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Abstract

Representation of Role Based Access Control (RBAC) policies as finite state models and three con-

formance testing procedures for generating tests from these models are proposed. A test suite generated

using one of the three procedures has excellent fault detection ability but is astronomically large. Two

approaches to reduce the size of the generated test suite were investigated. One is based on a set of

six heuristics and the other directly generates a test suite from the finite state model using random se-

lection of paths in the policy model. A fault model specific to the implementations of RBAC systems

was used to evaluate the fault detection effectiveness of the generated test suites; the model incorporates

both mutation-based and malicious faults. Empirical studies revealed that adequacy assessment of test

suites using faults that correspond to first-order mutations may lead to a false sense of confidence in the

correctness of policy implementation. The second approach to test suite generation is most effective in

the detection of both first-order mutation and malicious faults and generates a significantly smaller test

suite than the one generated directly from the finite state models.

Keywords: Role Based Access Control (RBAC), Finite state models, State explosion, W-method Wp-

method, Fault model, First-order Mutation faults, and Malicious faults.

1 Introduction

Access control is essential for safe and secure access to software and hardware resources. An access control

implementation is responsible for granting or denying authorizations after the identity of a requesting user

has been validated through an appropriate authentication mechanism. Operating systems, database systems,

and other applications employ policies to constrain access to application functionality, file systems, and data.

Often these policies are implemented in software that serves as a front end guard to the protected resources

or is interwoven with the application. It is important that the access control software is correct in that it

faithfully implements a policy it is intended to. Hereafter an implementation of access control policies is

referred to as ACUT (for Access Control Under Test).

A number of reported common vulnerabilities and exposures [26] are related to design and/or coding

flaws in access control modules of an application. Testing remains indispensable despite advances in the
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formal verification of secure systems [1, 32, 25] and in static or dynamic program-analysis based tech-

niques [12, 30] because verification only guarantees correctness of the design under certain assumptions.

Any faults in the implementation due to, for example, coding errors, incorrect configuration, and hidden

or “backdoor” functionality could jeopardize the effectiveness of corresponding (access control) specifica-

tion [44]. It therefore becomes critical to assure that the underlying implementation conforms to the desired

policy, and hence testing becomes essential. Given a safe and consistent policy P currently in effect, we

ask: What tests, when successful, would ensure that ACUT enforces P and no other policy ?

To answer the above question the use of a “complete Finite State Machine (FSM)” based conformance

testing strategy was investigated. The strategy investigated was to construct an FSM model of the RBAC

(role based access control) policy [19, 41, 42] and then generate tests from the model using the well known

W-method [9]. Evaluations of tests generated using the W-method often use Chow’s FSM-based fault

model [9, 23, 38]. We examined the fault coverage of the complete FSM based conformance testing tech-

nique with respect to an RBAC fault model that consists of faults derived from first order mutations. The

proposed technique provides complete fault detection with respect to the RBAC fault model that can be

mapped to Chow’s fault model as shown in Section 6.1.

The fault coverage of complete FSM strategy is further assessed by extending the RBAC fault model

and thus considering the non-mutation faults (referred as malicious faults). It is determined that tests so

generated are able to detect a particular class of malicious faults. The complete fault coverage for malicious

faults can only be achieved if white box coverage measures are used for test enhancement. In the absence

of ACUT code, usage of black box based technique cannot provide any guarantees about its effectiveness

in detecting malicious faults. Hence we suggest using white box coverage criteria such as data flow and

mutation, to facilitate enhancement of FSM generated tests for providing complete coverage of malicious

faults. Certainly, code reviews [5] and inspection may also assist in detecting such faults.

The number of states in a complete FSM model of the expected behavior of access control enforcement

logic can easily reach 350 in an application with ten users and five distinct roles. While complete FSM

based conformance testing technique turns out to be highly effective in detecting RBAC faults, the size of

the finite state model and that of the generated test suite is astronomical thereby rendering it unsuitable for

practical use. Thus we ask: How does one scale down a test suite generated from a finite state model without

“significant” degradation in the fault detection effectiveness of the scaled down test suite ?

To answer the above question we investigated two approaches. The first approach referred to as “heuris-

tics based strategy,” uses one or more heuristics to reduce the state space of the FSM through state abstrac-

tions. Such abstractions are also used in formal verification techniques [1, 25]. These heuristics were derived

from a knowledge of the structure of access control policies. While the heuristics did lead to a drastic reduc-

tion in the size of the model, they also resulted in reduced fault detection effectiveness; whether or not this

reduction is “significant” is subjective and can only be quantified in specific instances of implementation.

The second approach referred as “constrained random test selection” strategy (CRTS), reduces the size of

the test suite by random selection of paths of fixed length from the complete FSM. Given a sufficient number

of tests, the CTRS strategy is likely to have better fault detection than “heuristics based strategy” because

the abstractions used by the heuristics only consider a local view of the implementation in contrast to the

complete view considered by the CRTS strategy that randomly selects paths from an FSM.

The complete FSM based, the heuristics based, and the CRTS strategies discussed previously target con-

formance testing of the ACUT with respect to a single RBAC policy. To guarantee that ACUT will correctly

enforce all policies, it is essential to perform functional testing across a representative set of policies. We

propose a functional testing technique based on the use of any of the proposed complete FSM, heuristics,
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and CRTS based conformance testing procedures to perform functional testing of ACUT by using multiple

policies.

We conducted an empirical evaluation to assess the cost, effectiveness, and the cost-benefit ratio as-

sociated with the usage of the three procedures in functional testing of a prototype RBAC system. The

effectiveness was measured using first-order mutation faults [16] and manually injected malicious faults.

Usage of both the mutation faults and malicious faults in effectiveness measurement provided insight into

the inability of state abstraction based heuristic procedure to provide complete fault coverage for malicious

faults despite being adequate with respect to mutation faults.

Contributions: (a) A technique for modeling the expected behavior of access control systems (ACUT) that

enforce RBAC policies. (b) A fault model for RBAC system based on selective mutations and on (possibly)

malicious code. (c) Conformance testing strategy based on complete FSM, heuristics and CRTS procedures,

(d) A technique for functional testing of ACUT and (e) evaluation of the usage of the three conformance

testing procedures in the proposed functional testing technique through a case study.

Organization: RBAC and Chow’s FSM based test generation method are reviewed in Section 2. The testing

context of proposed test generation method is described in Section 3. Section 4 describes how to construct

a finite state model from a given RBAC policy. Section 5 discusses the conformance relation used as the

basis for conformance testing procedures. A fault model used for assessing the effectiveness of the tests

generated is described in Section 6. The proposed conformance test generation procedures are described

in Section 7. Section 8 describes in detail the proposed functional testing technique. Section 9 reports

an empirical study conducted to assess the cost and fault detection effectiveness associated with usage of

proposed conformance testing procedures in functional testing of a system. Related work is reviewed in

Section 10. Section 11 summarizes the proposed approach.

2 Background

2.1 Role Based Access Control

RBAC is often used to protect resources from unauthorized access. For example, a bank has a set of roles,

e.g. Teller and Customer, users, e.g. John and Mary, and resources, e.g. accounts. Authorized personnel

in this bank assign users to roles. In turn each role has associated permissions that allow a user to perform

tasks. For example, a Teller is allowed to deposit a check into a customer’s account and a customer may not

have the permission to transfer money from her account to another customer’s account.

An RBAC policy P is a 16-tuple (U,R, Pr, UR, PR,≤A,≤I , I, Su, Du, Sr, Dr, SSoD,DSoD,

Ss, Ds), where

• U and R are, respectively, finite sets of users and roles,

• Pr is a set of permissions,

• UR ⊆ U × R is a set of allowable user-role assignments,

• PR ⊆ Pr × R is a set of allowable permission-role assignments,

• ≤A⊆ R×R and ≤I⊆ R×R are, respectively, activation and inheritance hierarchy relations on roles,

• I = {AS, DS,AC,DC,AP,DP} is a finite set of allowable input requests for the ACUT, where

AS, DS,AC,DC,AP,DP are, respectively Assign, Deassign, Activate, and Deactivate requests for

user-role assignment and activation and Assign and Deassign for permissions-role assignments.
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• Su, Du : U → Z+ are, respectively, static and dynamic cardinality constraints on U , where Z+

denotes the set of non-negative integers.

• Sr, Dr : R → Z+ are, respectively, static and dynamic cardinality constraints on R.

• SSoD, DSoD ⊆ 2R are, respectively, static and dynamic Separation of Duty (SoD) sets

• Ss : SSoD → Z+ specifies the cardinality of the SSoD sets

• Ds : DSoD → Z+ specifies the cardinality of the DSoD sets

We explicitly attach the policy P with each element of the above 16-tuple when there is a need to distinguish

it from that of another policy. For example UR(P ) and UR(P ′) are the UR assignments corresponding,

respectively, to policies P and P ′.

The activation hierarchy relation (A-hierarchy) ri ≤A rj implies that a user uk assigned to rj is also

able to activate ri without being assigned to it i.e. (uk, ri) /∈ UR ([41]). The inheritance hierarchy relation

(I-hierarchy) ri ≤I rj means that a permission pk assigned to ri is also accessible by rj without being

actually assigned to it i.e. (pk, rj) /∈ PR ([41]). The static (dynamic) cardinality of a user specifies the

maximum number of roles it can be assigned to (can activate). Similarly, the static (dynamic) cardinality of

each role specifies the maximum number of users who can be assigned to (can activate) this role.

The SSoD (DSoD) [2] specifies the sets of roles to which users can only be simultaneously assigned

(can simultaneously activate) provided such assignments (activations) do not violate the SSoD (DSoD)

set cardinality constraint i.e. Ss(SSoD) (Ds(DSoD)). Ss(SSoD) (Ds(DSoD)) constrains the maximum

number of roles to which a user can be simultaneously assigned (can simultaneously activate) in the given

SSoD (DSoD) set.

Note that while (u, r) ∈ UR implies that assignment of u to r is allowable, u is authorized for assign-

ment only when (i) an input request AS(u, r) is received and (ii) the static user and role cardinality and SoD

constraints are satisfied at the time the assignment request is received. For user u to be authorized to activate

role r, (i) input request AC(u, r) must be received, (ii) u must be assigned to r or permitted via ≤A, and

(iii) dynamic user and role cardinality and SoD constraints must be satisfied.

The above definition is adequate to illustrate the proposed test generation strategy. However, we are

aware that variations of the above policy exist such as [19] [28] and [2]. In the NIST RBAC [19] a user is

required to initiate a session in order to activate a subset of his assigned roles. A session maps a user to

possibly many roles and a one to many mapping exists between a user and his sessions. The finite state

model of a given RBAC policy, described in Section 4, can be extended to model the user sessions. Three

types of control flow dependency constraints have been considered in [28] and a number of variants of the

SSoD and DSoD relations have been considered in [2] . These constraints can be represented in the finite

state model of the given policy. The RBAC variant considered in this work is closely related to the non-

temporal version of the X-GTRBAC system [6]. A sample policy follows.

