
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005
2143

PAPER

An RBAC-Based Access Control Model for Object-Oriented
Systems Offering Dynamic Aspect Features

Shih-Chien CHOU†a), Nonmember

SUMMARY This paper proposes a model for access control within
object-oriented systems. The model is based on RBAC (role-based access
control) and is called DRBAC (dynamic RBAC). Although RBAC is pow-
erful in access control, the original design of RBAC required that user-role
assignments and role-permission assignments should be handled statically
(i.e., the assignments should be handled by human beings). Nevertheless,
the following dynamic features are necessary in access control within a
software system: (a) managing dynamic role switching, (b) avoiding Tro-
jan horses, (c) managing role associations, and (d) handling dynamic role
creation and deletion. DRBAC offers the dynamic features. This paper
proposes DRBAC.
key words: access control, security, role-based access control (RBAC),
object-oriented system

1. Introduction

Access control within a system prevents information leak-
age during system execution. The prevention can be
achieved through information flow control. Many informa-
tion flow control models are available [1]–[10], in which
RBAC [11] is frequently applied. The original RBAC re-
quired that user-role assignments and role-permission as-
signments should be handled statically (i.e., the assignments
should be handled by human beings). Statically handling
the assignment increases the workload of human beings and
the handling may be error-prone for complicated programs.
An alternative approach is dynamic handling. We define dy-
namic handling as using computer programs for the han-
dling. The need for dynamic user-role assignment is exhib-
ited by dynamic role switching. The switching changes user-
role assignment during program execution. For example,
suppose a company will automatically promote a customer
to a VIP when the customer’s total consumption amount
passes a threshold. Then, a customer playing the role “cus-
tomer” will be dynamically switched to the role “VIP” when
his consumption amount passes the threshold.

The need for dynamic role-permission assignment is
exhibited by avoiding Trojan horses [1] and managing role
associations. A Trojan horse occurs when an object’s in-
formation is leaked indirectly. As to role associations, they
are relationships among roles. Different role associations
may result in different role-permission assignments. Since

Manuscript received July 14, 2004.
Manuscript revised September 21, 2004.
†The author is with the Department of Computer Science and

Information Engineering, National Dong Hwa University, Hualien
974, Taiwan.

a) E-mail: scchou@mail.ndhu.edu.tw
DOI: 10.1093/ietisy/e88–d.9.2143

role associations may dynamically change during the execu-
tion of a system, role-permission assignments in a program
may be dynamically changed. For example, suppose a cus-
tomer can get a supplementary item when he orders an item,
in which the supplementary item is selected from a list. If
the customer and the manager managing the order are not
friends, the customer selects the supplementary item from a
default list. On the other hand, if they are friends, an extra
list is provided. In this example, the permission on the extra
list for the customer is decided by the association “friends”
between the roles “manager” and “customer”. Since friend-
ship may change anytime during the execution of a system,
the permission on the extra list for the customer may change
dynamically.

In addition to dynamic user-role and role-permission
assignments, dynamic role creation and deletion should also
be handled. For example, when a customer orders an item
from a company, a new “customer” role should be added.
When the transaction finishes, the role should be deleted.
According to the above description, a model that controls in-
formation access within object-oriented systems should of-
fer the following dynamic features: (a) managing dynamic
role switching, (b) avoiding Trojan horses, (c) managing
role associations, and (d) managing dynamic role creation
and deletion. We involved in the research of access con-
trol for years and designed models for that control [9], [10].
Although our previous work provides partial dynamic fea-
tures, they are insufficient. For example, they fail to handle
dynamic role switching. We thus designed a new model DR-
BAC (dynamic RBAC) that offers all the dynamic features.
This paper presents DRBAC.

