactivated. On the other hand, event ET¢ is raised
after role “Manager” is activated and event £777 is raised
after the role “Manager” is deactivated. As shown, event
ETy, triggers rule ASEC, which in turn activates the role
and raises event F'T3¢. Similarly, event E77,4 triggers rule
ASEC5 which in turn deactivates the role and raises event
ETy7.

Let us assume that a user is trying to activate role
“JuniorEmp”. It will raise event FT}3, which does not
take any action as the Aperiodic event ET}g is not yet
started. Activating role “Manager” triggers event E7To
which checks for the necessary conditions and activates the
role, and raises event E7T}g that in turn starts the Aperi-
odic event ET15. Now, when an user tries to activate role
“JuniorEmp”, it raises event F'j3 which in turn raises the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

Aperiodic event E7T7g that has been already started. This
triggers the rule ASEC3 which in turn checks whether all
the constraints are satisfied in the “W” clause and returns
TRUE or FALSE. If it returns TRUE, role “JuniorEmp” is
activated using < activateJuniorEmp >. On the other
hand, deactivating role “Manager” raises event FT14. Af-
ter deactivation, role “JuniorEmp” is deactivated and event
FET7 is raised, which in turn terminates the Aperiodic event
FETig. As the event E'TY; acts as a terminator it stops the
Aperiodic event T g and the future activation of role “Ju-
niorEmp”, until the role “Manger” is activated again.

4.4 Summary and Advantages of OWTE Rules

In this section we have explained the synthesis of active
authorization rules for enforcing RBAC and its extensions.
We have demonstrated the seamless approach for support-
ing RBAC, its extensions and active security with various
examples and rules. In addition to the above, privacy-aware
RBAC [19] can also be enforced using OWTE rules as it
also follows the Entity Relationship model described be-
fore.

5 Prototype Implementation

Sentinel [15, 12] is an active object oriented system that
supports event based rule capability i.e., Event-Condition-
Action model, using a uniform framework. In Sentinel, a
reactive object is an object that has traditional object defi-
nition plus an event interface and a notifiable object is ca-
pable of being informed of the occurrence of some event.
The event interface lets the object designate some or all of
reactive object methods as primitive event generators. To-
gether, both the kind of objects enable asynchronous com-
munication with the rest of the system. Sentinel includes
an event detector that is responsible for processing all the
notifications from different objects and eventually signal-
ing to the rules that some event has occurred triggering
them. In addition, external monitoring module supports ex-
ternal events such as those from sensors, thus, supporting
location/context-aware events. Sentinel+ is an enhanced
version of Sentinel that supports OWTE rules. In our im-
plementation, users are allowed to provide high level spec-
ification of enterprise access control policies (ACPs) us-
ing RBAC Manager'!, a graphical tool (i.e., a widget tool
kit). In RBAC Manager, ACPs are specified using various
widgets which takes the form of a Entity-Relationship like
model as described in Section 2.

Enterprise XY Z described below will be used in this
section to explain user specification, rule generation and
implementation. In enterprise XY Z, ACPs are formulated
using NIST RBAC with static SoD with role hierarchies.
It consists of two major departments “purchase” and “ap-

'We don’t explain the GUI due to space constraints. In essence, the
policy shown in Figure 1 using a drag-n-drop mechanism.

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

proval”’. Purchase department is authorized to place the
“purchase order” for equipments or other materials required
by the enterprise. Approval department is the one that can
authorize the purchases. Thus, static SoD relations are re-
quired, since the same person placing purchase orders can-
not authorize it. In enterprise XY Z, there are five roles with
the following hierarchies purchase manager (PM) — pur-
chase clerk (PC) — clerk, and approval manager (AM) —
approval clerk (AC) — clerk. For instance, role PM is a se-
nior role to PC. Roles AC and PC have static SoD constraint
relation between them. Since role hierarchies are present
PM inherits the static SoD constraints from PC. Thus, a user
assigned to the role PM cannot be assigned to the role AM
or AC. Likewise, an user assigned to the role AM cannot be
assigned to the role PM or PC.

