
 1/22

A Role-based Use Case Model
for Remote Data Acquisition Systems*

Txomin Nieva, Alain Wegmann

Institute for computer Communications and Applications (ICA),
Communication Systems Department (DSC),

Swiss Federal Institute of Technology (EPFL),
CH-1015 Lausanne, Switzerland

Abstract. Data Acquisition Systems (DAS) are the basis for building monitoring tools that enable the
supervision of local and remote systems. DASs are complex systems. It is difficult for developers to
compare proprietary generic DAS products and/or standards, and the design of a specific DAS is
costly. In this paper we propose a role-based use case model of a generic DAS. This model gives DAS
developers an abstraction of the generic functionalities of DASs; it enables them to compare existing
products and standards; and it provides the DAS developers that aim to develop a specific DAS with a
starting point for the design of a specific DAS. We have found that a role-based use case model of a
generic system has many advantages. We propose patterns and techniques that are useful for the
development of role-based use case models of generic systems.

Keywords: Information System Engineering; Role-based Use Case Modeling; Data Acquisition
Systems; Remote Monitoring Systems; Condition Monitoring; Embedded Systems

1. Introduction

In the last few years, companies from many business areas have become increasingly interested in
maintenance and asset management. Maintenance improves the reliability and availability of equipment and
therefore the quality of service (QoS), which managers have found provides substantial benefits. According to
Wireman (1994), maintenance management however makes up anywhere from 15 to 40% of total product cost.
Consequently, improving maintenance management can also represent a substantial benefit to companies.
Traditionally, there are two major maintenance approaches: Corrective Maintenance and Preventive/Predictive
Maintenance (PPM). Corrective Maintenance focuses on efficiently repairing or replacing equipment after the
occurrence of a failure. Corrective Maintenance aims to increase the maintainability of equipment by improving
the speed of repair, or return to service, after a failure. PPM focuses on keeping equipment in good condition in
order to minimize failures; repairing components before they fail. PPM aims to increase the reliability of
equipment by reducing the frequency of failures. Substantial benefits can also be obtained by the intensive use of
Asset Management Systems (AMS). Asset management is a task complementary to maintenance. It provides
support for the planning and operation phases. Similar to maintenance tasks, in AMSs access to utility data
source is essential.

A management technique that can be applied for improving maintenance and asset management is the on-line
supervision of the health of the equipment, which is usually known as condition monitoring. Condition
monitoring, applied to maintenance tasks, provides necessary data in order to schedule preventive maintenance
and to predict failures before they happen. Condition monitoring is based on direct monitoring of the state of
equipment to estimate its Mean Time To Failure (MTTF). AMSs will propose or update PPM plans based on the
information provided by the condition monitoring systems. To apply condition monitoring, the access to utility
data source is essential. Remote monitoring systems have been developed in many business areas such as

——————

* Technical Report N° DSC/2001/031

 2/22

building (e.g. Olken et al., 1998), power engineering (e.g. Itschner et al., 1998), and transportation systems (e.g.
Fabri et al., 1999), to provide condition-monitoring systems with information about the state of equipment. The
kernel of any remote monitoring system is a data acquisition system (DAS), which enables the collection of
relevant data. A DAS is a set of hardware and software resources that provides the means to obtain knowledge-
level data of a system, provides the means to access operational-level data, converts knowledge-level and
operational-level data to more useful system information and distributes this information to the user. There are
many standards for DASs such as OLE for Process and Control (OPC) (OPC Foundation, 1997), Interchangeable
Virtual Instrument (IVI) (IVI Foundation, 1997), and Open Data Acquisition Standard (ODAS) (ODAA, 1998),
among others. Additionally, the Object Management Group (OMG) has recently issued a Data Acquisition from
Industrial Systems (DAIS) Request For Proposal (RFP) (OMG, 1999a). Based on DAS standards, there are many
commercial generic DAS products that DAS developers can buy and customize for their specific DAS
application. DAS developers have to choose between buying a commercial DAS product and customizing it for
their specific requirements or designing from scratch a specific DAS. However, DASs are complex systems. It is
difficult for DAS developers to understand DAS standards and/or generic DAS products. As each standard or
product uses a different idiom it is also difficult for DAS developers to compare them. Additionally, the
development of a specific DAS from scratch is a difficult task that requires high development costs.

In this paper we propose a role-based use case model of a generic DAS. This model gives DAS developers an
abstraction of the generic functionalities of DASs; it enables them to compare existing products and standards;
and it provides the DAS developers that aim to develop a specific DAS with a starting point for the design of a
specific DAS. We have found that a role-based use case model of a generic system has many advantages. We
propose patterns and techniques that are useful for the development of role-based use case models of generic
systems. Additionally, our role-based use case model of a generic DAS provides a case study of role-based use
case modeling of generic systems that demonstrates, by means of an industrial example, the advantages of role-
based use case modeling for the specification of generic systems.

This paper is organized as follows: In section 2, we explain the methodology we used to obtain a generic
DAS role-based use case model. In section 3, we present the generic DAS role-based use case model. In section
4, we discuss key issues about the development of the generic DAS role-based use case model. In section 5, we
explain the applications of a role-based use case model of a generic system. Finally, in section 6, we draw
conclusions from the actual work.

2. Methodology

In Nieva and Wegmann (2001), we proposed a conceptual model of a generic DAS. This model gives DAS
developers an abstraction of DASs; it enables them to compare existing products and standards; and it provides
the DAS developers that aim to develop a specific DAS with a starting point for the design of a specific DAS.
But a conceptual model only specifies the static concepts of a system. We used use case modeling to specify the
expected behavior of a system. The artifacts of use case modeling are actors and use cases. Rumbaugh et al.
(1999) defined the terms actor and use case as:

“An actor is an idealization of an external person, process, or thing interacting with a system, subsystem, or
class. An actor characterizes the interactions that outside users may have with the system.”

“A use case is a coherent unit of externally visible functionality provided by a system unit and expressed by
sequences of messages exchanged by the system unit and one or more actors of the system unit. The purpose of a
use case is to define a piece of coherent behavior without revealing the internal structure of the system.”

Fowler and Scott (1997) gave a simpler definition of these terms as:

“An actor is a role that a user plays with respect to the system.”

“A use case is a typical interaction between a user and a computer system.”

Thus, a use case represents an interaction between actors, typically external users or parts of the system, to
carry out a functionality of the system as seen from the external point of view.

 3/22

We used elementary roles rather than actors in the use cases, because this allows us to specify the system
independently of architectural choices, requirements, QoS, and/or available technologies specific for a particular
system.

The role-based use case model presented in this paper is the result of an iterative process consisting of the
object-oriented analysis, specification, implementation and deployment of a DAS for railway equipment (Fabri
et al. ,1999 and Nieva, 1999). During this process, we used our own variation, which puts emphasis on role
modeling, of the Catalysis development process, described by D'Souza and Wills (1999), based on the Unified
Modeling Language (UML) (OMG, 1999b).

3. A Generic DAS Role-based Use Case Model: the Model

In this section we present a role-based use case model for a generic DAS. This role-based use case model
specifies the common functionalities of any DAS. To give a context to the data acquisition process we begin by
positioning this process as a part of the device lifecycle. Then, we describe in detail all the use cases
corresponding to the acquisition of data. Finally, we refine all of these use cases using role-based use case
modeling. The role-based use cases and elementary roles are fully specified by Nieva (2001).