Example 1. Consider the following policy P with two users, one role, and two permissions.

U = {u1, u2}, R = {r1}, P r = {p1, p2},

UR = {(u1, r1), (u2, r1)}, PR = {(p1, r1), (p2, r1)},

Su(u1) = Su(u2) = Du(u1) = Du(u2) = 1, Sr(r1) = 2, Dr(r1) = 1,≤A=≤I= { }
Each permission p1 and p2 in Pr is associated with functions and resources related to the application under

consideration.
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2.2 Test generation from finite state machine

A Mealy finite state machine (FSM) M = (Q, q0, X, Y, δ,O), where Q is a finite set of states, q0 ∈ Q

a unique initial state, X and Y , respectively, the input and output alphabets, δ : Q × X → Q the state

transition function, and O : Q × X → Y the output function.

Let s = x1x2 . . . xk−1xk, xi ∈ X, 1 ≤ i ≤ k, be a string of length k > 0 over the input alphabet X ,

also written as s ∈ X+. We write O+(qm, s) = r for string r of length k over the output alphabet Y , when

O(qlj , sj) = rj , 1 ≤ j ≤ k, δ(qlj , sj) = qlj+1
, qm = ql1 , where all q’s are states in Q. Similarly, we write

δ+(qm, s) = qk, when δ(qlj , sj) = qlj+1
, 1 ≤ j ≤ k, qm = ql1 , qk = qlk . States qi, qj ∈ Q, i 6= j, are

considered distinguishable by string s ∈ X+ if O+(qi, s) 6= O+(qj , s).

Let W = {w1, w2, . . . , wm} be a finite set of non-empty strings. W is a characterization set for M if for

any two states qi, qj ∈ Q, i 6= j, there exists a w ∈ W such that O+(qi, w) 6= O+(qj , w). W is considered

minimal if for all sets W ′, |W ′| < |W |, W ′ is not a characterization set for M .

M is complete when δ and O are defined for all states in Q. M is connected when each state in Q is

reachable from q0. M is minimal when there exists a characterization set for M .

Let M be a minimal, complete, and connected FSM that models the expected behavior of the ACUT.

Let n = |Q|. Let m an estimate of the number of states in FSM M ′ that models actual behavior of the

ACUT. Note that the testing methodology proposed here does not require an explicit formulation of M ′.

Concatenation of sets R and S is written as R.S = {uv|u ∈ R, v ∈ S}. The W-method for generating test

suite T from M proceeds in the following steps [9, 24].

1. Construct the testing tree Tr.

2. Construct the transition cover set Pt from Tr. Pt contains all paths in Tr from its root to all internal

nodes and leaves.

3. Find the state characterization set W .

4. Test set T is constructed as follows.

T =

{

∪i=m−n
i=0

Pt.X
i.W if m − n > 0

Pt.W otherwise

Several other methods are available for generating a test suite from an FSM [3, 40]. However, the W-

method has the best and proven fault detection ability [9, 38, 43]. The procedure given above can be easily

modified to generate a test suite using the Wp method [23]. The resultant test suite is smaller than that

generated by the W-method and retains the fault detection effectiveness.

Chow’s fault model for finite state machines, consists of four faults: operation, transfer, extra state, and

missing state. An operation fault occurs when M ′ has a transition with an incorrect input or output label.

A transfer fault occurs when M ′ has a transition that terminates at an incorrect state. Chow has shown that

given m, a correct estimate of the number of states in M ′, T is guaranteed to detect all faults in the fault

model. Empirical studies have shown that the fault coverage is high even when m is incorrect.

Step 3 in the test generation procedure above is not needed when the states in the ACUT are observable.

In this case there is a significant reduction in the size of the test suite as the formula in Step 4 reduces to:

T =

{

∪i=m−n
i=0

Pt.X
i if m − n > 0

Pt otherwise
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Figure 1: Interaction between an application, access control enforcement module (ACUT), and the protected

resources. Test harness contains test cases generated using a finite state model. Test cases are to test the

policy enforcement mechanism, not the application.

To enable the observation of states, the ACUT may need addition of output statements at appropriate loca-

tions. Each output statement sends a unique state identifier to the test harness described in Section 3. This

output allows the harness, also serving as an oracle, to check if the ACUT has arrived at the correct state

after processing an input request.

A further reduction in the size of T becomes possible when the ACUT states are observable. In such

cases there is no need to record paths from the root of Tr to each internal node as state identification is not

required. Thus Pt now consists only of paths from the root of Tr to each leaf.

3 Testing context

Figure 1 shows the context of the applicability of the proposed test generation approach. As shown, the

access enforcement module is the system under test (ACUT). Prior to testing, the ACUT is initialized with

a policy P . It is assumed that a Policy processor performs this initialization task. The Policy processor

constructs an internal representation of P for subsequent access by the ACUT. Often the internal represen-

tation is a table containing various relations described in Section 2.1. This division of tasks between two

submodules allows for flexibility in the specification of policies. For example, P could be an XML file [6]

or it could be specified using a GUI [29] attached to the Policy processor.

A request received by the ACUT is authenticated against the policy and, if granted passed to the Ap-

plication. While the ACUT is shown as a separate module, it could also be interfaced with the application

in other ways. For example, the incoming request could first enter the Application and then passed to the

ACUT for authentication.

The Test Harness in Figure 1 encapsulates the generated test cases. Each test case t could assume

one of two forms: (r, q) or (r, rp), where r = r1, r2, . . . , rk−1, rk is a sequence of k > 0 requests that

belong to the input alphabet I , q = q1q2, . . . , qk−1, qk is the expected state transition sequence, and rp =

rp1, rp2, . . . , rpk is the expected response sequence.

Each request is parameterized with appropriate inputs. For example, an Assign request AS(u, r) speci-

fies user u and a role r. The (r, q) form is selected to test ACUT where state transitions are observable. The

(r, rp) form is used when state transitions are not observable but response to each input request is. For each
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input request we use subscripts i and j to denote, respectively, user ui and role rj . For example ASij is an

abbreviation for “Assign u1 to role rj”.

Testing begins with the ACUT in its initial state. Test t is applied by sending each request in t to the

ACUT. The corresponding state transitions are observed and compared against the expected state transitions

in q. The behavior of the ACUT is assumed to conform to the expected behavior as per policy P when the

observed state sequence is identical to q. The ACUT is brought to its initial state prior to the application of

the next test input.

In cases when the ACUT does not return its current state information it is reasonable to assume that

the granted and denied actions in response to each request are observable. However, in this case our test

generation strategy uses the state characterization set W [9] in the generation of the test cases.

The context described above, and the test generation strategy proposed herein, allows testing the ACUT

for a single policy. In general, it is important to test the ACUT for a variety of policies to ensure that it will

indeed correctly enforce access for any given policy. The functional test generation technique described in

Section 8 uses multiple policies to test an ACUT.

4 Modeling the expected behavior of the ACUT

The first step in the proposed test generation strategy is to model the expected behavior of the ACUT as

an FSM M . Following assumptions are made to model an RBAC policy: X = {AS, DS,AC,DC} ⊂ I

and Y = {granted, denied}, where AS, AC, DS,DC are, respectively, abbreviations for requests to assign a

user to a role, activate a user-role pair, deassign a user from a role, and deactivate a user-role pair. granted and

denied denote two possible responses of an ACUT to any of the four request types. Unless stated otherwise,

M is considered complete, i.e. for every input there is a transition from every state, and connected, i.e.

every state is reachable from the initial state. The permission-role assignments are ignored to simplify the

presentation.

A state in M is a sequence of pairs of bits, one pair for each user-role combination as in the table below.

For example, given two users u1 and u2, and one role r1, a state is represented as a pattern of two consecutive

pairs of bits. In this case, 1011 indicates that u1 is assigned to role r1 but has not activated r1 and u2 is

assigned to r1 and has activated it.

Pattern Role

Assigned Activated

00 No No
10 Yes No
11 Yes Yes
01 Not used Not used

FSM(P ) refers to an FSM that models the expected behavior of an ACUT with respect to policy P .

Figure 2(a) shows an FSM model M that represents the behavior of the ACUT required to implement policy

P in Example 1. It consists of eight states corresponding to the different assignments and activations in

effect. In general, for u users and r roles, the upper bound on the number of states in the FSM corresponding

to a policy is 3ur. In Section 7.2 we propose heuristics to reduce the size of the model and hence that of the

test set.
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Figure 2: (a) A complete finite state behavioral model derived from the RBAC policy in Example 1 and (b) its

partial testing tree. Expected response is not shown. For each transition between two states, the response is

granted. Self-loops corresponding to denied response are not shown to keep the figure uncluttered.

RBAC policies
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Figure 3: Policy and implementation conformance. An arrow, in either direction, is to be read as “conforms

to.”

5 Conformance Relation

Let R denote the set of all RBAC policies, X an organization that uses role based access control to protect

its resources, and ACUT′ an implementation used by X to enforce any RBAC policy over some duration.

Given the definition of an RBAC policy, R is infinitely large. It is reasonable to assume that, in any given

duration, X enforces one policy P ∈ R.

Now suppose that ACUT is an implementation that correctly enforces P . However, a faulty ACUT′

might enforce P ′ ∈ R, where P ′ is not the same as P . The goal of conformance testing for access control

is to ensure that ACUT′ is free of faults that may lead to incorrect enforcement of P . The proposed fault

model is derived with this goal in view. Figure 3 illustrates the proposed conformance relationship amongst

policies and their respective implementations.

Let P be an RBAC policy in effect and ACUT a correct implementation that enforces P and no other

policy. Let URa ⊆ U × R, URc ⊆ U × R, and PRa ⊆ P × R be sets of, respectively, current user-role

assignments, user-role activations, and permission-role assignments with respect to P . Let Rq(up, r), up ∈

(U ∪ Pr), be a well formed request such that Rq ∈ I and (up, r) ∈ (U × R) for up ∈ U , and (up, r) ∈

(Pr×R) for up ∈ Pr. Rq(up, r) is considered ill-formed when any one or more of the following conditions

does not hold: Rq ∈ I , up ∈ (U ∪ Pr), and r ∈ R.

The status S of an ACUT is the set {URa, URc, PRa}. Each of the three marked subsets of S is

empty at the start of ACUT execution, and hence S = {{ }, { }, { }}. S changes in response to requests

Rq(up, r) ∈ I and policy P . We write S′
ACUT = SACUT[Rq(up, r)] to indicate that the updated status of

ACUT in response to request Rq is S′
ACUT if the status prior to receiving Rq(up, r) was SACUT.
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ACUT′, an implementation under test, is said to conform behaviorally to ACUT with respect to policy

P , under the following conditions.

1. For all requests Rq(u, r) ∈ I , if S′
ACUT = SACUT[R(up, r)] then S′

ACUT′ = S′
ACUT = SACUT′ [Rq(up, r)].