[y Pm AM v‘l:l
v v
[m ,PC -———— AC , @]

— — StaticSoD [ENEM| Subscribers

—» Hierarchy Role Nodes

Figure 1. Access Control Policy Specification

High level specification for enterprise XY Z is shown
in Figure 1. All the nodes represent an instance of entity
‘R (i.e., roles). First, the role nodes corresponding to roles
PM, AM, PC, AC and Clerk are created. Flags correspond-
ing to relationships (i.e., hierarchy, station SoD relations,
and active security constraints) are stored in the node. For
instance, role nodes PC and AC have the Static SoD flags set
once they are connected using the dashed line. All the flags
are set when the role node to TRUE or FALSE when the
policies are specified using a graphical tool RBAC Manager.
Parent nodes are connected to the child nodes when there
is a hierarchical relationship and static SoD constraints are
represented as a dashed line between two nodes. Each node
has an internal subscriber list that is used to point to the par-
ent node. This pointer allow the child nodes to identify their
parent nodes when the list of authorized users is required.
On the other hand, constraints can be propagated in a bot-
tom up manner using the pointers. (Note: Pointers shown in
the Figure are not specified by users and they are generated
by the system using the flags.)

Once the policies are specified, they are instantiated and
the rules are generated. Let us take role PC for the discus-
sion. Role PC has a static SoD and role hierarchy and when
the policies are instantiated, rules corresponding to the role
PC are generated. For instance, rule corresponding to ac-

YF]',F.

COMPUTER

SOCIETY

tivating role PC (i.e., “addActiveRolePC”) is created. This
rule is similar to rule A AR that was explained in Section 4
as role PC has static SoD and role hierarchies. Similarly all
the other rules corresponding to PC and all the other roles
are also created. Once all the rules are created it can enforce
the policy specified by the enterprise. Currently, we assume
that the policies specified using NIST RBAC and others do
not have inconsistencies, but we are in the process of devel-
oping advanced consistency checking mechanisms.

When there is a change in the policy, for example, the
shift time of role “day doctor” is changed from (8 a.m. to
4 p.m.) to (9 am. to 5 p.m.), it can be easily changed in
the high level specification and the corresponding rules can
be regenerated. This can be done without burdening the ad-
ministrator as the rules are created using the access specifi-
cation graph. With current systems and models it is a cum-
bersome process as all the low level semantic descriptions
have to be changed manually. When there are thousands of
rules, it is highly error prone to change them manually.

6 Related Work

Rule Processing Models: Event-Condition-Action rules
[16, 10, 11, 1], to name a few, provide event-based ac-
tive capability to the underlying system. Of all the event
specification languages Snoop(IB) [11, 1] provides a rich
set of operators and consumption modes not available in
other languages. The rules can be either at the application
level or the system level. Earlier work on application level
ECA rules has been on making Relational Databases and
Object Oriented Databases active capable. Similarly, ECA
rules at the system level were used for providing various
functionalities such as customizing the internal behavior of
a database management system by realizing a number of
transaction models and operating system load management.
System level use of ECA rules can combine adaptive or self-
monitoring capability with others such as the enforcement
of RBAC.

Systems/Models Supporting RBAC: As explained in Sec-
tion 1, none of the existing systems to our knowledge sup-
port the complete RBAC standard and its extensions in a
seamless way. Thus, we explain some of the current sys-
tems below along with the features they support.

OASIS [32, 5] contains two types of rules and they are 1)
activation rules, and 2) authorization rules. It supports dy-
namic role deactivations by use of rules, and it does not sup-
port role hierarchies explicitly and cardinality constraints.
With the extended model, OASIS supports minimal tem-
poral constraints, and context dependent constraints in the
form of environmental predicates. OASIS requires admin-
istrators to specify enterprise policies using pseudo-natural
language (i.e., Restricted English [4]) for authentication and
authorization. These predicates are translated into a series
of forms such as higher-order logic, first-order predicate

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

calculus, horn clauses and finally converted to Java classes.
The generated Java classes change as the authorization rules
change. Even though OASIS uses pseudo-natural language
that is transparent, it is cumbersome and a cognitive-burden
for administrators. The implementation of OASIS is not
clearly discussed except the fact that it takes a middle-ware
approach. In this paper we have shown how OWTE rules
can support role hierarchies and cardinality constraints.

