
1

A Context-sensitive Access Control Model and
Prototype Implementation

Damian G. Cholewka1, Reinhardt A. Botha2, Jan H.P. Eloff 1
1 Rand Afrikaans University, Johannesburg, South Africa
2 Port Elizabeth Technikon, Port Elizabeth, South Africa

Key words: Access Control, Role-based Access Control, Context-sensitive, Workflow

Abstract: Role-based access control associates roles with privileges and users with roles.
Changes to these associations are infrequent and explicit. This may not reflect
business requirements. Access to an object should not only be based on the
identity of the object and the user, but also on the actual task that must be
performed, i.e. the context of the work to be done. Context-sensitive access
control considers the actual task when deciding whether an access should be
granted or not. Workflow technology provides an appropriate environment for
establishing the context of work. This paper discusses the implementation of a
context-sensitive access control mechanism within a workflow environment.
Although the prototype represents scaled-down workflow functionality, it
illustrates the concept of context-sensitive access control.

1. INTRODUCTION

Current access control mechanisms frequently burden the end-users with
unnecessary security related tasks. It may, for example, be expected from a
user to assume a specific role at the beginning of a session, resulting in
unnecessary multi-logons. Alternatively a user may automatically play the
most senior role that he may hold and consequently receive the permissions
associated with that role. The user is therefore trusted to implement the
security policy and not misuse granted privileges.

The principle of context-sensitive access control is introduced to address
these issues. Within the prototype the approach is taken that the dynamic

2 Damian G. Cholewka, Reinhardt A. Botha, Jan H.P. Eloff

granting of access rights is designed into the workflow. The workflow
infrastructure is thus directly responsible for the granting of access rights.

2. THE WORKFLOW ENVIRONMENT

A "handle an insurance claim" workflow is used as a case scenario
throughout the paper. We consider the typical stages of a workflow, namely:
definition and enactment [2].

The "handle an insurance claim" workflow's definition is graphically
depicted in Figure 1. It is called a process definition, essentially being a
collection of tasks. A task is the smallest unit of work, which must be done
to achieve a certain business objective.

A task is defined by a task definition that specifies which work needs to
be done on which objects, by which users. The "handle an insurance claim"
process is defined as consisting out of 10 tasks, labeled � – ➉ in Figure 1.
Task � involves the initialization of the whole process by generating a new
document called a claim schedule. Initially a claim schedule may consists of
a claim form, a police report, witness reports and quotations. This task is to
be completed by a clerk. Task � follows on completion of task �. Task �
is an automated decision made by the system based on workflow control
data, in this case the claim value that was captured as part of task �.

The process definition also contains business rules that specify
conditions for executing tasks. In the example, route �-� will be followed if
the claim's value does not exceed 5000. Route �-� will be followed if the
value of the claim exceeds 5000. The other tasks and rules depicted in
Figure 1 follow the same convention.

Initialize claims
schedule

Role: Clerk

Complete assessor
report

Role: Assessor

Automated decision
Role: System

Automated decision
Role: System

Complete Customer profile
Role: Clerk

Approve claim
Role: Claims Manager

V
al

id
at

e
qu

ot
at

io
n

R
ol

e:
 S

nr
 c

le
rk

 v
eh

ic
le

V
al

id
at

e
ac

ci
de

nt
 d

et
ai

ls
R

ol
e:

 S
nr

 c
le

rk
 v

eh
ic

le

V

al
id

at
e

qu
ot

at
io

n
R

ol
e:

 S
nr

 c
le

rk
 h

ou
se

ho
ld

V

al
id

at
e

in
ci

de
nt

 d
et

ai
ls

R
ol

e:
 S

nr
 c

le
rk

 h
ou

se
ho

ld

Value > 5000

Value <= 5000
Type = vehicle Type = household

Figure 1. The "handle insurance claim" process definition

A Context-sensitive Access Control Model 3

The enactment phase of the workflow is concerned with the performance
of the actual business task.

A user interacts with the workflow system through a worklist that
supplies the user with the work items that he has to complete. A work item
represents a task instance assigned to the user by the workflow engine. In the
example, the worklist of a manager would contain a list of all the claims to
be approved.

Many process instances can thus be instantiated from the same process
definition. The "handle an insurance claim" process definition will be used
to create a process instance for every claim that is submitted. Each process
instance will generate task instances based on the task definitions in the
corresponding process definition. Process and task instances will use
associated workflow control data, such as the value of the claim, to evaluate
the rules in the process definition. Now consider the access control
requirements of the described workflow.