In Figure 1, we show the main use cases corresponding to the device lifecycle. We use an activity diagram to
specify the sequence in which these use cases are carried out. In a device lifecycle, a Designer designs a Whole
Model, which is an instance of Device Model. Whole Model can be composed of zero to many Part Models,
which are also instances of Device Models, forming a part-whole hierarchy of instances of Device Models. A
Manufacturer produces a Whole Item, which is an instance of Device Item that satisfies a device model, which is
an instance of Device Model. A Whole Item can be composed of zero to many Parts Items, which are also
instances of Device Item, forming a part-whole hierarchy of instances of Device Items. An operator installs a
Child Item, which is an instance of Device Item, into a Parent Item, which is another instance of Device Item,
forming a child-parent hierarchy. In fact, this hierarchy is analogous to the part-whole hierarchy of instances of
Device Item formed during the production of an instance of Device Item. A child is to its parent the same as a
part to its whole. The only difference is the nature of the link between each other: in the case of part-whole
hierarchy the link is established during the creation of an instance, whereas in the case of child-parent hierarchy
the link is established during the installation of an instance. A Supervisor acquires data from an instance of
Device Item. Operational-level data is acquired from a device item. However, knowledge-level data and some
other information can be distributed and provided by Designers, Manufacturers, and/or Operators. An operator
uninstalls Child Item, which is an instance of Device Item from its Parent Item, which is another instance of
Device Item.

Designer

Manufacturer

Device
Model

 Design
Device *part

model

1
whole
model

 Produce
Device

part
item

model

Device
Item

 Install
Device

whole
item

1

parent
item

0..1

Supervisor

Acquire
Data

child
item 1

Uninstall
Device

parent
item 0..1

1

Operator

1

item

*

*

*

0..1

part model

whole
model

part item

whole
item

1

*

description

item

1

model

*

1

child
item

Design Device

Produce
Device

Install Device

Acquire Data

Uninstall
Device

H

H

Figure 1 Device Lifecycle

 4/22

In this paper we focus on the use case corresponding to the acquisition of data (Acquire Data). In Figure 2,
we show the refined use cases corresponding to the acquisition of data. We mapped each of the functional
requirement defined by the OMG in the DAIS RFP (OMG, 1999a) into a use case. We have two additional
actors: the DAS, which represents the system (the representation of the system in the use cases is further
discussed in section 4); and the Administrator, which takes care of the administration of the system.

Discover

Define
Data

Access

Access
Data

Notify
Data

Availability

Upload
Data

Device Item

Supervisor

ManufacturerOperator

DAS

Device Model

Designer

Administrator

Figure 2 Data Acquisition Use Cases

We use an activity diagram, shown in Figure 3, to specify the sequence in which these use cases are carried out:

(a) Discover device items, device models, their composition and knowledge-level information until all the
information has been discovered. Then, go to b), to define data access; to c), to access data; to d), to notify
availability of new data; or to e), to upload new data.

(b) Define data access for the device items until all data access has been defined. Then, go to a), to discover
new data; to c), to access data; to d), to notify availability of new data; or to e), to upload new data.

(c) Access data until all the information to be accessed has been accessed. Then, go to b), to define data
access; to d), to notify availability of new data; or to e), to upload new data.

(d) Notify availability of new data until all the notifications have been notified. Then, go to b), to define
data access; to c), to access data; or to e), to upload new data.

Upload new data until all the data has been uploaded. Then, go to b), to define data access; to c), to access
data; or to d), to notify availability of new data.

These uses cases can be carried out many times, therefore there is not an explicit end point. In the following
sections we describe in detail each of the use cases corresponding to the data acquisition process. We also refine
all of these use cases using role-based use case modeling.

3.1 Discover

This use case implements the “discovery of remote system and device schema” functional requirement,
which is defined by the OMG in the DAIS RFP (OMG, 1999a) as:

“Mechanisms for discovering accessible remote devices, measurements, discrete/incremental information,
permissible ranges and/or sets of values, alarms and industrial system sourced events. …A means shall be
provided for a client system to determine the data types and quantities (i.e. cardinality) of data elements available

 5/22

from a particular entity within an industrial system, as well as the identifiers and some of the semantics
associated with those data elements.”

Discover
Define
Data

Access

Notify
Availability

Upload
Data

Access
Data

[undiscoveredEntities==null &
unadministeredEntities!=null]

[unadministeredEntities==null &
undiscoveredEntities!=null]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToAccess!=null &
((dataToNotify==null &
dataToUpload==null) |
((dataToNotify!=null |
dataToUpload!=null) &
env. AccessData))]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToNotify!=null &
((dataToAccess==null &
dataToUpload==null) |
((dataToAccess!=null |
dataToUpload!=null) &
env. NotifyAvailability))]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToUpload!=null &
((dataToAccess==null &
dataToNotify==null) |
((dataToAccess!=null |
dataToNotify!=null) &
env. UploadData))]

[undiscoveredEntities!=null]

H

[undiscoveredEntities!=null]
[unadministeredEntities!=null]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToAccess!=null &
((dataToNotify==null &
dataToUpload==null) |
((dataToNotify!=null |
dataToUpload!=null) &
env. AccessData))]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToNotify!=null &
((dataToAccess==null &
dataToUpload==null) |
((dataToAccess!=null |
dataToUpload!=null) &
env. NotifyAvailability))]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToUpload!=null &
((dataToAccess==null &
dataToNotify==null) |
((dataToAccess!=null |
dataToNotify!=null) &
env. UploadData))]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify!=null &
(dataToUpload==null |
(dataToUpload!=null &
env. NotifyAvailability))]

[dataToAccess==null &
unadministeredEntities!=null]

[dataToUpload==null &
unadministeredEntities!=null]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify!=null &
(dataToUpload==null |
(dataToUpload!=null &
env. NotifyAvailability))]

[dataToAccess!=null]

[dataToNotify!=null]

[dataToUpload!=null]

H

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[undiscoveredEntities==null &
unadministeredEntities==null &
dataToAccess==null &
dataToNotify==null &
dataToUpload==null]

[dataToNotify==null &
unadministeredEntities!=null]

Figure 3 Data Acquisition Activity Diagram

Discovering allows supervisors to obtain, by request, the current composition of an instance of Device Item,
the different kinds of data values that can be acquired from this instance and their types and semantics. During
the discovering process supervisors discover knowledge-level information such as the composition of instances
of Device Items installed on the systems, the instances of Device Models associated with them, the phenomenon
types and measurement types of these instances of Device Model, and so on. We refined the Discover use case
into the following role-based use cases, shown in Figure 4:

 6/22

Item
Information
Requester

DAS Broker

Discover
Item

Device Item
Manager

Discover
Item

Composition

Device Model
Manager

Discover
Model

Discover
Model

Composition

Device Item
Dataset
Manager

Device Model
Dataset
Manager

Discover
Datasets

Device Item
Trigger Condition

Manager

Device Model
Trigger Condition

Manager

Discover
Trigger

Conditions

Device Item
Monitoring Criteria

Manager

Device Model
Monitoring Criteria

Manager

Discover
Monitoring

Criteria

Model
Information
Requester

Dataset
Information
Requester

Trigger Condition
Information
Requester

Monitoring Criteria
Information
Requester

Figure 4 Discover Use Case

(i) Discover Item. An Item Information Requester obtains, by request, the information specific to a device
item (e.g. its manufacturer or serial number).