2. Related Work

Mandatory access control (MAC) [6]–[8] is useful in access
control. An important milestone of MAC is that proposed
by Bell&LaPadula [6], which categorizes the security lev-
els of objects and subjects. Access control in the model
follows the “no read up” and “no write down” rules [5],
[6]. Bell&LaPadula’s model was generalized into the lat-
tice model [7], [8]. Although MAC avoids Trojan horses, it
does not offer other dynamic features. The model in [2] uses
access control lists (ACLs) of objects to compute ACLs of
executions. A message filter is used to filter out possibly
non-secure information access. Flexibility is added by al-
lowing exceptions during or after method execution [3]. The
model fails to offer dynamic features, except avoiding Tro-

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



2144
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005

jan horses. The decentralized label approach [1] marks the
security levels of variables using labels. A label is composed
of one or more policies, which should be simultaneously
obeyed. Join operation avoids Trojan horses. Nevertheless,
the model fails to offer other dynamic features. Role-based
access control (RBAC) models [11] can also be used in ac-
cess control. Since RBAC was not designed for access con-
trol within software systems, it fails to offer the dynamic
features. The model in [4] applies RBAC for access control.
It classifies object methods and derives a flow graph from
method invocations. From the graph, non-secure informa-
tion access can be identified. The model fails to offer the
dynamic features.

3. The Model

When an object-oriented system is executing, objects are in-
stantiated from classes and messages are passed among ob-
jects. During system execution, the system’s variables are
protected independently because variables may be of differ-
ent sensitivity [15].

3.1 DRBAC

DRBAC grants variable access rights to object methods. It
extends RBAC by adding a special component DSTA (dy-
namic statement set) to offer dynamic features. DRBAC
can be embedded in object-oriented systems. An execut-
ing object-oriented system embedded with DRBAC is com-
posed of the component eoosys, which is the original object-
oriented system and acp, which is the access control policy
of DRBAC. The components eoosys and acp are defined
below.

Definition 1: eoosys = (OBJ,MS G), in which

a. MS G is a set of message passed among object meth-
ods.

b. OBJ is a set of objects. DRBAC regards objects as
roles. An object is composed of attributes and methods.
The code mdcd of a method in a system embedded with
DRBAC is defined as follows:
mdcd = LANGS T A ∪ DS T A, in which LANGS T A
contains normal language statements and DS T A con-
tains statements to offer dynamic features as described
below:

b.1. Role instantiation and deletion operators. These
operators normally correspond to constructors and
destructors of programming languages.

b.2. setRole(ob ject, role). It assigns a role to an ob-
ject. This statement and the next one handle dy-
namic role switching.

b.3. isRole(ob ject, role). It checks the role of an ob-
ject.

b.4. setAssociation(association, role list). It sets as-
sociations among roles. This statement and the
next two manage role associations.

b.5. breakAssociation(association, role list). It
breaks associations among roles.

b.6. withinAssociation(association, role list). It
checks whether the roles are within a specific as-
sociation.

Definition 2: acp = (ROLE, AS O,RPER, APER,CNS ),
in which

a. ROLE is the set of roles involved in a system.
b. AS O is a set of role associations. An association con-

tains roles.
c. RPER is a set of regular role permissions. A permis-

sion is a capability list for a method.
d. APER is a set of association permissions. RPER

is used when a role is not within a role association
whereas APER is used when a role is within a role as-
sociation.

e. CNS is a set of constraints constraining the DRBAC
components.

3.2 Access Control and Features of DRBAC

When executing a program embedded with DRBAC, the ac-
cess control policy ensures secure access of variables. The
following conditions should be true for the ensuring. In
defining the conditions, we assume that: (1) the value de-
rived from the variables “var1”, “var2”, . . . , “varn” is as-
signed to the variable “d var”, (2) the derivation is per-
formed in the method “ob j1.md1,” and (3) the permission
of “ob j1.md1” is “permd1.”