3. ACCESS CONTROL REQUIREMENTS

The access control requirements of the workflow environment are
characterized by three concepts. Firstly, the access rights granted should be
determined by the task to be performed. The workflow environment
imposes a specific sequence of events in that certain conditions must be met
before the next task can begin. Secondly, strict least privilege dictates that
the access rights should be the absolute minimum required for the task.
Finally, the access control mechanism should support separation of duty
policies that may be required. Each of these requirements is now discussed
in more detail.

3.1 Sequence of events

The granting of certain privileges depends on the successful completion
of other tasks. For example, a claim may not be approved unless a customer
profile has been completed. The mechanism should therefore be able to
recognize at which point it is within the execution of a claim. Current access
control mechanisms do not recognize any difference between an "approve
claim" now and an "approve claim" later. [6].

3.2 Strict least privilege

The concept of least privilege usually implies that a user is assigned the
minimum privileges necessary to perform his job [4]. A manager will

4 Damian G. Cholewka, Reinhardt A. Botha, Jan H.P. Eloff

therefore receive privileges to perform tasks that he must do at some stage of
his job. The fact that some of these privileges may be superfluous for many
of the daily tasks is recognized by introducing the concept of strict least
privilege. It strengthens the least privilege concept to restrict privileges to
the minimum rights required at a specific point in time, for a specific task.

In the "handle an insurance claim" example this would imply that a
manager who "initialize claim schedule" should only receive the "clerks"
rights which are necessary to perform the task, whilst rights like approve or
deny claim are not granted.

3.3 Separation of duty

Separation of duty (SoD) is a security principle used to formulate multi-
person control policies [5]. In essence it requires that two or more different
people are responsible for the completion of a business process. It would
thus, in principle, discourage fraud by requiring a conspiracy, thereby
increasing the risk to the potential perpetrators.

Static SoD [3] requires that the membership to two roles must be strongly
exclusive. In the "handle an insurance claim" workflow Static SoD
requirements can be enforced by using disjoint role hierarchies. For
example, the assessor and manager are in different role hierarchies;
furthermore, an assessor's and a manager's privileges are disjoint. The
process definition thus requires both a manager and an assessor to be
involved.

Dynamic SoD policies provide increased flexibility by controlling the
activation and use of roles [3]. The strict least privilege requirement
essentially fulfills a dynamic SoD requirement since it does not restrict the
potential of a user to belong to more than one role, but forces a user to only
have one role active at a specific point in time [5]. [1] and [5] enumerate
several variations of dynamic SoD.

Dynamic SoD policies can only be enforced through evaluation at
execution time [3]. For example, in the "handle an insurance claim"
workflow a dynamic SoD requirement which stipulates that a manager may
not approve a claim that he himself initialized can only be evaluated at
execution time. This requirement cannot be evaluated without considering
the "handle an insurance claim" process definition. It must be specified that
task � and task � may not be performed by the same user.

A Context-sensitive Access Control Model 5

4. MODEL DESIGN

The context sensitive access control model is based on the RBAC96
reference model. It has been pointed out by Sandhu et al [4] that the
RBAC96 model supports principles such as least privilege and separation of
duties, but that it does not enforce the use of such principles. The context-
sensitive access control model proposed here does not attempt to replace
RBAC. To the contrary, it builds on the RBAC foundation in order to
provide in additional needs. The main components of the proposed model
are depicted in Figure 2.

Process
definition

PD

Task
definition

TD

Task network
TN

Task Instance
Network

TIN Session
S

Role
R

User
U

Process
instance

PI

Task
instance

TI

Task-role assignment
TDR

User-role
assignment

UA

Role
hierarchy

RH

Role-permission
assignment

PA

Session control
CT

Conflicting Tasks

Permissions
P

Methods
M

Objects
O

RBAC
Context information

Figure 2. The context-sensitive access control model

4.1 RBAC

In line with RBAC96 definitions, users (U) belong to roles (R) as defined
by a user-role assignment relation (UA). The permissions (P) that are
associated with a role are reflected in the role-permission assignment
relation (PA).

The permission abstraction (P) of the RBAC96 model has been
interpreted in this environment as reflecting the available methods (M) for an
object (O). A user therefore could receive, for example, the permission to
execute the ApproveClaim method for a claim form object.

A user receives the permissions associated with role(s) that he assumes
for the session (S). The RBAC96 model is not prescriptive with regards to
the interpretation of a session. It merely sees a session as a time-bound
construct to associate users, roles and permissions. The essence of the
proposed model lies in the interpretation of the session construct.