2. For all ill-formed requests Rq(up, r), SACUT[Rq(up, r)] and SACUT′ [Rq(up, r)] remain unchanged.

Stated informally, behavioral equivalence implies that ACUT′ (a) assigns (deassigns) and activates (de-

activates) a role only if such assignment (deassignment) and activation (deactivation) is allowable by the

current policy in effect, (b) assigns (deassigns) a set of permissions to (from) a role only if allowable by

the current policy in effect, and (c) ignores ill-formed requests. It is important to note that ACUT′ correctly

enforces only the policy currently in effect and no other policy. Certainly this is not to be interpreted in the

sense that ACUT′ is capable of enforcing only one policy. In fact an implementation of RBAC policies is

expected to enforce any RBAC policy. However, at any instant in time it only enforces the policy that is in

effect. We assume the existence of a mechanism to change the currently effective policy.

6 RBAC Fault model

Policies P and P ′ are considered conforming when ACUT and ACUT′ are behaviorally conformant. The

aim of conformance testing of ACUT′ is to establish the behavioral conformance between the ACUT′ and

ACUT. Conformance of ACUT′ with respect to the ACUT can also be intuitively thought of as absence of

any faults in the ACUT′ i.e. faults in P ′. Given a policy P ∈ R, where R is infinitely large and is the set

of all possible RBAC policies, R can be partitioned into two subsets; set of conforming (RP
conf ) and faulty

(RP
fault) policies with respect to P . The conformance testing of ACUT′ thus implies verifying that P ′ does

not belong to the set of faulty policies i.e. P ′ /∈ RP
fault .

As RP
fault can be infinite therefore devising a test strategy that guarantees detection of all types of

faults, i.e. guaranteeing that P ′ /∈ RP
fault can be impractical. Except possibly through exhaustive testing,

it is impossible to show through testing that ACUT′ is behaviorally equivalent to ACUT. Traditionally in

conformance testing of systems the total number of possible implementations is restricted to a finite set by

assuming a fault model for the implementation [38]. The fault model depends on the specification model

and it specifies the types of faults that can be encountered in an implementation.

It is important to note that faults are directly related to the conformance relation, in this case behavioral

conformance, used in between the implementation and the specification [7]. Fault model can thus be used

for fault coverage assessment of a testing technique [9, 31, 38]. We used mutation based approach, similar

to the one widely used for deriving fault models for FSM based specifications [38], to construct the fault

model of RBAC by considering all the mutants of P . The proposed fault model is based on behavioral

conformance. It is to assist in the evaluation of the fault detection effectiveness of tests generated for testing

ACUT′.

The RBAC fault model restricts RP
fault to be finite by only considering such P ′ = (U,R, Pr, UR′,

PR′,≤′
A,≤′

I , I, S′
u, D′

u, S′
r, D

′
r, SSoD′, DSoD′, S′

s, D
′
s) ∈ RP

fault that can be derived from P = (U,R,

Pr, UR, PR,≤A,≤I , I, Su, Du, Sr, Dr, SSoD,DSoD, Ss, Ds) by making simple changes to P . Note that

all P ′ ∈ RP
fault have the same sets of users, roles, permissions and inputs and these sets are equivalent to

the corresponding sets in P .

The set RP
fault is obtained by recursively applying the set mutation operators to the sets UR,PR,

≤A,≤I , SSoD and DSoD in P and element modification operators to the range of functions Su, Du, Sr, Dr,
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Table 1: RBAC faults due to mutations of elements of P .

Structures Mutated Possible Impact on ACUT′ (Fault)

UR,Su, Sr, SSoD, Ss UR1, UR2

PR,≤I PR1, PR2

≤A, Du, Dr, DSoD, Ds UA1, UA2

Fault Types

UA2UA1UR1 UR2 PR1 PR2

Assignment Activation Permission

Figure 4: A fault model for evaluating the effectiveness of tests of RBAC implementations.

Ss and Ds. We consider three types of set mutation operators; modification of an element, addition of an ele-

ment and removal of an element. The semantics of element modification depends on the type of the element,

which in case of another set implies recursive application of set mutation operators on the element. The ap-

plication of modification operator to an integer z in the range of function F ∈ (Su, Du, Sr, Dr, Ss, Ds)

would change the value to z + 1 and z − 1.

For an element (u, r) ∈ UR, the effect of modification operator could be in three ways: exchange of

u with another u′ ∈ U, u′ 6= u, exchange of r with another r′ ∈ R, r′ 6= r, and exchange of both u and

r. The impact of modification operator on an element (p, r) ∈ PR would also be similar. For a role pair

(ri, rj) ∈≤A, the modification could cause replacement of either one role ri or rj with r′ 6= ri, rj or of both

roles with (r′, r′′) 6= (ri, rj). The modification would have similar effect on a role pair (ri, rj) ∈≤I . The

set mutation operators will be recursively applied on the SSoD and DSoD sets. Considering the individual

element ri of a set (ri, rj , . . . , rk) ∈ SSoD, the modification operator would result into exchange of ri with

r′ 6= ri, r
′ ∈ R.

Table 1 illustrates that the application of above mentioned mutation operators on the elements of P

would result into a policy P ′ which implies possible presence of various faults in the ACUT′. As observed

from Table 1, the RBAC fault model consists of three types of faults: user-role assignment, user-role ac-

tivation, and permission-role assignment. As shown in Figure 4, each fault is further categorized into two

subcategories. Fault type UR1 restricts an authorized user from being assigned to a role or leads to an unau-

thorized deassignment. Fault type UR2 may lead to unauthorized role assignments. PR1 faults restrict a

permission being assigned to an authorized role or cause an unauthorized deassignment. PR2 faults assign

a permission to an unauthorized role. UA1 and UA2 faults are similar to UR1 and UR2 and impact role

activation.

The proposed fault model is complete in that that any violation of an RBAC policy corresponds to at

least one of the six fault types. For example suppose that role r1 can be activated by at most one user at any

instant. Now, suppose that while u1 has activated r1, a request for activation of r1 by u2 is allowed. This is

an instance of the UA2 fault. Examples of other fault types can be constructed similarly.
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6.1 Relation between FSM and RBAC Fault Model

The table below shows the correspondence between the RBAC fault model in Figure 4 and the one proposed

by Chow [9] for FSM. This correspondence is important in that it allows us to argue that tests generated

from FSM(P ), as explained later in Section 7.1, are able to achieve complete fault coverage of the RBAC

faults. This correspondence can be easily established through comparison between FSM(P ′), where P ′ is

the mutated policy, and the FSM(P ). As an example a P ′ obtained from P by adding a (u, r) /∈ UR(P )

pair to the UR(P ′), thus causing a UR2 fault, would lead to at least one extra state fault in the FSM(P ′).

RBAC fault model FSM fault model[9]

UR1, UA1, PR1 Transfer fault, Missing state fault, Output fault

UR2, UA2, PR2 Extra state fault, Output fault, Transfer fault

Example 2. Figure 5 relates UA2 and UR1 faults to the corresponding faults in an FSM. Figure 5(b) illus-

trates a UA2 fault. It shows an extra state and a transfer fault when the ACUT correctly denies an activation

request for u1 but moves to an incorrect state. Figure 5(c) illustrates a UR1 fault due to incorrect transfer

and output faults causing deassignment of an authorized user.

Figure 5(d) illustrates a case where the state of the ACUT is correct though an incorrect output is gen-

erated. While we do not consider this as a fault, the test harness in Figure 1 will be able to detect such an

inconsistency in the ACUT.

It is easy to establish the correctness of fault correspondence between faults in the enforcement of a policy

and those in an FSM using Figure 5 as a guide.

6.2 Malicious faults

Faults that cannot be modeled as first order simple or higher order mutations of an RBAC policy are placed

in the malicious faults category. While a competent programmer makes programming mistakes that could

often be considered as combination of one or more simple mutations [16], a malicious programmer may

inject faults that simulate devious ways of tricking an ACUT into malicious behavior. A malicious fault

leads an ACUT into a malicious state only under certain conditions. If such faults remain undetected during

testing, then during operation they offer a loophole to a malicious user.

Certainly, some malicious faults could be modeled using first or higher order mutations, those that cannot

be modeled are of particular interest. Note that we are not implying that malicious faults cannot be detected
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Figure 5: Mapping of the UA2 and UR1 faults to those in Chow’s fault model. (a) Correct transitions

extracted from Figure 2. (b) Extra state and transfer fault. (c) Transfer and output faults. (d) Output fault

that does not correspond to the proposed fault model because the ACUT remains in a consistent state (1011).
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The input sequences AS21, AC11 and AS11, AC11 given in the states (1000) and (0010) respectively, of

FSM(P ) would always lead to the state (1110), whereas the later sequence would lead to the state (1011)

in the FSM(P ′). Counter-based faults can be related with extra state FSM fault, as illustrated in Figure 6(b).

The input sequence AC11, DC11, AC11 given in state (1010) of FSM(P ) would always lead to the state

(1110), whereas same sequence applied in state (1010) of FSM(P ′) would lead to state (1011). I/O based

faults cannot be related to FSM faults.

7 Generation of Conformance Test Suite

In this section we propose three procedures, with varying cost and fault detection effectiveness, for generat-

ing the test suite for conformance testing of the ACUT with respect to a specific RBAC policy. The cost is

measured while assuming that states are observable and hence W set is not considered in the test generation

(Section 2.2). The upper bound on cost is measured in terms of the total number of state variable queries

performed in the execution of a test suite. Cost effectively depends upon the total number of tests, their

lengths and the number of state variables. The fault detection effectiveness of these procedures is evaluated

with respect to the faults in the RBAC fault model proposed in Section 6.

7.1 Procedure A: Complete FSM based

In this procedure tests are generated from the complete FSM (M = FSM(P )), derived from the policy P , as

per the steps outlined in Section 2.2. The complexity of this procedure not only depends on the size of M but

also on the observability of states in the ACUT. For the FSM(P ) of Example 1 given in Figure 2(a), the test

set is partially shown in Figure 2(b). The testing tree is derived using the algorithm given in[9]. It includes

at least one path from the initial state to all other states in the FSM(P ). The upper bound on the number

of states in M and of the test execution cost of this procedure is given in Table 3. For the RBAC policy

of Example 1 the empirical comparison between the cost of Procedure A and the cost of heuristics based

Procedure B, discussed next, is also made on the basis of the number of tests generated by each procedure,

as given in Table 3.

We have already shown (Section 4) how to construct an FSM that captures the behavior of an ACUT

that enforces an RBAC policy. The mapping between the simple faults in the proposed fault model and FSM

fault model, used by Chow [9], has also been established in Section 6.1. The following claim is based on the

above observations; additional supporting arguments are found in [9].

Claim: The proposed method of generating the behavior model and tests therefrom, guarantees a test set that

detects all simple faults in the ACUT that correspond to the proposed RBAC fault model when the number

of states in the ACUT is correctly estimated.