Adage [30, 20], a rule-based authorization system for
distributed applications, supports separation of duty by us-
ing history based constraints. The system does not support
important RBAC features such as role hierarchies and car-
dinality constraints. It requires the administrators to spec-
ify the authorization rules manually. X-GTRBAC [8] is an
XML based policy specification framework and architecture
for enterprise wide access control. The framework supports
GTRBAC specifications [22, 23] and enforces a set of GTR-
BAC constraints. The model does not support time based
SOD. It requires administrators to specify policies using
X-GTRBAC specification language based on a BNF-like
grammar, called X-Grammar provided by the framework.
In this paper we have shown how OWTE rules are used to
support time based SoDs.

Temporal RBAC [6] “supports periodic role enabling
and disabling, and temporal dependencies among such ac-
tions.” Role triggers are used to express these temporal de-
pendencies and to enable and disable roles either immedi-
ately or after a specified amount of time. On the other hand,
in this paper we show how active rules are used to sup-
port RBAC, its extensions and active security, seamlessly.
We have also shown how the Generalized Temporal RBAC
[22, 23] can be enforced, using examples. [7, 24] show
how multipolicy access control is supported but they do not
explicitly consider the extended RBAC with various con-
straints and active security. [27] shows how context con-
straints are enforced in an RBAC environment.

Attribute-Based RBAC or AB-RBAC [2, 3] is a rule-
based model that was developed to assign users to roles
automatically, based on the authorization rules defined by
enterprise administrators. Rule-based language defined in
AR-RBAC supports minimal temporal aspects in the form
of range constraints, but is not expressive enough to sup-
port various other constraints. In addition, this model also
requires enterprise administrators to manually specify rules
using the RB-RBAC language. Role hierarchies are induced
from the seniority among authorization rule attributes when
all the assumptions hold. In this paper we have shown how
rules are created and maintained automatically from a high
level specification.

7 Conclusions and Future Work

In this paper we have shown how active authorization
rules or enhanced ECA rules are used to enforce RBAC,

YF]',F.

COMPUTER

SOCIETY

and its extensions such as temporal, and control flow de-
pendency constraints in a seamless way. We have also
shown how active security is provided that can take timely
actions and that can prevent malicious activities. Large
enterprises have hundreds of roles, which requires thou-
sands of rules for providing access control, and generating
these rules manually is error-prone and a cognitive-burden
for non-computer specialists. High level specifications of
access control policies eliminate the above problems and
are transparent to non-computer specialists. OWTE rules
are not created manually by administrators and we have
shown briefly how authorization rules are generated from
high level specifications of access control policies using
Sentinel+. Rules generated have different granularities and
classifications based on their functionalities. Automatic
translation and maintenance of authorization rules is effi-
cient and has less administrative burden. Expression of
RBAC standard and its extensions in terms of OWTE rules
provide practically applicable view of RBAC.

As the future work, various kinds of constraints that can
be supported should be formalized, and the generated rules
should be verified. It will be interesting to explore on how
to generalize constraint specification in RBAC using events,
to provide distributed access control for enterprises and to
support other security models using OWTE rules.

References

[1] R. Adaikkalavan and S. Chakravarthy. SnooplB: Interval-
Based Event Specification and Detection for Active
Databases. In Proc. of ADBIS. LNCS 2798, Sept. 2003.

[2] M. A. Al-Kahtani and R. Sandhu. A Model for Attribute-
Based User-Role Assignment. In Proc. of ACSAC, 2002.

[3] M. A. Al-Kahtani and R. Sandhu. Induced Role Hierarchies
with Attribute-Based RBAC. In Proc. of SACMAT, 2003.

[4] J. Bacon, M. Lloyd, and K. Moody. Translating Role-Based
Access Control Policy Within Context. In Proc. of POLICY,
2001.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Chakravarthy et al. Composite Events for Active
Databases: Semantics, Contexts, and Detection. In Proc.
of VLDB, pages 606-617, 1994.