6 Damian G. Cholewka, Reinhardt A. Botha, Jan H.P. Eloff

4.2 Context information

The context of the work is provided through reference to the process
definition (PD). A process definition consists of multiple task definitions
(TD) arranged according to a task network (TN).

The conditions specifying the routes to be followed are maintained as
part of the task network. The role(s) capable of performing a specific task is
identified through the task-role assignment relation TDR.

The process instance (PI) relation keeps track of all instantiated
processes. Since some tasks are not instantiated due to the conditional nature
of the workflow routes, the task instance (TI) relation is used to keep track of
the task instances. Task instance network (TIN) relates the task instances in a
similar fashion to how TN combines various task definitions.

Separation of duty is implemented in the current model as conflicting
task sets (CT). If two tasks belong to a conflicting task set, the two tasks
must be performed by different users. From an access control perspective the
most important design decision was to redefine the concept of a session.

4.3 A session control approach

Traditionally sessions indicate the elapsed time between when a user logs
on to the server until he logs out. Privileges in these traditional sessions are
relatively static over time, although a user may have different commands at
his disposal to change roles.

The basic approach of the proposed model in this paper is to use any one
session for one and only one task. Although a user may authenticate once to
the system, he initially receives no privileges. When a user acts on a work
item in the worklist, a workflow session is established and the appropriate
rights become available to the user. As soon as the user stops working on

that specific task the workflow session
is closed and all the associated
privileges are revoked. This concept
of a session is graphically depicted in
Figure 3.

A session is thus used to control
the permission of a user for the
duration of activity on a task. A
session maps to one and only one role.

...

Traditional Session Concept

Login Logout

Action/
task

Action/
task

Action/
task

Workflow
Session

Workflow
Session

Workflow
Session ...

Figure 3. The revised session concept

A Context-sensitive Access Control Model 7

5. PROTOTYPE DEVELOPMENT

A small, scaled-down workflow kernel was developed which is
responsible for the propagation of work through the interpretation of basic
routing instructions.

A separate module in the prototype is responsible for the interpretation of
access permissions as specified in the workflow definition. Context-
sensitive access control is enforced by addressing the three aforementioned
access control requirements.
– Sequence of events. A user receives different access rights to the same

object depending on the exact task that he is performing.
– Strict least privilege. Privileges are not only different over time, but are

also the absolute minimum required to complete the task.
– Separation of Duty. The principle of conflicting tasks introduced

dynamic SoD constraints to the workflow prototype.
The prototype consists of a client component and a server component.

Both components are developed in Visual Basic 6. The client component
provides the interface with the user in the form of a worklist and a forms
environment, whilst the server component represents the workflow engine
and data storage. Communication is based on DirectX7. The database was
developed in MS Access97. All access to the database is regulated
exclusively through pre-defined SQL queries stored in the database.

6. AN EXAMPLE WORKFLOW ENACTMENT

The prototype's operation is described by considering the main activities
that can occur within the system. The workflow example presented in
Figure 1 is used. In particular, the enactment will instantiate "Claim001", a
household claim to the value of 3500.

Abel, Grant and Frans are used as
users throughout the discussion. Abel
and Grant are claims managers, whilst
Frans is an assessor. The claims
manager role forms part of a role
hierarchy depicted in Figure 4. The
assessor role does not form part of this
role hierarchy.

Claims manager

Snr Clerk household Snr Clerk vehicle

Clerk

Figure 4. Role hierarchy

8 Damian G. Cholewka, Reinhardt A. Botha, Jan H.P. Eloff

6.1 Initiating a new claim

When the user initiates a new "handle claim" process, some important
events take place. Firstly a new process instance (PI) is created from the
process definition template (PD). The first task that needs to be performed as
part of the process is identified through evaluation of the task network (TN).
Thereafter the new task instance (TI) is created from the task definition
template (TD). The task instance is marked as inactive.

The worklist of a specific user is populated through a query that
combines the active tasks already accepted by that user with the tasks that
are still inactive. It determines whether the required role for the inactive
tasks can be assumed by the user and whether all SoD requirements are met.
If all the conditions are true, then the task item will be listed in the worklist.

It is important to realize that up to this stage the user has not received any
permission. The user still has no active role – all decisions up to now have
been based on potential roles, not active roles.

When a user selects to work on an item the access control module
determines the role needed for that specific task. Consider the worklist of
Abel, being a claims manager. She can assume the role claims manager
which is senior to clerk. However, if Abel chooses to perform the "Initialize
claim schedule" work item for "Claim 001", she will assume the role clerk
and therefore only receive the privileges associated with the clerk role. At
this stage there are no SoD constraints to consider.