For malicious faults, it can be observed that Procedure A is unable to detect I/O-based faults, rather all

the procedures are unable to detect these. The counter-based faults can be detected by this procedure if the

total number of states in the ACUT is accurately estimated. The sequence-based faults are always detected

as the test tree contains at least one test case for each path in the FSM.

Table 2 lists a sample of tests generated by assuming state observability and the faults each test case

is able to detect in a faulty ACUT. The test generation procedure becomes more complex if state are not

observable, though it can be automated. For the FSM in Figure 2, the W-set consists of one sequence

of length six: AC11AC21DS11AS11AC11DS21. With some effort one could verify that this sequence is

adequate to distinguish any two of the eight states in Figure 2.
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Table 2: A sample of test inputs obtained from the FSM in Figure 2. In all cases, we assume that the input

sequence is applied with the ACUT in its initial state, i.e. 0000.

Test input Fault detected

AS11, AC11, AS21 A transfer fault in state 1100 leading to self loop on AS21 input

would result in a UR1 fault where u2 is not assigned to r1 in a

faulty ACUT.

AS21 A transfer fault in state 0000 which on input AS21 leads to tran-

sition to state 1000 instead of 0010 leads to both UR1 and UR2

faults.

AS11, AS21, AC11 A transfer fault in state 1010 leading to self loop on input AC11

would result in a UA1 fault where u1 is unable to activate r1 in a

faulty ACUT.

AS11, AS21, AC11, AC21 An extra state fault in transition from state 1110 to 1111 would

lead to a UA2 fault where u2 can activate r1 despite Dr(r1) = 1.

Procedure A provides very good fault coverage but at the expense of very high cost as the size of

FSM(P ) increases exponentially with the increase in the number of state variables. The next two procedures

are aimed at reducing the size of the conformance test suite. The reduction in test suite size can adversely

effect the fault detection effectiveness as discussed in the description of these procedures.

7.2 Procedure B: Heuristics based

In this procedure six heuristics, labeled H1 through H6, are used to reduce the size of the model and of

the test set. These heuristics are similar to the concept of state abstractions as used in various verification

techniques, some of which are discussed later in Section 10. Each heuristic is explained with respect to

Example 1 and the column labeled “Complete FSM” in Table 3.

H1: Separating assignment and activation: Construct MAS and MAC1
,MAC2

, . . . ,MACk
,

k > 0. Here MAS is an FSM that models all assignment requests. For each state qi ∈ MAS , there is

an activation FSM MACi
that models the expected activation behavior under the assumption that the assign-

ment state remains qi. Figure 7(a) and (b) show, respectively, MAS and MAC11
for the policy in Example 1.

Note that a state in MAS corresponds to assignments whereas that in MAC corresponds to activations.

For the model in Figure 2, application of this heuristic leads to an increase in the total number of states from

8 to 12. However, as in Table 3, the reduction in the number of tests is more than double. The reduction is

due to the separation of the FSMs.

H2: FSM for activation and single test sequence for assignment: Construct model MAC for activation

requests with respect to a single state qmax that has the maximum number of assignments in MAS . The

single test sequence is the concatenation of requests along a path from the initial state of MAS to qmax.

For qmax = 11, MAC = MAC11
as in Figure 7(a). Assignments and deassignments are covered using a

sequence of AS and DS requests. The number of test cases now reduces from 92 to 11 in the best case.

H3: Single test sequence for assignment and activation: Use one test sequence that includes assignment,

activation, de-activation, and deassignment requests for all the user-role pairs in any order. In this case the

behavior of the ACUT is tested using a mix of all four types of requests. Doing so reduces the number of

tests from 92 to 1 in the best case.
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Figure 7: Models constructed by applying (a) H1 and (b) H4. As in Figure 2, self loops and outputs are not

shown. Note that for H1 there are four activation FSMs though only MAC11
is shown here.

H4: FSM for each user: Construct Mu for each u ∈ U . Apply the test generation procedure separately

to each model. Figures 7(b) show Mu1
for user u1 and Mu2

for user u2 for the policy in Example 1. The

reduction in the number of states is from 8 to 6 and that in the size of the test set from 92 to 20.

H5: FSM for each role: Construct Mr for each r ∈ R. Apply the test generation procedure separately to

each model. As the policy in Example 1 contains only one role r1, Mr1
is the same as in Figure 2. Hence

there is no reduction in the size of the model or the test set. However, a reduction is expected when |R| > 1.

H6: Grouping users: Create user groups UG = {UG1, UG2, . . . , UGk}, k > 0, such that ∪k
i=1UGi = U

and UGi ∩UGj = ∅, 1 ≤ i, j ≤ k, i 6= j. The groups can be created using one or more common attributes,

e.g. all users that can be assigned to the same set of roles. The FSM is now constructed assuming that the

user field in each input request corresponds to a user group and not to a user. For example, AS(u2, r3) is a

request to assign a user from UG2 to role r3.

Under H6 the meaning of a “state” of an FSM needs reinterpretation. For example, given k = 2, “1011”

means that a representative from UG1 is assigned to r1 and a representative from UG2 is assigned to,

and has activated, r1. The FSM does not have any notion of a “user” this has been replaced by that of a

“representative” of a user group. This heuristic could lead to a significant reduction in the number of states

and transitions given the fact that a group assigned to a role cannot be reassigned to that role before it is

deassigned. Similar reduction occurs as the same group cannot reactivate a role until it has deactivated it.

Note H6 can be combined with the other heuristics above.

When using H6, the test harness randomly selects a representative u′ for the user group UG upon

receiving the first assignment request for UG. In all subsequent tests, it is this representative that is input

to the ACUT. u′ is deassigned when a DS request for the corresponding group is successful. Selection of

a representative for a user group leads to a significant reduction in the number of tests generated due to a

reduction in the number of states in the model. In Example 1, the number of tests generated reduces from

92 to 10.

In addition to the six heuristics in Table 3, one could also relax the FSM completeness assumption while

generating tests. In one case we do not consider the AS and AC requests in assigned and active states.

In another case, we do not consider DS and DC requests in unassigned and inactive states. The last two

columns in Table 3 show, respectively, the number of tests generated when the completeness assumption is

relaxed.

7.2.1 Impact on fault detection effectiveness

In these heuristics model reduction is achieved by only considering a localized view of the system behavior

as compared to the global view maintained by complete FSM. It is obvious that scaling down the model

by applying H1 through H6 might have a negative impact on the fault detection effectiveness of the tests
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Table 3: Sizes of test sets obtained by applying various heuristics. |X| denotes the number of elements in

set X . T = |U | × |R|, Tg = |UG| × |R|

Heuristic Upper bound on |Tset| for Example 1

|Q| Cost Complete FSM Ignore AS, AC in

assigned and ac-

tive states

Ignore DS, DC in

unassigned and

inactive states

None 3T 2T (2T+1)(4T )2T+1 92 64 40

H1 2T +22T
T (T+1)(2T )T+1(2T +1) 44 32 16

H2 2T
T (T+1)(2T )T+1+2T 11 9 5

H3 No FSM 4T 1 1 1

H4 |U |3|R| 2T |U |(2|R|+1)(4|R|)2|R|+1 20 14 8

H5 |R|3|U| 2T |R|(2|U |+1)(4|U |)2|U|+1 92 64 40

H6 3Tg 2Tg(2Tg+1)(4Tg)2Tg+1 10 7 4

generated. Quantifying this impact for arbitrary implementations is possible only in specific instances of

an implementation through empirical studies. Here we briefly review the impact due to each heuristic,

considering their application to FSM of Example 1 given in Figure 2.

It is possible for an ACUT to behave such that its response to activation requests is dependent on the spe-

cific assignment sequence used to arrive at a state. For example, with reference to Figure 7(a), the implemen-

tation corresponding to MAC11
might behave correctly in response to the request sequence AS21 → AS11

but not with respect to AS11 → AS21. Such non-FSM like behavior of the ACUT could cause faults to

remain undetected when H1 is used.

Tests derived using H2, H3, H4, and H5 might miss faults located along certain paths of the complete

FSM. For example, heuristic H3 covers only one path along the complete FSM. Thus faults along other

paths might remain undetected.

When using H4, H5, or H6, incorrect implementation of cardinality constraints as well as other incorrect

assignments and activations, might go undetected. For example, if the number of users is 1000, and Sr(r1) =

750, a faulty ACUT might allow (a) F1: r1 to be assigned to more than 750 users or (b) F2: allow at most

one user to be assigned to r1. When using H6, fault F2 will be detected by the tests generated from the FSM,

but not F1.

When using H6, stress testing can be used to detect F1 and similar faults related to cardinality constraints.

The stress points are derived from the cardinality constraints. In the example above, we need to stress the

ACUT so that it is asked to assign at least 751 users to role r1. Certainly, there are several different sequences

by which an ACUT can be stressed and that depend on the context of the assignments. Such variations in

tests could be covered using several randomly generated request sequences aimed at detecting cardinality

and sequence errors that correspond to the faults in the proposed fault model. While such fault are not

guaranteed to be revealed by stress and random tests, at least we hope that the chances of their detection are

improved.

7.3 Procedure C: The CRTS strategy

The CRTS strategy is aimed at reducing the number of test sequences without requiring reduction in the

model size. We use the term “constrained” to describe CRTS to stress the fact that the tests are generated

randomly but are constrained by the model. As already mentioned, in contrast to the complete FSM consid-

ered by Procedure A, the abstractions used by the heuristics only consider a local view of the system. The
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CRTS strategy is precisely aimed at achieving the goal of a reduction in the size of the test suite without

incuring the loss of reduced system view as is the case for heuristics used in Procedure B.

The strategy is to first construct pools RTi, RTj . . . , RTt of random tests, where all pools have equal

number of tests i.e. l = |RTi| = |RTj| . . . = |RTt|. All tests in a pool RTi have same length i. The lengths

i, j . . . , t of tests in the CRTS pools are selected to be close to or significantly higher then the length of

longest test generated by using Procedure A. The value of total number of tests l in a CRTS test pool can

be selected based on the comparison with number of tests in the test suites generated using heuristics in

Procedure C. A test case in the CRTS pool RTi is constructed through random selection of a path of fixed

length i from FSM(P ) as test.

Five tests suites are then constructed from each CRTS pool RT′ ∈ {RTi, RTj . . . , RTt} by randomly

selecting fixed number p of tests from RT′. Given an FSM(P ), one could use some statistical criterion, such

as the rate of ACUT failure, or an economic criterion such as the maximum number of test sequences, as a

criterion to determine the total number of tests p in each CRTS test suite. The finer details of CRTS strategy

are easier to understand by considering a practical example as illustrated in the case study in Section 9.2.3.

It is important to note that the CRTS strategy is applied to the non-reduced FSM model as in Procedure A.