(ii) Discover Item Composition. An Item Information Requester obtains, by request, the current
composition of a device item.

(iii) Discover Model. A Model Information Requester obtains, by request, the device model that
characterizes a set of device items. Together with the device model some knowledge-level information such as
phenomenon types, measurement types, and so on, may be discovered.

(iv) Discover Model Composition. A Model Information Requester obtains, by request, the composition of a
device model.

(v) Discover Datasets. A Dataset Information Requester obtains, by request, the datasets defined on a
device item.

(vi) Discover Trigger Conditions. A Trigger Condition Information Requester obtains, by request, the
trigger conditions defined on a device item.

(vii) Discover Monitoring Criteria. A Monitoring Criteria Information Requester obtains, by request, the
monitoring criteria defined on a device item. A Monitoring Criteria Information Requester not being the creator
of such monitoring criteria can discover only monitoring criteria defined as public. Monitoring criteria

 7/22

predefined on the corresponding device model are considered public and therefore they are accessible for any
Monitoring Criteria Information Requester.

In these use cases we introduced, for the first time, the DAS Broker role. This role allows us to decouple the
rest of the roles allowing us to remain independent of design choices. All the messages between roles pass
through the DAS Broker. Typically, the same actor (e.g., the Supervisor of the system) will implement all the
roles X_Information_Requester, being X any entity that can be discovered (device item, device item
composition, device model, device model composition, datasets, trigger conditions and monitoring criteria). But,
there may be systems where only certain users with special privileges (e.g., the Administrator of the system) are
allowed to discover certain entities (e.g. monitoring criteria). The use of different elementary roles for any entity
that can be discovered makes our use case model more independent from decisions that should be taken later, in
the design phase of a particular DAS. We introduced a manager role, X_Manager, for each entity X that can be
discovered, as we consider that we have to offer DAS developers the choice of implementing the management of
all these entities independently. We wanted to make explicit the discovery of device item composition as we
consider that this is a sufficiently different use case from the use case corresponding to the discovery of device
item information. However, we did not consider necessary to use different roles for the roles that discover or
manage the device items and their composition, as this information is always discovered or managed by the same
entities. The same thinking applies to device models and their composition. We use an activity diagram, shown
in Figure 5, to specify the sequence in which these use cases may be carried out:

(a) Discover device items until all device items have been discovered. Then, go to b), to discover device
models; to c), to discover device item composition; to e), f), g) to discover datasets, trigger conditions or
monitoring criteria respectively; or to the end, if all the information has been discovered.

(b) Discover device models until all device models have been discovered. Then, go to c), to discover device
item composition; to d), to discover device model composition; to e), f), g) to discover datasets, trigger
conditions or monitoring criteria respectively; or to the end, if all the information has been discovered.

(c) Discover device item composition until all device item composition has been discovered. Then, go to a),
to discover device items.

(d) Discover device model composition until all device model composition has been discovered. Then, go to
b), to discover device models; to c), to discover device item composition; to e), f), g) to discover datasets, trigger
conditions or monitoring criteria respectively; or to the end, if all the information has been discovered.

(e) Discover datasets until all datasets have been discovered. Then, go to f) or g) to discover trigger
conditions or monitoring criteria respectively; or to the end, if all the information has been discovered.

(f) Discover trigger conditions until all trigger conditions have been discovered. Then go to e) or g) to
discover datasets or monitoring criteria respectively; or to the end, if all the information has been discovered.

(g) Discover monitoring criteria until all monitoring criteria has been discovered. Then go to e) or f) to
discover datasets or trigger conditions respectively; or to the end, if all the information has been discovered.

3.2 Define Data Access

This use case implements the “defining data access request” functional requirement, which is defined by the
OMG in the DAIS RFP (OMG, 1999a) as:

“Mechanisms for defining (and deleting) a set of data and how the set of data should be retrieved. Data sets
are collections of data, defined by the client, by a third party, or pre-existing data on the device, that are
transferred in response to an event or single read request. The request for data retrieval can be triggered on-
demand, or based on time, exception and/or event. A client could register to receive event notifications for the
availability of the data requested.”

Defining data access allows supervisors to define monitoring criteria of a device item. There are three kind of
device item monitoring criteria: composition, event and status monitoring criteria.

 8/22

Discover
Item

Composition

Discover
Item

H

[undiscoveredItems!=null]

Discover
Model

[undiscoveredItems!=null] [undiscoveredIModels!=null]

Discover
Model

Composition

[undiscoveredIModelCompositions!=null]

Discover
Monitoring

Criteria

Discover
Dataset

Discover
Trigger

Condition

H

[undiscoveredIDatasets!=null]

[undiscoveredItemCompositions==null]

[undiscoveredItems==null &
undiscoveredItemCompositions!=null &
(undiscoveredModels==null |
(undiscoveredModels!=null &
env. DiscoverItemComposition))]

[undiscoveredItems==null &
undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
(undiscoveredDatasets!=null |
undiscoveredTriggerConditions!=null |
undiscoveredMonitoringCriteria!=null)]

[undiscoveredModels==null &
undiscoveredModelCompositions!=null &
(undiscoveredItemCompositions==null |
(undiscoverdIModelCompositions!=null &
env. DiscoverModelComposition))]

[undiscoveredItems==null &
undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
(undiscoveredDatasets!=null |
undiscoveredTriggerConditions!=null |
undiscoveredMonitoringCriteria!=null)]

[undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
(undiscoveredDatasets!=null |
undiscoveredTriggerConditions!=null |
undiscoveredMonitoringCriteria!=null)]

[undiscoveredItems==null &
undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredItems==null &
undiscoveredModels==null &
undiscoveredItemCompositions==null &
undiscoveredModelCompositions==null &
undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredMonitoringCriteria==null &
undiscoveredTriggerConditions!=null &
(undiscoveredDatasets==null |
(undiscoveredDatasets!=null &
env. DiscoverTriggerConditions))]

[undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredMonitoringCriteria!=null &
((undiscoveredDatasets==null &
undiscoveredTriggerConditions==null) |
((undiscoveredDatasets!=null |
undiscoveredTriggerConditions!= null) &
env. DiscoverTriggerCondition))]

[undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredDatasets==null &
undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null]

[undiscoveredMonitoringCriteria==null &
undiscoveredDatasets!=null &
(undiscoveredTriggerConditions==null |
(undiscoveredTriggerConditions!=null &
env. DiscoverDataset))]

[undiscoveredDatasets==null &
undiscoveredMonitoringCriteria!=null &
(undiscoveredTriggerConditions==null |
(undiscoveredTriggerConditions!=null &
env. DiscoverMonitoringCriteria))]

[undiscoveredIMonitoringCriteria!=null]

[undiscoveredModelCompositions==null]

[undiscoveredItems==null &
undiscoveredModels!=null &
(undiscoveredItemCompositions==null |
(undiscoveredItemCompositions!=null &
env. DiscoverModel))]

[undiscoveredModels==null &
undiscoveredItemCompositions!=null &
(undiscoverdIModelCompositions==null |
(undiscoverdIModelCompositions!=null &
env. DiscoverItemComposition))]

[undiscoveredDatasets!=null &
((undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria==null) |
((undiscoveredTriggerConditions!=null |
undiscoveredMonitoringCriteria!=null) &
env. DiscoverDataset))]