Once Abel selects to "Initialize claim schedule" for "Claim001", the
task's state changes from "Inactive" to "Busy". She is then presented with a
form on which to enter the claim details. This corresponds with task � in
Figure 1. On completion of the task the state of that specific task changes to
"Completed".

At this point all requirements are met for task � to be executed. Since
task � is an automated decision, the workflow engine executes the
conditional split and creates tasks � and � in TI.

6.2 Complete Customer Profile and Assessor Report

In the example a SoD requirement is specified by identifying tasks � and
�, as well as tasks � and � as conflicting tasks. The worklists of Abel,
Grant and Frans are shown in Figure 5. Note that Abel does not receive the
option to "Complete Customer Profile" because of the dynamic SoD
constraint between tasks � and �. Frans, being an assessor may only
perform the "Complete Assessor report" task. This shows how static SoD
can be achieved through disjoint role hierarchies. Grant may perform

A Context-sensitive Access Control Model 9

"Complete customer profile" (task �), since he did not initialize the claim
(task �).

Once Grant selects to work on the "Complete customer profile" task, he
is presented with the Complete Customer Profile section of the claim form as
illustrated in Figure 6. Note that he does not receive any unnecessary
privileges regarding the claim form. The state of the task changes to "Busy".
Should he not complete the task, the state changes to "Wait". Once he
submits the form, the task will change status to "Completed". Permissions
are only granted while the task is in the "Busy" state.

Task � in our example has to be completed by an assessor. Once Frans
completes task �, the workflow kernel can do a merge operation and create
an instance of task �, namely "Approve claim". This will then appear in the
worklists of users who may approve the claim. In this case it will only be
claims managers. However, although Abel is a claims manager she will not
be able to approve the claim (task �) since she initialized it (task �).

6.3 Approve claim

When Grant chooses to approve the claim he is presented with the screen
in Figure 7. Note that Grant now has considerable different access rights to
what he had in Figure 6. When Grant approves the claim, the state of the
task changes to "Completed".

Figure 5. Worklists of Abel, Grant and Frans after Abel initialized claim

Figure 6. Grant completes customer profile

Figure 7. Grant approves claim

10 Damian G. Cholewka, Reinhardt A. Botha, Jan H.P. Eloff

Since Task � is the last task in this "Handle an insurance claim" process
definition it concludes the process and the claim is completed.

7. CONCLUSION

The prototype serves to illustrate and explain the concept of context-
sensitive access control. It demonstrates the influence of sequence of events
on the access control decision. Users receive the minimum access and one
dynamic SoD constraint requirement was implemented. Further work
regarding SoD constraints in the workflow environment is necessary.

Due to the development environment chosen for the prototype, the
approach hinges strongly on relation database principles. We believe that
certain advantages could be achieved by a more object-oriented approach.
The vision is that each object (e.g. claim) will make its own decisions with
respect to who may receive what kind of access to it based on the current
circumstances. This would result in a solution that is more suitable for
heterogeneous systems, as well as adaptive workflow environments.

The prototype can benefit from the use of a database with active
components such as triggers. Many of the functionality now residing in the
server module could then be integral in the data repository. This would be
closer to full object autonomy than what is currently the case.

REFERENCES

[1] V.D. Gligor, S.I. Gavrila and D.Ferraiolo. On the Formal Definition of Separation of Duty
Policies and their composition. Proc IEEE Symposium on Security and Privacy, May
1998.

[2] D. Hollingsworth. The Workflow Reference Model. Document Number TC-00-1003.
Issue 1.1. 29 Nov 1994. www.wfmc.org

[3] D.R. Kuhn. Mutual exclusion of roles as a means of implementing separation of duty in
role-based access control systems. Proc 2nd ACM Workshop on Role-based Access
Control, Fairfax, VA, Oct 1997.

[4] R.S. Sandhu, E.J. Coyne, H.L.Fenstein and C.E. Youman. Role-based Access Control
Models. IEEE Computer, 29(2), Feb 1996,
38 – 47.

[5] R. Simon and M.E. Zurko. Separation of duty in Role-based Environments. Proc of 10th
Computer Security Foundation Workshop, Rockport, Massachusetts, 10–12 Jun 1997.

[6] R.K.Thomas and R.S. Sandhu. Task-based Authorization Controls (TBAC): A Family of
Models for Active and Enterprise-oriented Authorization Management. Proc IFIP
WG11.3 Workshop on Database Security, Lake Tahoe, California, 11 – 13 August 1997.