While the original FSM is astronomically large, CRTS strategy can be easily coded without the need to

actually represent the model in internal memory. Procedure C has fixed cost evaluated as the product of total

number of tests in a suite, the number of state variables in FSM(P ) and the length of tests in that suite.

The fault detection effectiveness of CRTS strategy is expected to be better than Procedure B as the

reduced FSM, considered in heuristics, fails to consider a holistic view of the ACUT behavior. Counter-

based faults can be detected by the CRTS strategy depending on the count of the events required for the

fault to be exhibited and the length of test cases in a CRTS suite. By virtue of random selection of paths,

chances of detection of sequence-based faults are also higher than heuristics based strategy. As already

mentioned, the effectiveness of CRTS strategy does depend on the length of tests in a test suite, as tests of

length comparable with the tests generated from complete FSM are expected to better exploit the ACUT

functionality. The results of the case study reported in Section 9 also support these assertions.

8 Functional Testing of ACUT

Conformance testing of ACUT only establishes its conformance with respect to a specific RBAC policy P .

Functional testing is required to ensure that ACUT will correctly enforce all policies. Recall that the set

R of all RBAC policies is infinite, thus functional testing implies guaranteeing ACUT conformance with

respect to all P ∈ R. As exhaustive testing is not a viable option, therefore only finite number of policies

have to be used for test generation with the intent to fully exploit the ACUT functionality. By restricting the

space of policies for which ACUT is tested, it is possible that some parts of the code may not be executed

by the generated tests; therefore, some white box adequacy criteria such as mutation and code coverage

is required to be used to establish correctness of ACUT functionality. Note that the importance of using

white-box adequacy criteria has been stressed by several researchers [16, 45].

8.1 Proposed Functional Testing Methodology

The functional test suite for an ACUT is a pair < Pset, Tset >, where Pset = {P1, P2, . . . , Pk},

k > 0 is a finite set of organizational policies and Tset = {T1, T2, . . . , Tk} is a finite set of set of test

suites, where each Ti is generated from Pi, 1 ≤ i ≤ k. We refer to Pset as a meta test set as it derives Tset
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that contains test suites that in turn contain test cases. It is to be noted that a T ∈ Tset can be generated

by using either Procedure A, B or C discussed in Section 7. The technique for functional testing of ACUT

proceeds in following steps.

1 Generate initial policy set Pset = {P1, P2, . . . , Pk}

2 Generate Tset = {T1, T2, . . . , Tk}

3 Test ACUT against each T ∈ Tset, remove any faults discovered

4 Evaluate Tset using one or more white-box criteria such as MC/DC, coverage and mutation

5 Add a new policy P ′ to Pset if criteria not satisfied. Go to step 3

The feedback loop in step 5 terminates when the adequacy criteria is satisfied.

8.2 How to generate policies ?

The initial policy set is generated manually. There is no set of rules one could use to construct an initial Pset

and to decide how many policies should Pset be initialized with. The initial policy set should be as compre-

hensive as possible for it to cover a large portion of the ACUT code. This implies that collectively policies

should contain at least one instance of each constraint specified by RBAC policy definition (Section 2.1).

In the simplest case the policies can be generated according to the organization’s needs for resource

protection. One could begin with a single policy that is to be implemented to protect a set of resources.

e.g. data in an organizational database. Additional policies are then added based on the results of adequacy

criteria in step 5. Policies can also be constructed by traditional techniques of equivalence partitioning,

boundary value analysis [36], and combinatorial design [13]. For example, one policy might have no DSoD

constraints, another one such constraint, and a third one two such constraints. Combinations of SSoD and

DSoD constraints can also be used to create additional policies.

When program mutation is used as an adequacy criteria then mutants can be used in constructing the

initial policy set, as is the approach (Section 9.2.2) used in the case study discussed next. Program mutation

creates versions of the original program, known as mutants, through simple syntactic changes. Some of

the mutants could be semantically equivalent to the original program and are thus classified as equivalent

mutants.

Other than the equivalent mutants all others can be related to the RBAC faults with respect to some policy

P . In order to understand this approach consider F = {f1, f2 . . . , fn} as set of all non-equivalent mutants.

Initially policy P1 is constructed based on organization access control requirements and is added to the

Pset. As F is the set of non-equivalent mutants therefore a subset F ′ ⊂ F of these faults would correspond

to some RBAC fault with respect to P1, unless P1 is trivial and does not exercise any constraints. Faults in

the set F ′′ = F − F ′ are then analyzed to construct more policies which are then added to the Pset. The

Pset is considered complete when all faults in F can be correlated with the RBAC faults with respect to at

least one policy P ∈ Pset.

9 Empirical evaluation

An empirical study was conducted to assess the cost, fault detection effectiveness, and cost-benefit ratio

associated with the usage of the three procedures, described in Section 7, in functional testing of an ACUT.
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As already mentioned (Section 7) the cost is measured in terms of the total number of state variable queries

performed in the execution of a test suite. Program mutation [16] and manual injection of malicious faults

were used to measure the fault detection effectiveness. The cost-benefit ratio is the ratio of the cost of the

tests generated using a procedure to the number of faults detected by that procedure. The study was based

on an implementation of a a generic access control mechanism named X-GTRBAC [6]. Brief description of

X-GTRBAC and details of the study follow.

9.1 The X-GTRBAC system

The X-GTRBAC is a generic authentication and access control application. It can serve as a front-end

to any application that needs to authenticate users and enforce access controls based on an RBAC policy.

X-GTRBAC is written in Java and the access control portion consists of two sets of modules: a policy

initializer and a policy enforcer. The initializer takes as input an RBAC policy coded in XML, checks it for

syntactic correctness, and saves the policy in a tabular format. The enforcer accepts requests for user-role

activations and deactivations, checks these against the policy constraints, and either allows or denies an

incoming request.

Only the policy enforcement subsystem of X-GTRBAC was the target of the case study. This subsystem

consists of seven classes listed in Table 4. Only activate and deactivate requests are accepted by the policy

enforcer. Assignment of users to roles is done by the policy initializer and hence user-role assignment and

deassignment requests are not dynamically accepted by the enforcer.

9.2 Case study: Method and Results

The case study followed the steps for functional testing of ACUT as described in Section 8.1. The steps and

results obtained follow.

9.2.1 Prepare X-GTRBAC

We used program mutation as adequacy criteria and thus, as described earlier in Section 8.2, Pset was

obtained using analysis of the non-equivalent mutants. Section 9.2.2 describes in detail the application of this

approach in the case study. Two types of faults are injected into the policy enforcement module: first order

mutations [16], hereafter referred to as simple faults, and sequence-based malicious faults (Section 6.2).

The fault detection effectiveness of each procedure is studied with respect to both simple and malicious

faults. The set of program mutants is referred as F .

Program mutation creates versions of the original program, known as mutants, through simple syntactic

changes. The original program and the mutants are then executed against the test cases to assess their

adequacy. If the test cases are able to distinguish a mutant from the original program then that mutant is

considered distinguished. Mutants, other then the ones distinguished, are considered live.

A mutant could be live because of one of two reasons: (a) the test cases are not strong enough to

distinguish it from the original program and (b) the program logic does not change from the original in

the mutated program i.e. the mutant is semantically equivalent to the original program. The latter type of

live mutants are considered equivalent and in general their identification is an undecidable problem. Test

effectiveness for simple faults is measured as the ratio of distinguished mutants to the total number of

non-equivalent mutants and the test effectiveness for malicious faults is measured as the ratio of detected

malicious faults to total number of malicious faults.The policy enforcer module is mutated by applying all
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Table 4: Classes and their characteristics in the policy enforcement subsystem of X-GTRBAC and faults

injected.

Class Method
count

LOC
mutated

Mutants Mutant classification

Total Equivalent UR1 UR2 UA1 UA2

DSDRoleSet 3 15 20 8 0 0 4 8

GTRBAC module 5 95 82 20 21 0 31 10

Policy 9 121 113 14 63 30 1 5

Role 8 140 150 12 21 26 27 64

Session 3 27 9 4 0 0 2 3

SSDRoleSet 3 15 18 6 4 8 0 0

User 5 54 23 2 13 0 4 4

Java mutation operators to the classes listed in Table 4. Mutation operators as defined in the muJava system

are used [33]. These include the five traditional operators and twenty three Java class related operators.

Not all methods in a class were subjected to mutation. The counts listed in Table 4 includes only

methods that were mutated. Methods that pertain to the enforcement of temporal constraints were ignored.

Methods that pertain to the initialization of policies are not mutated as these do not contribute to policy

enforcement related activities of X-GTRBAC. Also, methods that pertain to permission-role assignment

were not mutated. We did not consider permission role assignments in the case study. In addition, methods

that support functionality to be implemented in the future, were ignored. Methods dealing with hierarchy

were not mutated because it does not fall into either the A or the I hierarchy.

Eight versions of the policy enforcement module are created by injection of sequence-based malicious

faults. Table 5 lists the eight malicious faults UA ∈ M , where M is the set of malicious faults. UA1 1

through UA1 4 correspond to faults whereby the ACUT may deny a user-role activation request that is

allowed by the RBAC specification. UA2 1 through UA2 4 correspond to faults whereby the ACUT may

allow a user-role activation request that is not allowed by the RBAC specification.

9.2.2 Initialize Pset

This is Step 1 in the functional testing technique given in Section 8.1. Policy P1, shown in Table 6, is

initially derived under the pretext that the ACUT is a part of a medical center application. Four roles

denoted r1 through r4 are considered. The SSoD and DSoD constraints prevent, respectively, roles r1 and

r2 and roles r2 and r3 to be simultaneously assigned to, or activated by, more than one user. The dynamic

cardinality constraints on roles (Dr) and users (Du) are also specified.

Each mutant f ∈ F created as in Section 9.2.1 was analyzed manually and classified as a UR1, UR2,

UA1, or UA2 fault or an equivalent mutant with respect to P1. The set of equivalent mutants with respect

to P1 is referred as EqvP1
where |EqvP1

| = 28 . Each f ∈ EqvP1
was manually analyzed to reveal the

conditions to distinguish it [16]. Given the complexity of an ACUT, this could turn out to be a rather daunting

task as some of these mutants could be semantically equivalent to original program and thus are equivalent

with respect to the complete set of RBAC policies R. In the case study two of the 28 equivalent mutants

f ∈ EqvP1
were determined to be semantically equivalent to original program and were thus removed from

the set of mutants F .

The analysis of remaining 26 mutants helped us in designing P2, also shown in Table 6, with the precise
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Table 5: List of malicious faults injected into X-GTRBAC.

Fault Required effect Changes to the code∗

UA1 1 P allows activation by virtue of

user-role assignment but ACUT

does not

Method activateUserRole in GTRBACModule modified

to restrict U5 activation of an authorized role when U2 has al-

ready activated R3

UA1 2 P allows activation by virtue of no

restriction from DSoD but ACUT

does not

Method checkDSoDValid modified to prevent activation of

(U3,R3) pair if {R2, R3} ∈ DSoD, even when U3 has not acti-

vated R2.