[undiscoveredTriggerConditions!=null &
((undiscoveredDatasets==null &
undiscoveredMonitoringCriteria==null) |
((undiscoveredDatasets!=null |
undiscoveredMonitoringCriteria!= null) &
env. DiscoverTriggerCondition))]

[undiscoveredDatasets==null &
undiscoveredTriggerConditions!=null &
(undiscoveredMonitoringCriteria==null |
(undiscoveredMonitoringCriteria!=null &
env. DiscoverTriggerConditions))]

[undiscoveredTriggerConditions==null &
undiscoveredDatasets!=null &
(undiscoveredMonitoringCriteria==null |
(undiscoveredMonitoringCriteria!=null &
env. DiscoverDataset))]

[undiscoveredTriggerConditions==null &
undiscoveredMonitoringCriteria!=null &
(undiscoveredDatasets==null |
(undiscoveredDatasets!=null &
env. DiscoverMonitoringCriteria))]

[undiscoveredItemCompositions!=null]

[undiscoveredTriggerConditions!=null]

Figure 5 Discover Activity Diagram

 9/22

A composition monitoring criteria enables the definition of interest on the change on the composition of a set
of device items. Composition monitoring criteria make it possible to implement a Plug&Play functionality. A
status monitoring criteria enables the specification of snapshots of the system to be taken at a specific time or
upon the occurrence of an event. A status monitoring criteria is always associated with a dataset, which
represents the set of measurement points where to take the observations. The values of a dataset must be
collected and sent at the same time to ensure consistency of data. A status monitoring criteria is typically
associated with a time trigger condition, which represents a time-based condition to trigger the recording of the
observations. Eventually, a status monitoring criteria can be associated with an event trigger condition instead
of a time trigger condition. In this case the observations will be taken upon the occurrence of an event. An event
monitoring criteria enables the recording of the occurrence of an event. An event monitoring criteria is always
associated with an event trigger condition. There are two ways a supervisor can retrieve data: based on the pull
model or based on the push model. The pull model is based on the request/response paradigm; a client sends a
request to the server, then the server answers. This is functionally equivalent to the client pulling the data off the
server. The push model is based on the publish/subscribe/distribute paradigm; a client subscribes for receiving
updates of data from a server, later the server takes the initiative to push the data to the client. Martin-Flatin
(1999) discusses in detail these two paradigms, applied to web-based management. Defining data access must
allow to a supervisor to define data access requests based on both models. We refined the Define Data Access
use case into the following role-based use cases, shown in Figure 6:

Administer
Dataset

Device Item
Dataset
Manager

Dataset
Administrator

DAS Broker

Device Model
Dataset
Manager

Administer
 Trigger

Condition

Device Item
Trigger Condition

Manager

Trigger Condition
 Administrator

Device Model
Trigger Condition

Manager

Monitoring Criteria
 Administrator

Device Item
Monitoring Criteria

Manager

Device Model
Monitoring Criteria

Manager

Administer
Monitoring

Criteria

Monitoring Criteria
Subscription
Administrator

Administer
Monitoring Criteria

Subscription

Device Item
Monitoring Criteria

Subscription
Manager

Device Item
Manager

Figure 6 Define Data Access Use Case

(i) Administer Datasets. A Dataset Administrator administers (creates, modifies or removes) a dataset of a
device item. A dataset consists of a set of measurement points to observe. Dataset Administrators can define an
entirely new dataset for a device item (custom datasets), or define a dataset for a device item from a dataset
predefined on a device model (predefined datasets). All custom datasets and predefined datasets are public.

 10/22

(ii) Administer Trigger Conditions. A Trigger Condition Administrator administers (creates, modifies or
removes) a trigger condition of a device item. A trigger condition can be based on time or based on an event. A
Trigger Condition Administrator can define an entirely new trigger condition for a device item (custom trigger
condition), or define a trigger condition from a trigger condition predefined on a device model (predefined
trigger condition). All custom trigger conditions and predefined trigger conditions are public.

(iii) Administer Monitoring Criteria. A Monitoring Criteria Administrator administers (creates, modifies or
removes) monitoring criteria of a device item. Monitoring criteria allow for the recording of the status of a
system at a specific time, the occurrence of an event or the recording of the change on the composition of a
device item. Monitoring Criteria Administrators can define entirely new monitoring criteria for a device item
(custom monitoring criteria), or define monitoring criteria from monitoring criteria predefined on a device
model (predefined monitoring criteria). Monitoring Criteria Administrators can define monitoring criteria as
public, meaning that any supervisor of the system can access monitoring reports of such monitoring criteria, or
private, meaning that only the creator of the monitoring criteria is allowed to access monitoring reports
corresponding to such monitoring criteria.

(iv) Administer Monitoring Criteria Subscription. A Monitoring Criteria Subscription Administrator
administers (creates, modifies or removes) subscriptions of interest on certain monitoring criteria. The
subscriber can chose between being automatically uploaded with monitoring reports corresponding to such
monitoring criteria when available, or receiving a notification of the availability of monitoring reports
corresponding to such monitoring criteria.

In all these use cases, we used the term administer as a generic term to refer to create, modify and remove.
Typically, the Administrator of the system will implement the roles corresponding to the administration of
datasets, trigger conditions, monitoring criteria, and subscriptions to monitoring criteria. But, there may be
systems where a Supervisor is allowed to administer some things such as its subscriptions to monitoring criteria,
for instance. The use of different elementary roles for the administration of datasets, trigger conditions,
monitoring criteria, and subscriptions to monitoring criteria makes our use case model more independent from
decisions that should be taken later, in the design phase of a particular DAS. We use an activity diagram, shown
in Figure 7, to specify the sequence in which these use cases may be carried out:

(a) Administer datasets until all datasets have been administered. Then, go to b), to administer trigger
conditions; to c), to administer monitoring criteria; to d), to administer monitoring criteria subscriptions; or to
the end, if all the datasets, trigger conditions, monitoring criteria and monitoring criteria subscriptions have
been administered.

(b) Administer trigger conditions until all trigger conditions have been administered. Then, go to a), to
administer datasets; to c), to administer monitoring criteria; to d), to administer monitoring criteria
subscriptions; or to the end, if all the datasets, trigger conditions, monitoring criteria and monitoring criteria
subscriptions have been administered.

(c) Administer monitoring criteria until all monitoring criteria have been administered. Then, go to d), to
administer monitoring criteria subscriptions; or to the end, if all the datasets, trigger conditions, monitoring
criteria and monitoring criteria subscriptions have been administered.

(d) Administer monitoring criteria subscriptions until all monitoring criteria subscriptions have been
administered. Then, go to the end.

3.3 Access Data

This use case implements the “data access/retrieval” functional requirement, which is defined by the OMG in
the DAIS RFP (OMG, 1999a) as:

“Mechanisms to define immediate data access retrieval upon request. The data elements transferred may be
simple or structured types. A client could define a set of data to be retrieved at a time.”