First access control condition: {{var1,R}, {var2,R}, . . . ,
{varn,R}, {d var,R}} ⊆ permd1

Second access control condition: {d var,W} ∈ permd1

The notation “{var1,R}” and “{d var,W}” respectively
state that “var1” is allowed to read and write. The first con-
dition requires that the method “ob j1.md1” should be al-
lowed to read the variable “d var” and the variables deriving
“d var” because “ob j1.md1” reads the variables. The sec-
ond condition requires that the method “ob j1.md1” should
be allowed to write “d var” because the variable is written
within the method. After the variable “d var” gets the de-
rived information, the access rights of “d var” should be
changed to avoid Trojan horses using join operation [1].

Definition 3: If “d var” is derived from “var1”, “var2”,
. . . , “varn”, the join operation will set “Rd var”, “Wd var”
as follows (in the following formulas, “Rvar” and “Wvar”
are respectively the sets of methods that can read and write
the variable “var”):

Rd var = Rvar1 ∩ Rvar2 ∩ . . . ∩ Rvarn

Wd var = Wvar1 ∪Wvar2 ∪ . . . ∪Wvarn

The resulted Rd var and Wd var should be used to update



CHOU: AN RBAC-BASED ACCESS CONTROL MODEL FOR OBJECT-ORIENTED SYSTEMS OFFERING DYNAMIC ASPECT FEATURES
2145

the permissions containing the variable “d var”.
As describe in Sect. 1, DRBAC offer the following dy-

namic features:

a. Managing dynamic role switching. This feature is pri-
marily achieved by the statement “setRole”, which dy-
namically switches role. For example, a regular cus-
tomer can be dynamically switched to be a VIP using
the statement.

b. Avoiding Trojan horses. We formally prove that DR-
BAC offers these features as follows.
A Trojan horse results when a method “md2” leaks the
information retrieved from “md1” to “md3” in which
“md2” is allowed to read the information of “md1”
whereas “md3” is not. To prove that Trojan horses are
avoided, we let “var1” be a variable in “md1” which
can be read by the methods in the set “Rvar1”. Here,
“var1” can be read by “md2” but not “md3”. That is,
“md2” is in the set “Rvar1” but “md3” is not. We also let
“var2” be a variable in “md2” whose value is derived
from “var1” and other variables. After the derivation,
the read set of “var2” is modified by the join operation
to “Rvar2”. Suppose that a Trojan horse exists among
“md1”, “md2”, and “md3”. Without loss of general-
ity, we assume that “md3” can read “var2”. If this as-
sumption is true, “md3” is within “Rvar2”. However,
according to the join operation in Definition 3, “Rvar2”
is the intersection of “Rvar1” and other sets of methods
because “var2” is derived from “var1” and other vari-
ables. Since “md3” is not in “Rvar1”, “md3” is not in
“Rvar2”. This contradicts the assumption.

c. Managing role associations. This feature is primar-
ily achieved by “setAssociation”, “breakAssociation”,
and the “associationPermissions” declaration. The
statements dynamically establishes/breaks associations
among roles. The “associationPermissions” declara-
tion decides the permissions of a method whose object
is within an association.

d. Managing dynamic role creation and deletion. This
feature is offered by constructors and destructors of
classes. Although the feature is inherently offered by
every object-oriented programming language, no exist-
ing flow control model mentioned the concept of man-
aging dynamic role creation and deletion.

4. Implementation and Evaluation

We embedded DRBAC in JAVA to produce the language
DRBACL. The implementation of DRBACL temporar-
ily excludes the issues of multiple threads [12], exceptions,
timing channels [13], read channels [14], and covert chan-
nels [15]. An application written in DRBACL should first
be processed by the DRBACL preprocessor. The output of
the preprocessor is a JAVA program, which is composed of
two parts. One is the original JAVA program and the other
a security checker. During program execution, the checker
ensures secure information access within the JAVA program.