S. Chakravarthy et al. Design of Sentinel: An Object-
Oriented DBMS with Event-Based Rules. Information and
Software Technology, 36(9):559-568, 1994.

T. M. Chalfant. Role Based Access Control and Secure Shell
— A Closer Look At Two Solaris ™ Operating Environment
Security Features, July 2003.

R. Chandramouli and R. S. Sandhu. Role-Based Ac-
cess Control Features in Commercial Database Management
Systems. In Proc. of NISSC, 1998.

R. Dasari. Events And Rules For JAVA: Design And Im-
plemenation Of A Seamless Approach. Master’s thesis, CIS
Department, The University of Florida, Gainesville, 1999.
U. Dayal, A. Buchmann, and S. Chakravarthy. The HiPAC
Project. Morgan Kaufman Publishers Inc., 1996.

D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A Role
Based Access Control Model and Reference Implementation
within a Corporate Intranet. TISSEC, 1(2), 1999.

D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn. Role-Based
Access Control: Features and Motivations. In Proc. of Com-
puter Security Applications Conference, 1995.

Q. He. Privacy Enforcement with an Extended Role-Based
Access Control Model. Technical Report TR-2003-09, De-
partment of Computer Science, NCSU, 2003.

J. Hoagland. Adage, 1999.

InterNational Committee for Information Technology Stan-
dards. RBAC Standard, ANSI INCITS 359-2004, 2004.

J. B. D. Joshi et al. Generalized Temporal Role-Based Ac-
cess Control Model - Specification and Modeling. Technical
Report 2001-47, CERIAS, Purdue University, 2001.

J. B. D. Joshi et al. Dependencies and Separation of Duty
Constraints in GTRBAC. In Proc. of SACMAT, 2003.

M. Koch, L. V. Mancini, and F. Parisi-Presicce. On the spec-
ification and evolution of access control policies. In Proc.of
SACMAT, 2001.

M. J. Moyer and M. Ahamad. Generalized Role-Based Ac-
cess Control. In Proc. of ICDCS, 2001.

National Institute of Standards and Technology (NIST). The

[5] J. Bacon, K. Moody, and W. Yao. A Model of OASIS Role- Economic Impact of Role-Based Access Control, 2002.
Based Access Control and its Support for Active Security. [27] G. Neumann and M. Strembeck. An Approach to Engineer
TISSEC, 5(4), 2002. and Enforce Context Constraints in an RBAC Environment.

[6] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A Tem- In Proc. of SACMAT, 2003.
poral Role-Based Access Control Model. ACM TISSEC, [28] R. Ramakrishnan and J. Gehrke. Database Management
4(3):191-233, 2001. Systems (3rd ed.). McGraw-Hill, 2003.

[7] E.Bertino, B. Catania, E. Ferrari, and P. Perlasca. A System [29] R.S.Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-

to Specify and Manage Multipolicy Access Control Models.
In Proc. of POLICY, 2002.

[8] R. Bhatti. X-GTRBAC: An XML-based Policy Specifica-
tion Framework and Architecture for Enterprise-Wide Ac-
cess Control. Master’s thesis, Dept. of Electrical and Com-
puter Science, Purdue University, 2003.

[9]1 R. Bhatti et al. X-GTRBAC Admin: A Decentralized

Administration Model for Enterprise Wide Access Con-

trol. Technical Report 2004-04, CERIAS, Purdue Univer-

sity, 2004.

A.P.Buchmann et al. Rules in an Open System: The REACH

Rule System, pages 111-126. Springer, 1993.

[10]

[30]

[31]

[32]

Based Access Control Models. IEEE Computer, 29(2):38—
47, 1996.

R. T. Simon and M. E. Zurko. Separation of Duty in Role-
Based Environments. In Proc. of IEEE CSF Workshop,
1997.

M. Strembeck. Conflict Checking of Separation of Duty
Constraints in RBAC - Implementation Experiences. In
Proc. of the Conference on Software Engineering, 2004.

W. Yao, K. Moody, and J. Bacon. A Model of OASIS Role-
Based Access Control and its Support for Active Security.
In Proc. of SACMAT, 2001.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 21st International Conference on Data Engineering (ICDE '05)
1084-4627/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