 11/22

Administer
Monitoring

Criteria

Administer
Datasets

Administer
Trigger

Condition

H

[unadministeredDatasets!=null] [undiscoveredTriggerConditions!=null]

[unadministeredMonitoringCriteria!=null]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria!=null]

Administer
Monitoring

Criteria
Subscription

[unadministeredMonitoringCriteria!=null]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions!=null]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions!=null]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions==null]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions==null]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions!=null]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions==null]

[unadministeredDatasets==null &
unadministeredTriggerConditions!=null]

[unadministeredTriggerConditions==null &
unadministeredDatasets!=null]

[unadministeredDatasets!=null &
(unadministeredTriggerConditions==null |
(unadministeredTriggerConditions!=null &
env.AdministerDataset))]

[unadministeredTriggerConditions!=null &
(unadministeredDatasets==null |
(unadministeredDatasets!=null &
env.AdministerTriggerCondition))]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria==null &
unadministeredMonitoringCriteriaSubscriptions==null]

[unadministeredDatasets==null &
unadministeredTriggerConditions==null &
unadministeredMonitoringCriteria!=null]

Figure 7 Define Data Access Activity Diagram

Data accessing allows supervisors to obtain, by request, the current value (a quantitative measurement or
qualitative measurement) of a measurement point, or the current monitoring reports corresponding to certain
monitoring criteria (e.g. the current values of a dataset). We refined the Access Data use case into the following
role-based use cases, shown in Figure 8:

Observation
Requester

Access
Observations

Observation
Manager

DAS Broker

Monitoring Report
Requester

Access
Monitoring

Reports

Monitoring Report
Manager

Figure 8 Access Data Use Case

(i) Access Observations. An Observation Requester obtains, by request, observations corresponding to the
values of one or more measurement points. The system may offer Observation Requesters ways to specify filters
to access specific observations of measurement points (e.g. the last observations, the observations within a
specific interval of time, the observations that exceed certain values).

 12/22

(ii) Access Monitoring Reports. A Monitoring Report Requester obtains, by request, monitoring reports
taken on a device item. The system may offer Monitoring Report Requesters ways to specify filters to access
specific monitoring reports (e.g. the last monitoring report of a certain criteria, the monitoring reports of a
certain criteria within a specific interval of time).

In these use cases we introduced a manager role for observations and a manager role for monitoring reports,
as we consider that we have to offer DAS developers the choice of implementing the management of
observations and monitoring reports independently. Typically, the same actor (e.g., the Supervisor of the
system) will implement the roles Observation Requester and Monitoring Report Requester. But, there may be
systems where supervisors are only allowed to access observations of the systems, and certain users with special
privileges (e.g., the Administrator of the system) are allowed to access monitoring reports of the systems. In
other systems, users might be only allowed to access monitoring reports. Again, the use of different elementary
roles for anything that can be accessed makes our use case model more independent from decisions that should
be taken later, in the design phase of a particular DAS. We use an activity diagram, shown in Figure 9, to specify
the sequence in which these use cases may be carried out:

Access
Observations

Access
Monitoring

Reports

H

[observationsToAccess!=null] [monitoringReportsToAccess!=null &
observationsToAccess==null]

[monitoringReportsToAccess==null &
observationsToAccess==null]

[observationsToAccess==null &
monitoringReportsToAccess==null]

[observationsToAccess==null &
monitoringReportsToAccess!=null]

[observationsToAccess!=null] [monitoringReportsToAccess!=null]

H

[monitoringReportsToAccess==null &
observationstoAccess!=null]

Figure 9 Access Data Activity Diagram

(a) Access observations until all the observations to access have been accessed. Then, go to b), to access
monitoring reports; or to the end, if all observations and monitoring reports to access have been accessed.

(b) Access monitoring reports until all the monitoring reports to access have been accessed. Then, go to a),
to access observations; or to the end, if all observations and monitoring reports to access have been accessed.

3.4 Notify Data Availability

This use case implements the “event notification for availability of data” functional requirement, which is
defined by the OMG in the DAIS RFP (OMG, 1999a) as:

“Mechanisms to allow the industrial system broadcasting events outside itself to which clients can subscribe
in order to receive a notification that new data are available to be accessed.”

This use case allows supervisors to be notified when relevant data is available. The notification process is
based on the push model. Monitoring criteria and subscriptions for receiving notifications for availability of
them are defined by means of the Define Data Access use case. The DAS will notify supervisors of monitoring
reports corresponding to monitoring criteria subscribed by them. We refined the Notify Data Availability use
case into a single role-based use case, shown in Figure 10:

(i) Notify Data Availability. A Monitoring Criteria Subscriber receives a notification that new data is
available. Data are monitoring reports corresponding to monitoring criteria subscribed by the Monitoring
Criteria Subscriber. The notification process is based on the push model.

Typically, the Supervisor of the system will implement the role Monitoring Criteria Subscriber. But, there
may be systems where supervisors are not allowed to receive notifications, and only certain users with special
privileges (e.g., the Administrator of the system) are allowed to receive notifications of monitoring reports of the
systems. Again, the use of a role for the subscriber of monitoring reports makes our use case model more
independent from decisions that should be taken later, in the design phase of a particular DAS.

 13/22

Monitoring Criteria
Subscriber

Notify
Data

Availability
DAS Broker

Monitoring Report
Manager

Device Item
Monitoring Criteria

Subscription
Manager

Figure 10 Notify Data Availability Use Case

3.5 Upload Data

This use case implements the “event driven data upload” functional requirement, which is defined by the
OMG in the DAIS RFP (OMG, 1999a) as:

“Mechanisms to define event driven data retrieval sequence, by which data delivery can be done
automatically upon the occurrence of a notification for availability of data.”

This enables the automatic sending of relevant data to supervisors when available. The upload process is
based on the push model. Monitoring criteria and subscriptions for receiving uploads of data are defined by
means of the Define Data Access use case. The DAS will upload to supervisors monitoring reports
corresponding to monitoring criteria subscribed by them. We refined the Upload Data use case into a single
role-based use case, shown in Figure 11:

Monitoring Criteria
Subscriber

Upload
Data

DAS Broker

Monitoring Report
Manager

Device Item
Monitoring Criteria

Subscription
Manager

Figure 11 Upload Data Use Case

(i) Upload Data. Monitoring Criteria Subscribers receive monitoring reports corresponding to monitoring
criteria subscribed by them.

As with the notification of availability of data, typically, the Supervisor of the system will implement the role
Monitoring Criteria Subscriber. But also there may be cases where only certain users with special privileges
(e.g., the Administrator of the system) are allowed to receive uploads of monitoring reports of the systems.
Again, the use of an elementary role for the subscriber of monitoring reports makes our use case model more
independent from decisions that should be taken later, in the design phase of a particular DAS.

4. A Generic DAS Conceptual Model: Discussion

In this section we discuss key issues about the development of our generic DAS role-based use case model.
We discuss the possible representations of the system in the use cases; we discuss the use of elementary roles
rather than actors; we give some techniques to specify the interactions across use cases and the scenarios of use
cases; we explain the use of the Broker pattern in the use cases; we describe a new pattern, called Administrator-
Manager; and finally, we present the templates that we used for specifying role-based use cases and elementary
roles.

 14/22

4.1 Representation of the System

People use different approaches to represent the system in the use cases. These approaches are mainly:

(i) Not to represent the system in the use cases. The system does exist in the use cases but it does not
appear explicitly in the design of the use cases. It is implicit.

(ii) Represent the system as a box containing the use cases. The system appears explicitly in the design of
the use cases.

(iii) Represent the system itself in the use cases. The system appears as another actor who takes part in the
use case.

We found it very useful to represent the system itself in the use cases, because in this way it is easier to
define the role of the system on each use case and to find out the interfaces that the system has to provide to
other participants in the use case in order to carry out this use case. Therefore, we adopted the approach
described in (iii), shown in Figure 12.