UA1 3 P allows activation by virtue of no

restriction from dynamic user cardi-

nality but ACUT does not

The change is in the activateUserRole method in

GTRBACModule. The fault would reduce the dynamic car-

dinality of U2 by one, only under the case if U2 tries to activate

a role after activating R3 first

UA1 4 P allows activation by virtue of no

restriction from dynamic role cardi-

nality but ACUT does not

The change is in the activateUserRole method in

GTRBACModule. The fault would make the check for the va-

lidity of role cardinality of the given role to false (even if it is

originally true), only when the user activating the given role has

already activated R4

UA2 1 P restricts the given activation by

virtue of violation of user-role as-

signment whereas the ACUT allows

The change is in the activateUserRole method in

GTRBACModule. The fault would allow U4 to activate role

R2, if not permitted by user-role assignment, for only the cases

where U4 has already activated R4

UA2 2 P restricts the given activation by

virtue of violation of DSoD but the

ACUT allows

The change is in the checkDSoDValid method of class

Role. This allows U3 activation of R2 even when U3 has

already activated R3 and {R2, R3} ∈ DSoD, i.e. although

DSoD constraint is violated but the activation request is granted

UA2 3 P restricts the given activation by

virtue of violation of dynamic user

cardinality but the ACUT allows

The change is in the activateUserRole method in

GTRBACModule. While activating the given role the fault in-

creases the dynamic cardinality of U4 by one, only when U4 has

already activated R1 and R4

UA2 4 P restricts the given activation by

virtue of violation of dynamic role

cardinality but the ACUT allows

The change is in the activateUserRole method in

GTRBACModule. The fault would make the check for the va-

lidity of role cardinality of the given role to true, even when it

is originally false, only under the case when U2 attempts to ac-

tivate R2 and U5 has already activated it, thus violating the role

cardinality constraints of R2

∗ Uk and Rm, respectively, denote user k and role m
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Table 6: Policies P1 and P2.

Policy Role Dr SSoD Ss DSoD Ds UR assignment

P1 Physician (r1) 3 {(r1, r2)} 1 {(r2, r3)} 1 u1, u2, u4

Resident (r2) 1 u1, u2, u5

Registered nurse (r3) 3 u1, u2, u4

Nurse practitioner (r4) 2 u4

P2 Physician (r1) 1 {(r1, r2, r3)} 2 {(r1, r2)} 1 u1

Resident (r2) 1 {(r4, r5)} 1 {(r2, r3, r4)} 2 u1, u2

Surgeon (r3) 1 u1, u2

Registered nurse (r4) 1 u1, u2

Nurse practitioner (r5) 1 u1, u2

Nurse on duty (r6) 1 u1, u2

P1 P2

User Du User Du

Alice (u1) 2 Alice (u1) 2

Bob (u2) 2 Bob (u2) 2

John (u3) 2

Mary (u4) 2

Elie (u5) 1

aim of associating these mutants to RBAC faults with respect to P2. It is to be noted that some of the mutants

f ∈ F would still be equivalent with respect to P2, however the initial Pset would be considered adequate

as for all f ∈ F the condition f ∈ EqvP1
⇒ f /∈ EqvP2

could be satisfied. All the faults f ∈ F can now be

classified as a UR1, UR2, UA1, or UA2 fault with respect to either P1, P2 or both. The distribution of these

faults in various classes in X-GTRBAC is shown in Table 4.

The policy enforcement subsystem makes user-role assignments at the time of policy initialization. Thus

only user-role activations and deactivations are performed dynamically. While the code for user-role assign-

ment was mutated, the fault detection effectiveness of procedures used for functional testing would only

vary with respect to the simple faults generated by mutating the activation/deactivation code. This included

a total of 163 mutants listed under the columns labeled UA1 and UA2 in Table 4. Though the mutants under

the columns labeled UR1 and UR2 are used for constructing the Pset, they do not effect the fault detection

of procedures. Hence UR1 and UR2 mutants are not discussed further in this paper.

9.2.3 Generate Tset

This is Step 2 of the functional testing technique given in Section 8.1. Note that each T ∈ Tset could be

generated by using any of the three procedures A, B or C. As the purpose of this case study is to perform

comparative analysis of the three procedures, three test sets TsetA, T setB, T setC were generated corre-

sponding to the application of procedures A, B and C respectively.

In Procedure A one FSM is generated automatically for each policy in Pset. We refer to these as

complete FSM’s, FSM(P1) and FSM(P2). As there are no dynamic user-role assignments in X-GTRBAC,

FSM(P1) and FSM(P2) contain state transitions corresponding only to user-role activations and deactiva-

tions. In Procedure B, this characteristic of X-GTRBAC leads to complete FSM’s for H1 and H2. There is

no FSM corresponding to H3. For H4 there are five FSM’s for P1 and two for P2, one corresponding to each

user. For H5 there are four FSM’s for P1 and six for P2, one corresponding to each role. As the number of
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users was small, we did not group them further, hence H6 was not applied.

As the ACUT state was observable, the transition cover set obtained from testing tree Tr as explained in

Section 2.2 served as the test sets TsetA and TsetB for procedures A and B. Each test is of the form (r, q),

where r = r1, r2, . . . , rk−1, rk, is a sequence of k > 0 requests that belong to the input alphabet I and q =

q1q2, . . . ,

qk−1, qk is the expected state transition sequence. For Procedure B tests generated by applying H3, H4,

and H5 were combined in four different ways: T (H3) ∪ T (H4), T (H3) ∪ T (H5), T (H4) ∪ T (H5), and

T (H3) ∪ T (H4) ∪ T (H5), where T (x) denotes the test set generated by applying heuristic x.

In Procedure C, four pools of 1000 fixed-length tests were generated randomly corresponding to both

FSM(P1) and FSM(P2). We refer to these pools as RT4, RT6, RT10, and RT100 that contain, respectively,

tests of length 4, 6, 10, and 100. These specific lengths were selected as they are comparable with the length

of the longest paths in the test tree’s for P1 and P2 which are 8 and 7 respectively. We considered test

sequences of lengths smaller as well as significantly larger than the longest length. Note that tests generated

by applying Procedure A vary in length from 1 to 8 for P1 and 1 to 7 for P2. However, the distribution by

length is not uniform. The advantage of using various pools of fixed length is that it permits investigation of

the impact of length of a test suite on its fault detection effectiveness.

A test t ∈ RTk of length k ∈ {4, 6, 10, 100} is constructed by applying randomly generated requests

r = r1, r2, . . . , rk−1, rk in succession to FSM(P ), P ∈ {P1, P2} and determining the corresponding state

sequence q = q1q2, . . . , qk−1, qk. Request ri, 1 ≤ r ≤ k, is generated by selecting randomly user u ∈ U ,

role r ∈ R and an input i ∈ {AC,DC} from P ∈ {P1, P2}.

Five test suites containing 100 tests each were created through random selection of tests from each pool.

This led to a total of 20 test suites–each containing 100 tests. We label these test suites as RTij where

i ∈ {4, 6, 10, 100} is the length of each test in the suite, and 1 ≤ j ≤ 5, is its identifier. Table 7 shows

the number of tests in each test suite generated by applying each of the three test generation procedures

to policies P1 and P2. The maximum length of tests generated using each of the three heuristics and the

complete FSM is listed below. Note that the maximum length of tests generated from H1 and H2 is the same

as that of tests generated using the complete FSM.

Policy Complete FSM H3 H4 H5

P1 8 40 3 4

P2 7 24 4 3

9.3 Execute and evaluate tests

This corresponds to Steps 3 and 4 in the functional testing technique. Two test adequacy criteria were used.

One criteria is based on mutation. It required that an adequate Ti distinguish all non-equivalent mutants,

i.e. T1 and T2 should be able to distinguish all f ∈ {F − EqvP1
} and f ∈ {F − EqvP2

} respectively. The

second criteria is based on malicious faults. It required that an adequate Ti detect all malicious faults, i.e.

T1 and T2 should be able to distinguish all m ∈ {M − Eqvm
P1
} and m ∈ {M − Eqvm

P2
} respectively. The

set Eqvm
P ∈ {P1, P2} denote the set of malicious faults equivalent with respect to P .

All non-equivalent mutants and malicious versions of X-GTRBAC were executed against the generated

T ∈ Tset. Mutant execution was done automatically by the muJava tool. The tool also reports counts

of distinguished and live mutants. Malicious versions were executed using a test harness. The harness

integrated three tasks: test generation as describe earlier, test execution by input to a malicious version, and
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Table 7: Size of test suites generated using Procedures A, B, and C and policies P1 and P2. T1 is generated

from P1 and T2 from P2. |T | denotes the number of elements in set T .

Procedure Heuristic |T1| |T2| Comments

A None 1,548,847 2,150,05 These tests are generated from complete FSM.

B H1 1,548,847 2,150,05 FSMs generated using H1 and H2 are identical

to complete FSM as X-GTRBAC uses static user-

role assignment.

H2 1,548,847 2,150,05

H3 1 1 Only a single sequence of activation and deactiva-

tion requests is used as a test. This sequence was

generated manually.

H4 159 849

H5 337 63

H3+H4 160 850

H3+H5 338 64

H4+H5 496 912

H3+H4+H5 497 913

C Random 2000 2000 There are 20 test suites each containing 100 tests.

Test suites for a given length i are not necessarily

disjoint as these are selected randomly from pool

RTi.

response analysis. The observed response was compared against the expected response, the latter being a

part of a test case itself.

Under columns labeled P1 and P2, Table 8 lists the percentage of simple and malicious faults f ∈ {F −

EqvP1
}, m ∈ {M −Eqvm

P1
} and f ∈ {F −EqvP2

}, m ∈ {M −Eqvm
P2
} detected by test suites T1 and T2 re-

spectively for all the procedures. Note that as each RTi signifies a set of test suites {RTi1, RTi2 . . . , RTi5},

therefore the fault detection effectiveness of RTi in Table 8 represents the average effectiveness of test suites

{RTi1, RTi2 . . . , RTi5}.

9.3.1 Enhance Pset

This corresponds to Step 5 in the functional testing methodology. Table 9 illustrates the fault detection

effectiveness results for the complete test sets Tsetx = {T1, T2}, x ∈ {A,B, C} corresponding to the

usage of three procedures A, B and C. At this point we observe that only the versions of Tset generated

using Procedure A i.e. TsetA, and RT100 are adequate with respect to both the adequacy criteria. Note that

the versions of TsetB generated by applying H3, H4, and H5 are not adequate with respect to any of the two

adequacy criteria. However combining the tests generated using the individual heuristics provides complete

fault coverage with respect to simple faults. As we considered our stopping criteria to be based on complete

coverage of simple faults, hence functional testing corresponding to all the procedures can be terminated.