To ensure security, the security checker records the infor-
mation of DRBAC including roles, role-permission assign-
ments, user-role assignments, associations among roles, and
so on. Primary functions of DRBACL preprocessor are
listed below:

a. Record initial DRBAC information in the DRBAC
database.

b. Replace the DSTA statements “setRole”, “setAssoci-
ation”, “breakAssociation”, “isRole”, and “withinAs-
sociation” with method invocation statements. Every
DSTA statement is implemented as a method of the
class “DSTAC” created by the DRBACL preprocessor.

c. Add program code to check access control. Note that
every information access should fulfill the two access
control conditions.

d. Add program code to do the join operation and then
changes the permissions affected by the join.

Currently the security checker does most checking dy-
namically. This contradicts the static checking proposal [2],
[15]. Nevertheless, dynamic checking is impossible to be to-
tally replaced by static checking because of the dynamic fea-
tures offered by DRBAC. We used many examples to eval-
uate DRBAC, such as inventory management systems, em-
ployee management systems, and library management sys-
tems. We selected twenty students to program the examples
and then execute their programs. We collected the follow-
ing metrics data: (a) execution time of the programs without
DRBAC embedded, (b) execution time of the programs with
DRBAC embedded, and (c) number of statements that vio-
late the access control policy (per 100 LOC) in the programs
embedded with DRBAC.

We averaged the metrics data collected. The experi-
ment result is shown in Fig. 1, which depicts that the av-
eraged execution time of the programs with DRBAC em-
bedded is about four times that without DRBAC embedded.
This runtime overhead cannot be avoided because access
control is mostly checked dynamically. Moreover, about
six statements per 100 LOCs that violate the access control
policy were identified. Since statements that violate access
control policy can be identified, we believe that DRBAC is
valuable.

Currently the DRBACL preprocessor does not solve
quite a few difficult problems such as those raised by tim-
ing channels [13] and covert channels [15]. The rationales
are described below.

Fig. 1 Experiment result.



2146
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.9 SEPTEMBER 2005

a. Problems raised by timing channels
Stealing information through timing channel is
achieved by tracking the execution time of program
segments. We use the following C program segment
to explain this:

for (i = 0, c = 0; i < 1000; i++)
if (a == 1)

c += 1;

In the above program segment, tracking the execution
time of the “for” loop can guess whether the value of
“a” is 1 (i.e., a longer execution time implies that “a” is
1). To prevent this guessing, an information flow con-
trol model should identify every program segment that
may leaks information through timing channel. The
model should then adjust the program segment to pre-
vent the leakage. For example, the above program seg-
ment can be adjusted by adding code as follows to pre-
vent guessing the value of “a”. The added code may be
garbage code.

for (i = 0, c = 0; i < 1000; i++)
if (a == 1)

c += 1;
else

b += 1;
/∗ this statement may be garbage code ∗/

To do the above adjustment, the entire application
should be scanned, sliced, analysed, and then adjusted.
The DRBACL preprocessor temporarily excludes the
complicated issue. We will solve the issue in the fu-
ture.

b. Problems raised by covert channels
A covert channel refers to media such as disk file that
leaks information. We use an example to explain covert
channels. Suppose in a computer system, when an ap-
plication is abnormally stopped, the operating system
dumps the memory space occupied by the application
to a disk file. In the normal case, a debugger uses the
dumped file for debugging. Nevertheless, if an unau-
thorized user retrieves the file, he may steal the appli-
cation’s sensitive information by decoding the dumped
file. An information flow control model cannot protect
the dumped file. In fact, the protection is the respon-
sibility of the operating system. To prevent leakage
in the example, the protection system of an operating
system should cooperate with an information flow con-
trol model. Even if the protection system of an op-
erating system and the information flow control model
are compatible, implementing the cooperation is a huge
task. If the protection system of an operating system
and the information flow control model are incompat-
ible, implementing the cooperation is difficult. There-
fore, the DRBACL preprocessor excludes the compli-
cated issue in the current stage.