Use Case

Actor1

System

Actor2
(a) Use Case with the System

Actor 1
System

System Specification

Actor2
Interface

Actor1
Interface

Actor 2

(b) System Specification

Figure 12 Representation of the System in the Use Case

4.2 Elementary Roles vs. Actors

We used actors to represent not only outside users but also the system itself. Additionally, actors can play
several elementary roles in use cases. Therefore, an actor can be seen as a composition of elementary roles, each
of them playing a single function in a use case. We used elementary roles rather than actors in the use cases,
because this allows us to specify the system independently of architectural choices, requirements, QoS, and/or
available technologies specific for a particular system. The resulting specification can, then, be reused in
different implementations of similar systems by mapping roles into actors according to the requirements of a
specific system. This process is illustrated with an example in Figure 13. In this process we first identify the use
cases using real world actors that cooperate to realize a use case. Then, we focus on the elementary roles that
cooperate to realize a use case. After that we can specify the use case by means of sequence diagrams using
elementary roles. As a result of this specification, we obtain the interfaces of the elementary roles. Consequently,
this specification is generic and we can map each elementary role to actors depending on the requirements of
particular systems.

4.3 System Behavior Modeling

A use case model of a generic system must allow the specification of different system behaviors depending
on specific execution constraints and types of control flow. In this section we give some techniques to specify
the interactions across use cases and the scenarios of use cases in such a way that the use case model enables the
implementation of systems with different execution constraints and types of control flow.

Modeling of the Interactions across Use Cases. We propose the use of UML activity diagrams to specify the
interactions across use cases. An activity diagram is the UML notation for an activity graph, which is a special
form of state machine intended originally to model computations and workflows. According to the UML
notation (OMG, 1999b) of activity diagrams stick arrowheads represent control flow; dashed arrows with stick
arrowheads represent object flow; and labels in the arrows represent conditions to be satisfied to pass from one
state to another state (or eventually a pseudo-state). A use case model of a generic system must be able to specify

 15/22

many particular systems with different interactions across use cases depending on particular execution
constraints. To achieve this, we propose to:

Use Case

Actor 3

Actor 1

Actor 2
(a) Use Cases with Actors

Use Case

Role 5

Role 1

Role 2

Role 4

Role 3
(b) Use Cases with Roles

:Role1 :Role2 :Role5

msgY msgZ
msgZ_ResponsemsgY_Response

Role1's msgX
specification

(c) Scenario Specification with Roles

msgX
msgY_Response

Role1

msgY
msgZ_Response

Role2

msgZ

Role5

(d) Roles Interfaces

Actor 3Actor 1 Actor 2

Role 2Role 1 Role 3 Role 5Role 4
(e) Mapping of Roles into Actors

Figure 13 Elementary Roles vs. Actors

 (i) Represent each use case as an action (or state) in the activity diagram.

(ii) Use stick arrowheads to represent the interactions across use cases.

(iii) Define the transitions across use cases depending on the actual values of environment variables. We
represented environment variables with the “env.” prefix. Depending on the actual values of these environment
variables a particular system will implement a behavior or another.

Example: as shown in Figure 14, we specified that from the UseCase1, if condition1 is false, and
condition2 and condition3 are true, we can go either to the UseCase2 or to the UseCase3. Both
transitions are possible. The actual behavior of the system depends on the env.UseCase2 and
env.UseCase3 environment variables.

Modeling of the Scenarios of Use Cases. We propose the use of sequence diagrams to specify scenarios of use
cases. A sequence diagram is a UML notation for an interaction graph that focuses on time sequences. According
to the UML notation (OMG, 1999b) of sequence diagrams: filled solid arrowheads are used to represent
procedure calls or other nested flows of control; stick arrowheads are used to represent flat flows of control; half
stick arrowheads are used to represent asynchronous messages; and dashed arrows with stick arrowheads are
used to represent “return” messages from procedure calls. A use case model of a generic system should be
independent of a specific type of control flow, enabling the design of systems with nested or flat flows of
control. To achieve this, we propose to:

(i) Use stick arrowheads to represent any kind of message msgX.

(ii) Use msgX_Response as a convention to name the return message corresponding to msgX.

 16/22

Use Case 1 Use Case 2

Use Case 3

[!condition1 &
condition2 &
(!condition3 |
 (condition3 & env. Use Case 2))]

[condition1]
[!condition1 &
!condition2 &
condition3]

[condition1]

H

[!condition1 &
(!condition2 |
 (condition2 & env. Use Case 3)) &
condition3]

[!condition3 &
condition2]

H

[!condition1 &
!condition2 &
!condition3] [!condition1 &

!condition2 &
!condition3]

[!condition1 &
!condition2 &
!condition3]

[!condition1 &
condition2]

[condition3]

Figure 14 Example of Modeling of the Interactions across Use Cases

Example: as shown in Figure 15, we specified that Role1 sends the msgX message to Role2, and Role2
replies with the msgX_Response message. If the implemented system is an asynchronous system Role1 can
continue performing processes, msgX_Response being sent later asynchronously by Role2. If the
implemented system is a synchronous system msgX blocks Role1 until Role2 replies with
msgX_Response. Normally, the interface of Role2 implements a function that handles the msgX message,
and Role1 implements a function that handles the msgX_Response. However, in synchronous systems
implemented by means of procedural calls, the interface of Role2 implements a function that handles the msgX
message, but Role1 does not implement a function that handles the msgX_Response, as msgX_Response
corresponds to the return of the msgX message.

:Role1 :Role2

msgX (msgX_Parameters)

msgX_Response (msgX_Response_Parameters)

Figure 15 Example of Modeling of the Scenarios of Use Cases

4.4 Broker Pattern

The Broker pattern is defined by Buschmann et al. (1996):

“The Broker pattern can be used to structure distributed software systems with decoupled components that
interact by remote service invocations. A broker component is responsible for coordinating communication, such
as forwarding requests, as well as for transmitting results and exceptions”.

We made a wide use of this pattern in our specification of a generic DAS. Due to the genericness of our
specification we cannot predict if a role will be implemented internally by a component of the system, or an
outside user or system. The System Broker allows us to decouple roles allowing us to remain independent of
design choices. The System Broker adds an extra level of indirection that allows roles to ignore whether other
roles are implemented internally or externally. We introduce the System Broker as another role that takes part on
all the use cases, as shown in Figure 16a. Roles register on the System Broker to handle certain messages, as
shown in Figure 16b. All the messages between roles pass through the System Broker. The System Broker is
responsible for establishing a communication between a particular role (RoleX) and another particular role
(RoleY). The System Broker finds the server of a certain role that implements a certain service and forwards the
request to it. Eventually, an asynchronous response would pass through the System Broker in the same way. In
Figure 16c we show an example of communication between roles using the System Broker. For simplicity in the
sequence diagrams, we represent the communication between roles through the System Broker in the simplified
way shown in Figure 16d.