If a tester were to use Procedure B, combining the test suites obtained by applying H3, H4 and H5 is the

best option. For Procedure C, if RT100, RT10 or RT6 is not used then additional iteration requiring a new

policy and starting at step 2 is needed for RT4. In the case study we terminated functional testing for all

three procedures as they were found adequate with respect to our stopping criteria of complete coverage of
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Table 8: Fault detection effectiveness (in %) of test suites generated from policies P1 and P2.

Procedure Heuristic UA1 UA2 Malicious

P1 P2 P1 P2 P1 P2

A None 100 100 100 100 100 100

B H3 98.50 98.60 94.11 97.80 0 0

H4 96.92 95.65 74.11 84.61 75.00 100

H5 83.00 88.40 71.76 70.32 25.00 0

H3+H4 98.46 100 97.64 97.80 75.00 100

H3+H5 98.46 100 97.64 100 25.00 0

H4+H5 100 100 98.87 98.90 87.50 100

H3+H4+H5 100 100 100 100 87.50 100

C RT4 91.07 93.04 75.58 87.47 42.50 60.00

RT6 100 99.72 97.20 96.48 60.00 100

RT10 100 100 98.60 99.20 82.50 100

RT100 100 100 100 100 100 100

Table 9: Fault detection effectiveness (in %) of combined test suites generated using P1 and P2.

Procedure Heuristic UA1 UA2 Malicious

A None 100 100 100

B H3 99.00 98.00 0

H4 96.00 82.00 75.00

H5 88.00 71.00 25.00

H3+H4 100 98.00 75.00

H3+H5 100 100 25.00

H4+H5 100 99.00 87.50

H3+H4+H5 100 100 87.50

C RT4 94.50 86.75 47.50

RT6 100 100 70.00

RT10 100 100 82.50

RT100 100 100 100
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simple faults.

9.4 Case study: Analysis of results

Number of tests generated: From Table 7 we observe a significant variation in the number of tests generated

from the three procedures. As expected, Procedure A generates the largest number of tests–about four

thousand orders of magnitude more than those generated using H4 and H5. The maximum length of tests

generated using H4 and H5 is also about one-half that of tests generated using the complete FSM. Note that

it is by design that only one test is generated when using H3 though it has the maximum of lengths of all

tests generated. As discussed later, length of a test impacts its cost and hence the cost benefit ratio of a test

generation procedure.

Fault detection effectiveness: We observe from Table 9 that as expected complete FSM based test gener-

ation (Procedure A) has 100% fault detection effectiveness for both simple and sequence-based malicious

faults. Neither of the individual test suites generated through Procedure B using each of H3, H4, and H5

is adequate with respect to any of the two adequacy criteria. Certainly one would expect this result given

the “isolationist” nature of each heuristic and the significantly smaller number of tests generated by these

heuristics as compared to the number of tests generated from the complete FSM. Despite this inadequacy,

we stopped adding new policies as the combined set of tests generated using H3, H4, and H5 is adequate

with respect to simple faults.

Given that the FSM’s generated using any heuristic contains only “local” information about a policy, we

do not expect any single heuristic to generate a fairly good test suite. However, combining their respective

test suites enables the exploitation of locality information across the FSM’s that led to an adequate test

suite. It is interesting to observe that none of the test suites generated using Procedure B is able to detect

all malicious faults. This observation leads to the recommendation that black box testing without the use of

code coverage assessment, will likely be unable to detect some malicious faults.

The CRTS strategy: We observe from Table 9 that except for RT4, all randomly generated test suites are able

to achieve complete detection, on the average, of simple faults. What Table 9 does not show explicitly is that

for RT4 at least one of the five pools of 100 tests is unable to detect some simple faults. It can be observed

that the fault detection effectiveness of random test suites of same length is higher for an RTi ∈ T2 in

comparison with corresponding RTi ∈ T1. This observation support our assertion (Section 7.3)that random

test suites of lengths comparable with the longest test sequence generated using Procedure A (8 for P1 and 7

for P2) are expected to have good fault detection. Moreover it can also be easily observed that fault detection

effectiveness increases with the increase in length of tests in the CRTS test suites.

Notice from Table 9 that the average effectiveness of randomly selected tests, each of length 6, in

detecting UA1 and UA2 faults is the same as that of similarly selected tests of sizes 10 and 100. This

observation indicates the existence of an optimal length of test suites that is good enough to obtain adequacy

with respect to simple faults. In the case study this length is close to 6. However, there is at least one pool of

100 tests generated randomly each of length 4, 6, and 10, that is unable to detect all malicious faults; those

of length 100 did detect all malicious faults. We performed additional experiments to find the least i such

that each of the five pools of 100 randomly generated test suite RTi detects all malicious faults injected.

This number turned out to be 26.

Cost-benefit analysis: While the cost of testing consists of several components, here we consider the total

number of state variable queries performed in the execution of a test suite as its cost. The cost of Tset

generated by a test generation procedure directly depends on lengths of tests in each test suite contained
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Table 10: Cost benefit data for Procedures A, B, and C. All values have been rounded to the nearest decimal.

Procedure Heuristic Simple Faults Malicious

P1 P2 Combined P1 P2 Combined

A None 1454422 99203 1444727 27452227 15872604 29436303

B H3 5 2 7 N/A N/A N/A

H4 11 129 130 234 17226 3105

H5 43 2 41 2477 N/A 2604

H4+H3 14 111 122 367 17514 3286

H5+H3 39 3 39 2877 N/A 3148

H4+H5 42 110 147 908 17480 3406

H4+H5+H3 47 111 153 1023 17768 3561

C RT4 322 167 438 13333 24000 16000

RT6 402 231 589 12000 36000 16000

RT10 666 377 982 14286 60000 22857

RT100 6622 3750 9816 125000 600000 200000

N/A: Cannot be computed as no faults were detected.

Combined: Cost/benefit ratio for Tset corresponding to Pset = {P1, P2}.

in Tset. Recall that each test consists of a sequence of k requests. Hence the length of each test is the

number of request it contains. Note that here we ignore the cost of generating additional policies in the test

enhancement phase, a largely manual and often a difficult task. We only consider the cost associated with

the Tset obtained when testing stops.

Table 10 lists the computed cost/benefit ratio (CBR) for all the procedures used in the case study. CBR

is computed as the ratio of cost of a test suite to the number of fault detected by that test suite. It is useful to

examine the CBR values in the context of the fault detection effectiveness shown in Tables 8 and 9. While

the CBR is the least for H3, it is certainly not a recommended option alone due to its low fault detection

effectiveness for malicious faults. Clearly, among the heuristics the CBR for the combination of H3, H4,

and H5 is significantly less than that for Procedure A while its fault detection effectiveness is close to that

of Procedure A. However, RT10 also has a significantly lower CBR as compared to that for Procedure A and

almost the same effectiveness as that of the H3, H4, and H5 combination.

Given its high fault detection effectiveness and a cost reduction factor of over 100 against Procedure A,

RT100 appears to be the best option when Procedure A is impractical. In fact the cost could be reduced

further without effecting the effectiveness by reducing the length of randomly generated tests. While this

conclusion seems the best for the given case study, we recommend that both random test generation and

generation based on a combination of H3, H4, and H5 be used. Doing so CBR remains about 100 times less

than that of Procedure A while the risk of faults remaining undetected may reduce.

9.5 Case study: Discussion

Test automation: Manual generation and execution of tests can be costly and error prone. The table below

shows automation used in the case study with respect to steps in the proposed functional testing technique

described in Section 8.1. Note that Step 3 is partially automated as fault removal requires human interven-

tion. Steps 1 and 5 require manual construction of a new policy. While random generation of policies is

feasible, we did not take this course. Instead, policies were generated manually.
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Steps Automated ?

1 No

2 Yes

3 Yes, partially

4 Yes

5 No

What test generation procedure to use?: It is obvious that Procedure A based on complete FSM is likely

to be impractical except in environments with a small number of users and roles. As a rule of thumb,

Procedure A is not recommended when the number of user-role combinations exceeds 20 leading to about

1.4 million tests.

For most organizations the best strategy seems to be a combination of heuristics based and CRTS strate-

gies. H3 alone is not sufficient, though as discussed later, a combination of H3, H4, and H5 would be a good

choice. Again, as a rule of thumb, one may use the length of the longest path from the root of the testing

tree generated from the complete FSM as an estimate for the length of randomly generated tests. Given the

set of users U , roles R, and permissions Pr, the length of the longest path in the testing tree corresponding

to the complete FSM is bounded by 2|U ||R| + |Pr||R| + 1.

The variation in fault detection effectiveness with the length of tests in a CRTS test suite, witnessed in

the results given in Table 9, highlights the obvious fact that tests of longer lengths are able to exercise more

number of paths in FSM(P ). Another observation worth noting is that even a single test case used in H3 is

able to provide good coverage of simple faults but fails to detect any malicious fault. Reason being that the

effect of simple faults in P is observed across much larger number of paths in FSM(P ) as compared to the

number of paths across which malicious faults effect.

What heuristics to use ? In the case study we found that the fault detection effectiveness of a combined set

of tests generated from H3, H4, and H5 is superior to that of tests generated using any single heuristic. This

is likely to be the case in most testing environments that use Procedure B primarily due to the “isolationist”

nature of each heuristic. For example, heuristic H4 generates one FSM for each user and thus does not

model the dynamic role cardinality constraints. Hence it would not be possible to further improve fault

detection of H4 by selecting policies that fully exploit the dynamic role cardinality constraints. The results

of the case study support the obvious fact that scaling the model by applying H1 through H6 might have a

negative impact on the fault detection effectiveness of the tests generated.

State observability: In the case study we assumed state observability. This led to the use of testing tree as

a source for test generation. However, instead of using the testing tree, one could directly generate tests

from an FSM model using alternative methods such as transition tour [3] and the UIO [40]. As long as

the methods cover all transitions and states, the fault detection effectiveness for simple faults will remain

the same as that observed in the case study. However, the fault detection effectiveness for sequence-based

malicious faults, as injected in the case study, will not be same.

It is simple to observe from the FSM given in Figure 2, that if a transition tour covers the transi-

tions δ(0000, AS11), δ(1000, AS21) and δ(1010, AC11) corresponding to the path (0000) → (1000) →

(1010) → (1110) and does not cover the last transition, i.e. δ(1010, AC11) across the path (0000) →

(0010) → (1010) → (1110) then a sequence-based malicious fault that leads to a transfer fault in this

transition, only across the later path, will not be detected.

The most effective method to use [43] when states are not observable is the W-method [9]. Achieving

state observability might require access to source code. In the absence of such access, one needs to rely on
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the W-method that uses the state characterization set to determine if an implementation has indeed moved to

the expected state. The fault detection effectiveness of the generated tests will now depend on the accuracy

of the estimate of the umber of states in the ACUT [9].