5. Conclusions

This paper proposes an RBAC-based access control model
to ensure secure information access during program execu-
tion. It is name DRBAC (dynamic RBAC) because it offers
dynamic features as described below:

a. Managing dynamic role switching. DRBAC uses state-
ments in DSTA to achieve this.

b. Avoiding Trojan horses. DRBAC use the join operation
to achieve this.

c. Managing role associations. DRBAC uses statements
in DSTA to achieve this.

d. Handling dynamic role creation and deletion. DR-
BAC uses the constructors and destructors of classes
to achieve this.

References

[1] A. Myers and B. Liskov, “Protecting privacy using the decentral-
ized label model,” ACM Trans. Softw. Eng. Methodol., vol.9, no.4,
pp.410–442, 2000.

[2] P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajodia, “Informa-
tion flow control in object-oriented systems,” IEEE Trans. Knowl.
Data Eng., vol.9, no.4, pp.524–538, July/Aug. 1997.

[3] E. Bertino, Sabrina de Capitani di Vimercati, E. Ferrari, and P.
Samarati, “Exception-based information flow control in object-
oriented systems,” ACM Trans. Inf. Syst. Secur., vol.1, no.1, pp.26–
65, 1998.

[4] K. Izaki, K. Tanaka, and M. Takizawa, “Information flow control
in role-based model for distributed objects,” Proc. 8’th International
Conf. Parallel and Distributed Systems, pp.363–370, 2001.

[5] V. Varadharajan and S. Black, “A multilevel security model for a
distributed object-oriented system,” Proc. 6’th IEEE Symp. Security
and Privacy, pp.68–78, 1990.

[6] D.E. Bell and L.J. LaPadula, “Secure computer systems: Unified ex-
position and multics interpretation,” Technique Report, Mitre Corp.,
March 1976. http://csrc.nist.gov/publications/history/bell76.pdf

[7] D.E. Denning, “A lattice model of secure information flow,” Com-
mun. ACM, vol.19, no.5, pp.236–243, 1976.

[8] D.E. Denning and P.J. Denning, “Certification of program for secure
information flow,” Commun. ACM, vol.20, no.7, pp.504–513, 1977.

[9] S.-C. Chou, “Embedding role-based access control model in object-
oriented systems to protect privacy,” J. Syst. Softw., vol.71, no.1-2,
pp.143–161, April 2004.

[10] S.-C. Chou, “LnRBAC: A multiple-leveled role-based access control
model for protecting privacy in object-oriented systems,” J. Object
Technology, vol.3, no.3, pp.91–120, March/April 2004.

[11] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, “Role-
based access control models,” Computer, vol.29, no.2, pp.38–47,
1996.

[12] G. Smith and D. Volpano, “Secure information flow in a multi-thread
imperative language,” Proc. 25th ACM Symp. on Principles of Pro-
gramming Languages, pp.355–364, 1998.

[13] J. Agat, “Transforming out timing leaks,” Proc. 27th ACM Symp.
on Principles of Programming Languages, pp.40–53, 2000.

[14] S. Zdancewic, L. Zheng, N. Nystrom, and A.C. Myers, “Untrusted
hosts and confidentiality: Secure program partitioning,” Proc. 18th
ACM Symp. Operating Systems Principles, pp.1–14, 2001.

[15] R. Focardi and R. Gorrieri, “The compositional security checker:
A tool for the verification of information flow security properties,”
IEEE Trans. Softw. Eng., vol.23, no.9, pp.550–571, 1997.



CHOU: AN RBAC-BASED ACCESS CONTROL MODEL FOR OBJECT-ORIENTED SYSTEMS OFFERING DYNAMIC ASPECT FEATURES
2147

Shih-Chien Chou received a Ph.D. degree
from the Department of Computer Science and
Information Engineering, National Chiao Tung
University, Hsinchu, Taiwan. He is currently an
associate professor in the Department of Com-
puter Science and Information Engineering, Na-
tional Dong Hwa University, Hualien, Taiwan.
His research interests include software engineer-
ing, process environment, software reuse, and
information flow control.