 17/22

Use Case Z

Role Y

Role X System
Broker

(a) Example of Representation of the System Broker in the Use Cases

:RoleX :SystemBroker

registerServices (aRoleX, aRoleXServer,
 aRoleXServiceList)

addServices (aRoleX, aRoleXServer,
 aRoleXServiceList)registerServices_Response

 (acknowledgment)

unregisterService (aRoleX,
 aRoleXServiceList)

removeServices (aRoleX,
 aRoleXServiceList)

unregisterServices_Response
 (acknowledgment)

(b) Example of (Un)Registration of Services in the System Broker

:RoleX :SystemBroker :RoleY

forward (RoleY, msgP,
 msgP_Parameters)

callService (msgP,
 msgP_Parameters)

forward (RoleX, msgP_Response,
 msgP_Response_Parameters)

findService (RoleY, msgP)
 : RoleYServer

findService (RoleX, msgP_Response)
 : RoleXServercallService (RoleX, msgP_Response,

 msgP_Response_Parameters)

callService_Response
 (acknowledgment)

forward_Response
 (acknowledgment)

callService_Response
 (acknowledgment)

forward_Response
 (acknowledgment)

(c) Example of Comm. between Roles using the System Broker

:RoleX :SystemBroker :RoleY

msgP (msgP_Parameters)

msgP_Response
 (msgP_Response_Parameters)

msgP (msgP_Parameters)

msgP_Response
 (msgP_Response_Parameters)

(d) Example of Simplified Comm. between Roles using the System Broker

Figure 16 The Broker Pattern

4.5 Administrator-Manager Pattern

The so-called Administrator-Manager use case pattern is shown in Figure 17. This new pattern concerns the
administration of instances of a particular type X. With the term Administer X we refer to the creation of
new instances of X, and the modification or deletion of existing instances of X. There are always two roles that

 18/22

take part in an Administer X use case. The X Administrator is responsible for administering instances
of X, that means, for creating new instances of X or for modifying or removing existing instances of X. The X
Administrator is typically an outside user with special privileges. The X Manager is responsible for
managing instances of X, that means, recording them into a persistent data support, check duplication of
instances and so on. The X Manager may typically be an interface to an internal or external database. Some
examples of the utilization of this pattern can be found in the refined use cases, specified by Nieva (2001), of the
Define Data Access use case.

Administer
X

X
Administrator

X
Manager

Figure 17 Administrator-Manager Pattern

4.6 Specification of Role-based use cases

In our external specification of a generic architecture for DASs we used the following template to specify
role-based use cases:

Use Case The name of the use case
Roles The names of the roles that take part in the use case. In the high-level use cases we use

actors whereas in the logical use cases we use roles.
Type We categorized use cases according to the criteria defined by Larman (1997). By one

way, use cases are classified as primary, secondary or optional: primary use cases
represent major common processes, secondary use cases represent minor processes and
optional use cases represent processes that many not be tackled. By other way, use cases
are classified as essential or real: essential use cases are expressed in an ideal form that
is implementation independent, whereas real use cases describe the process in terms of a
specific design. In this thesis we focused only on primary and essential use cases.

Description A short description or overview of the use case.
Pre-conditions Some conditions that must be fulfilled before running the use case.
Post-conditions Some conditions that must be fulfilled after having run the use case.
Use Case Diagram The diagram corresponding to the use case.

Known Concepts The set of concepts and relationships of the system that the roles that take part in the use
case have to know to carry out the use case. We represent the roles in the conceptual
model to specify the relationships and cardinalities among roles, and between roles and
concepts. We used the stereotype object in the concepts to specify that these concepts
correspond to a generic representation of objects of the system and not to an internal
representation of concepts in the context of a particular role.

Example Scenario A sequence diagram that specifies a possible scenario, as an example.

4.7 Specification of Roles

In our external specification of a generic architecture for DASs we used the following template to specify
roles:

Role The name of the role
Description A short description or overview of the role.
Policies Some policies that dictate the role behavior.
Interfaces The interfaces that the role offers.

 19/22

Known Concepts The set of concepts and relationships of the system that the role has to now to carry out
its expected behavior. We represent the role concept in the conceptual model as Myself.
This allows us to specify the cardinalities between the role and some concepts. The
concepts correspond to the representation of concepts of the system in the context of the
role. For simplicity, we used the same names to represent the same concepts of the
system in different roles, but these concepts correspond to different representations as
they correspond to different role contexts.

5. Application and Validation

In this chapter we explain the applications of a role-based use case model of a generic system. The most
direct application of a role-based use case model is for the writing of a RFP for a new standard. Another
potential application of a role-based use case model is for the evaluation of existing systems, standards or RFP
responses. We illustrate this by using our generic DAS role-based use case model to compare the different DAS
standards. Finally, a role-based use case model can be used in the development of a particular system. This will
significantly reduce the development costs of a specific system. We illustrate this by means of an example of
development of a DAS for railway equipment using our generic DAS role-based use case model.

5.1 Issuing/Replying a RFP

This is probably the most direct application of a role-based use case model of a generic system. RFP Issuers
may use a role-based use case model of a generic system as a guide to specify the functionalities that such a
standard must deal with, creating and writing down a specific RFP. RFP Repliers may use a role-based use case
model of a generic system to easier understand and analyze the requirements of this RFP. Additionally, RFP
Repliers can use a role-based use case model of a generic system to describe their proposal of standard in request
to this RFP. In this way a role-based use case model of a generic system acts as an efficient communication
mechanism between RFP Issuers and RFP Repliers, facilitating the creation, writing, understanding and replying
of a RFP. A role-based use case model of a generic system can be seen as an actor that actively collaborates in
all these actions, as shown in Figure 18.

:RFP issuer
2: write

RFP

3: understand
RFP

:RFP replier
4: reply to

RFP

:Role-based
Use Case

Model
 of a

Generic
System

1: create
RFP

Figure 18 Write New RFP

5.2 Evaluation of Existing Systems or Proposals

Another potential application of a role-based use case model of a generic system is the evaluation of existing
systems or standards. Developers may use a role-based use case model of a generic system to check the
functionalities that these systems or standards support. In this section, as an example, we use the role-based use
case model of a generic DAS that we developed to compare the DAS standards: OPC, IVI and ODAS. The
results of these comparisons are shown in Table 1.

OPC. OPC specifies all the functionalities defined in the generic DAS specification except Discover Model, as
OPC does not support the notion of model.

IVI. IVI specifies all the functionalities defined in the role-based use case model of a generic DAS.

ODAS. ODAS specifies all the functionalities defined in the generic DAS specification except Discover Model,
as ODAS does not support the notion of model.

 20/22

Table 1 Generic DAS Functionality Comparison

Generic DAS Functionality OPC
(v2) IVI ODAS

Discover
Discover Composition P P P
Discover Model O P O
Discover Datasets P P P
Discover Trigger Conditions P P P
Discover Monitoring Criteria P P P
Define Data Access
Administer Dataset P P P
Administer Trigger Condition P P P
Administer Monitoring Criteria P P P
Administer Monitoring Criteria Subscription P P P
Access Data
Access Observations P P P
Access Monitoring Reports P P P
Notify Data Availability
Notify Data Availability P P P
Upload Data
Upload Data P P P

5.3 Design of a New System

A role-based use case model of a generic system can be applied in the analysis phase of a particular system to
better understand the problem and to easier specify the best solution, depending on the specific requirements of a
particular system. A role-based use case model of a generic system can also be used as a starting point for the
design of a particular system. As a result, the use of a role-based use case model of a generic system will save
time and reduce the costs of the development of a particular system. In order to validate this hypothesis we
developed a DAS for railway equipment based on our generic DAS specification. In this section we summarize
the major results and conclusions from the development of this DAS.