How to enhance Pset ? The functional testing technique (Section 8.1) requires an initial set Pset of policies,

which is enhanced in Step 5 if the adequacy criteria is not satisfied. Various approaches for construction of

initial Pset have been already discussed in Section 8. Construction of additional policies, required during

the test enhancement phase when Tset is found inadequate, would require a careful analysis of the adequacy

data. The analysis would reveal the conditions required to satisfy the criteria, and would lead to a test case

t. However, one needs to go a step further and construct a policy that would lead to the generation of t or

any other test that satisfies the criteria. Given the complexity of the ACUT, this could turn out to be a rather

daunting task. Policies with empty user or role set, and their combinations, might also be useful in checking

whether the ACUT implements syntactically valid though practically useless policies.

What Adequacy Criteria to Use ? Step 5 in the functional testing procedure requires that test generation stop

when an adequate meta test set Pset and set of test suites Tset has been obtained. While the white-box

adequacy criteria used in the case study is based on first order mutations and malicious faults, one could use

other criteria in practice. For example, one could use one or more of a number of control flow [48] and data

flow [10, 39] based coverage criteria.

A number of formal [10, 21, 34] and case studies point to the fault detection effectiveness of various

criteria [20, 37, 47]. Such studies should serve as a guide in making a decision on the stopping criteria.

Depending on the availability of resources, one might decide to use the less effective or the more effective

of the coverage criteria. Notice that not using a quantitative stopping criteria will likely lead to a weaker

Tset as would be the case had we performed testing with Pset = {P1} or Pset = {P2}.

Note that a second adequacy criteria in the case study was based on malicious faults. This obviously

cannot be used in practice as one does not know in advance whether or not any malicious faults are present

in the code. Nevertheless, the difficulty of detecting malicious faults, as is evident from the data in Tables 8

and 9, suggests that at least some form of code based adequacy criteria be used. Certainly, code inspections

are also recommended.

The above mentioned approach to stop testing is feasible when code for ACUT is available and can be

successfully compiled. If not, then one needs to resort to other approaches. One such approach is based on

statistical considerations [14]. We do not have sufficient data to to assess the goodness of such an approach

while testing an ACUT. In the absence of such data it becomes important that the ACUT be tested form a

variety of policies derived as discussed earlier.

9.6 Case study: Lessons Learned

We consider that case study helped us in learning following key lessons, which could be of particular interest

to a practitioner in applying proposed approach for test generation on a RBAC system.

1 Though conformance test generation for RBAC systems using FSM based behavior modeling pro-

vides good fault coverage, yet could be prohibitively expensive. A best balance between cost and

effectiveness could be obtained by using the CRTS strategy. The CRTS strategy might also be effec-

tive in other test generation problems where applications are modeled as FSM but complete test suite

cannot be generated because of high cost.

2 The case study reaffirms the well recommended advise for usage of white box criteria in test gener-
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ation. Although conformance testing is able to establish ACUT correctness with respect to a single

policy but, functional testing requires usage of white box coverage criteria as a feedback mechanism

for establishing ACUT performance with respect to all policies.

9.7 Case study: Threats to validity

The threats to validity [4, 46] of our case study are briefly summarized below.

Conclusion Validity: It is related with our ability to draw conclusion about the relation between CBR

and fault detection effectiveness of the usage of three procedures in functional testing of an ACUT. The case

study used only one initial Pset, derived using the program mutation adequacy criteria. The experiment

described in the case study could also be conducted by varying the initial Pset and the tests adequacy

criteria. This might effect the cost of various procedures and hence the CBR. However, we believe that in

any case, the relative CBR of various procedures will likely remain as in Table 10 because heuristics reduce

the model size, and hence the size of the test set and the size of randomly generated tests is fixed a priori.

Internal Validity: It is related with the concern that factors other than the variation in test suites can

effect the fault detection results for the usage of the three procedures in functional testing of an ACUT. The

test suites for all the procedures were executed against the same versions of X-GTRBAC which were either

injected with simple or malicious faults. Note that simple faults were injected automatically by muJava.

The fault detection for simple faults was measured by automatically executing the test suites from the three

procedures against the mutants under a common operating environment. Tests were executed manually

against the malicious faults under same operating environment.

External Validity: It is concerned with generalization of our results for other implementations of access

control systems. Evaluation of the proposed procedures for test generation was conducted using one imple-

mentation, namely X-GTRBAC. Therefore, we cannot generalize the fault detection effectiveness results to

other implementations. Further, X-GTRBAC is a stand alone policy enforcement application. While it can

be used as a front end to an application, it is not embedded in it. Our case study did not make any use of

X-GTRBAC features to actually enforce access control in an application such as a database engine. Fault

detection effectiveness of all procedures described might be different than reported in the case study in the

event the access control mechanism interacts in complex ways with the application.

The case study evaluates a proposed approach to test generation that is specific to access control imple-

mentations that employ RBAC policies. While the proposed approach could be adapted to support testing

of other forms of access control, such as DAC and MAC [42], we cannot generalize the results of our case

study to implementations of such protocols. Furthermore, new approaches to specifying secure information

flow make use of typed programming languages such as Jif [35].

Construct Validity: It is related with the validity of the “constructs” we used for measurement. Fault

detection effectiveness of a test suite was measured using the number of both simple and malicious faults

detected by that suite. A well known issue in using first-order mutations for effectiveness measurement

is whether or not the mutants are representative of real faults. Researchers have found that the use of

mutation as a tool for effectiveness evaluation achieves trustworthy results [4, 15]. Nevertheless, in addition

to mutants, we also used malicious faults in our case study.

Malicious faults were injected manually without any “real” malicious intention. There certainly exists

the possibility that a malicious programmer may inject faults that are much more difficult to find than the

ones we injected. It is hard to conduct a case study that would inject “really malicious” faults except when

a set of such faults, found in real systems, is available. While data on access control vulnerabilities is
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available [26], we do not know what fault in code led to these. Further, these vulnerabilities are not specific

to RBAC. Hence, we did not have any “real life” data on malicious faults to consider in the case study.

The cost of a procedure was measured as a function of total length of all the tests in its test suite.

Although there are various other factors such as generation of initial set of policies and test enhancement

that contributes to the total cost of a procedure but there value would have been same for all the three

procedures.

10 Related Work

Ferraiolo and Kuhn [18] proposed Role Based Access Control (RBAC). Although some research has been

reported in the verification of RBAC and related policies [1, 17, 32, 25], little has been reported in the testing

of software implementations of access control policies. Chandramouli and Blackburn use model-based

approach for security functional testing of a commercial database system that employs Discretionary Access

Control (DAC) [8]. Their work differs substantially from ours in the creation of tests. In contrast to the

FSM based approach proposed here, Chandramouli and Blackburn create tests from system specifications,

expressed as Software Cost Reduction (SCR) language, by using predicate based testing approach. Their test

generation approach does not consider the issue of determining the fault detection effectiveness of generated

tests.

The automata theoretic based approaches for test generation [9, 23] use a FSM model that explicitly cap-

tures the expected behavior of the implementation . The FSM model of a software design can be viewed as a

directed graph with vertices representing the program state and arcs indicating the input/stimuli that change

the program state. Each test case consists of a sequence of inputs which when applied to the implementation

under test would result in state changes and an expected behavior. The state changes are monitored for ver-

ifying the adherence of implementation to its design. The FSM model representing a program can be very

huge as the number of states in the FSM grows exponentially. This phenomenon is traditionally referred to

as state explosion. The number of states increases as the model attempts to capture more software execution

details. State explosion would also result into test cases explosion.

Various techniques for state space reduction in FSM based testing and verification have been proposed.

Friedman et al. [22] consider a projected state machine of the original FSM from which tests are generated

using coverage criteria and test constraints. Heuristic H6 in Section 7.2 is similar to the projected state

machine concept used in [22]. Norris and Dill [27] present a state space reduction technique based on

structural symmetry information in the system description. Though their primary aim is to aid in verification

but the approach can also be used for testing. Test case reduction can also be achieved by a combinatorial

approach in which the generated tests ensure coverage of n-way combinations of the test parameters [11].

It is important to note that verification techniques achieve state space reduction by using state abstrac-

tions and keep minimal necessary information that can permit verification of a property. However while

testing a system, it is essential that complete system information is checked for validity which may not be

possible by using state abstraction. To avoid test explosion, an alternate approach in testing could be based

on random selection of a fixed number of paths from the non-reduced FSM. We examined both these ap-

proaches, in relation with test generation from complete FSM, to determine the impact of state abstraction

and random path selection on fault detection effectiveness.

Policy can also be specified as a programmer can embed information flow policies in the program using

types that are extensions of existing types, e.g. type int is extended in Jif [35] by allowing the declaration

to include labels that express policy restrictions. In such cases there is no explicit policy P specification;
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the policy is embedded in the implementation. Perhaps such specification is available, or could be derived

based on policy requirements.

11 Summary and conclusions

A functional test generation technique that uses one of the three conformance testing procedures is proposed

and evaluated. The technique raises the task of testing RBAC implementations from an ad hoc to a formal

level so that it can be automated. Exhaustive testing, proposed in Procedure A, of any but the simplest of

RBAC policies is impractical when the number of user-role combinations is large (say over 100). Proce-

dure B utilizes state abstraction and heuristics to model the expected behavior of an RBAC implementation.

The heuristics lead to a much smaller and, in many cases, practically executable set of tests. Though state

abstraction reduces the size of model, it results in a localized view of the system which raises the possibil-

ity of undetected faults in the ACUT. In Procedure C, we investigated an alternate approach for test suite

reduction by selecting random paths of fixed length from the original non-reduced model of the system.

An empirical evaluation was carried out to assess the cost, fault detection effectiveness, and cost-benefit

ratio associated with the usage of the three proposed procedures in functional testing of an ACUT. Two

types of faults were injected into a prototype ACUT: first order mutants and malicious faults. Procedure A,

as expected, was able to provide complete fault coverage for both the simple and malicious faults, but led to

high CBR. Procedure B also achieved complete coverage for simple faults but failed to detect one malicious

fault. Despite the low CBR of Procedure B, its use is not recommended when ACUT code is not available

and white box coverage measures cannot be used. Procedure C detected all the simple and malicious faults

while exhibiting CBR slightly above the CBR of Procedure B.

The heuristics only consider a local view of the system and therefore those faults, that are only exhibited

across very small number of paths in the complete FSM are difficult to get detected. The CRTS procedure is

better able to execute such paths as it randomly generates the tests through path selection from the complete

FSM. The case study indicates that Procedure C can be most effective and cost efficient in the detection of

both types of faults in an access control system. However, generalization of the observations for broader

range of implementations of access control systems would require further empirical studies and evaluation.

The tests generation strategy proposed is with respect to a definition of RBAC. Though not explained

in this paper, the proposed strategy can also handle variations such as various control flow dependency

constraints and other non-temporal constraints in the finite state model. Also, the effectiveness evaluation

described above is with respect to the proposed RBAC fault model, other fault models could also be de-

signed.
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