Development of a DAS for Railway Equipment. The main objective of this development was to validate our
role-based use case model of a generic DAS by means of an example. The development of this DAS also gives
developers a case study on the development of a particular system based on a role-based use case model of a
generic system. Additionally, as part of the development of the DAS for railway equipment, we implemented a
generic library, independent from the context of railway equipment, that can be reused and/or extended for the
implementation of another DAS based on our role-based use case model of a generic DAS. We first analyzed our
generic DAS conceptual model to obtain a DAS conceptual model specialized in the context of railway
equipment. Once we had the railway equipment DAS conceptual model, we analyzed the generic use case model
and generic elementary roles taking into account that the DAS system should enable: (i) the discovery of train,
vehicle and equipment knowledge-level data by supervisors of trains; (ii) the definition, by administrators of the
system, of pull and push based access to train data by supervisors of trains; (iii) the access of train data by
supervisors of trains; and (iv) the upload of data to supervisors that are subscribed to certain monitoring criteria.
Additionally, an architectural requirement of the system was to implement the DAS system using a three-tier
architecture composed of a Web Interface to users of the system and a Ground Station in the middle-tier
responsible for the wireless communication with many Train Gateways, each of them on-board a particular train.
In Figure 19, we present the resulting high-level system use cases. We designed the system iteratively starting
from the use cases with fewer dependencies to the use cases that have more dependencies: first, the Discover use
case; second, the Define Data Access use case; third, the Access Data use case; and finally, the Upload Data use
case. For each of these use cases we analyzed the elementary roles that take part in the use case and we designed
components that implement such elementary roles. Due to the architecture of the system, a role may eventually
be implemented as a combination of many components distributed in the three-tier architecture that

 21/22

intercommunicate to fulfill the role functionality. In any case, the elementary roles made it easier the
identification and design of the required components.

The role-based use case model of a generic DAS had a significant role in the design of the DAS railway
equipment. We used the role-based use case model of a generic DAS to clearly specify the functionalities that
the DAS for railway equipment should implement. We used the elementary roles to specify some of the
components of the system. As a result, we had an implementation where a significant amount of the designed
classes represent elementary roles specified in the role-based use case model of a generic DAS. The development
of this particular DAS demonstrated, by means of an industrial example, the usefulness of a role-based use case
model of a generic system for the development of a particular system.

Discover

Define
Data

Access

Access
Data

Upload
Data

DAS
Ground Station

Supervisor DAS
Train Gateway

DAS
Web Interface

Administrator

Figure 19 Railway Equipment DAS System Use Case Model

6. Conclusions

In this paper, we described a role-based use case model of a generic DAS. This model gives DAS developers
an abstraction of the generic functionalities of DASs; it enables them to compare existing products and
standards; and it provides the DAS developers that aim to develop a specific DAS with a starting point for the
design of a specific DAS. We have found that a role-based use case model of a generic system has many
advantages. We propose patterns and techniques that are useful for the development of role-based use case
models of generic systems.

The most direct application of a role-based use case model of a generic system is for the writing of a RFP for
a new standard. Another potential application of a role-based use case model of a generic system is for the
evaluation of existing systems, standards or RFP responses. We illustrated this by using our role-based use case
model of a generic DAS to compare the different DAS standards. Finally, a role-based use case model of a
generic system can be applied in the development of a particular system. This will significantly reduce the
development costs of a specific system. We illustrated this by means of an example of development of a DAS for
railway equipment based on our role-based use case model of a generic DAS. This development demonstrates,
by means of an industrial example, the usefulness of a role-based use case model of a generic system for the
development of a particular system.

The role-based use case model of a generic DAS specifies the behavior of a generic DAS. This role-based
use case model of a generic DAS complements the generic DAS conceptual model described by Nieva and
Wegmann (2001). Together, these models provide a complete specification of a generic DAS. To quantify the
savings on the development costs of systems by the application of our development process researchers would
need to: (i) develop a method to measure objectively the savings; (ii) apply the same development process to
several systems in various domains; and (iii) measure the savings and interpret the results.

References

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M., “Pattern -
Oriented Software Architecture: A System of Patterns”, Wiley, 1996.

 22/22

[D'Souza and Wills, 1999] D'Souza, D. F. and Wills, A. C., “Objects, Components, and Frameworks with
UML - The Catalysis Approach”, Addison-Wesley, 1999.

[Fabri et al., 1999] Fabri, A., Nieva, T., and Umiliacchi, P., “Use of the Internet for Remote Train Monitoring
and Control: the ROSIN Project” presented at Rail Technology '99, London, UK, 1999,
http://icawww.epfl.ch/nieva/thesis/Conferences/RailTech99/article/RailTech99.PDF.

[Fowler and Scott, 1997] Fowler, M. and Scott, K., “UML Distilled: Applying the Standard Object Modeling
Language”, Addison Wesley Longman, 1997.

[Itschner et al., 1998] Itschner, R., Pommerell, C., and Rutishauser, M., “GLASS: Remote Monitoring of
Embedded Systems in Power Engineering” in IEEE Internet Computing, vol 2, 1998.

[IVI Foundation, 1997] IVI Foundation, “Interchangeable Virtual Instruments Standard”, 1997,
http://www.ivifoundation.org/.

[Larman, 1997] Larman, C., “Applying UML and Patterns”, Prentice Hall, 1997.

[Martin-Flatin, 1999] Martin-Flatin, J. P., “Push vs. Pull in Web-based Network Management” presented at 6th
IFIP/IEEE International Symposium on Integrated Network Management (IM'99), Boston, MA, USA,
1999.

[Nieva, 1999] Nieva, T., “Automatic Configuration for Remote Diagnosis and Monitoring of Railway
Equipment” presented at IASTED International Conference - Applied Informatics, Innsbruck, Austria,
1999, http://icawww.epfl.ch/nieva/thesis/Conferences/ai99/article/ai99.pdf.

[Nieva and Wegmann , 2001] Nieva, T. and Wegmann, A. “A Conceptual Model for Remote Data Acquisition
Systems”, Technical Report N°030, EPFL, DSC, Lausanne, 2001.

[Nieva, 2001] Nieva, T., “Remote Data Acquisition of Embedded Systems Using Internet Technologies: a Role-
based Generic System Specification”, PhD Thesis N°2388, EPFL, DI, Lausanne, 2001,
http://icawww.epfl.ch/nieva/thesis/report/phd.pdf.

[ODAA, 1998] ODAA, “Open Data Acquisition Standard”, 1998, http://www.opendaq.org/.

[Olken et al., 1998] Olken, F., Jacobsen, H. A., McParland, C., Piette, M. A., and Anderson, M. F., “Objects
lessons learned from a distributed system for remote building monitoring and operation” presented at
Conference on Object-oriented Programming, Systems, Languages and Applications, Vancouver,
Canada, 1998, http://www.lbl.gov/~olken/rbo/rbo.html.

[OMG, 1999a] OMG, “Data Acquisition from Industrial Systems (DAIS)”, Request for Proposal (RFP), OMG
Document: dtc/99-01-02, January 15, 1999a,
http://www.omg.org/techprocess/meetings/schedule/Data_Acquisition_RFP.html.

[OMG, 1999b] OMG, “Unified Modeling Language Specification Version 1.3”, June, 1999b,
http://www.omg.org.

[OPC Foundation, 1997] OPC Foundation, “OLE for Process and Control Standard”, 1997,
http://www.opcfoundation.org.

[Rumbaugh et al., 1999] Rumbaugh, J., Jacobson, I., and Booch, G., “The Unified Modelling Language
Reference Manual”, Addison Wesley, 1999, http://www.rational.com, http://www.omg.org.

[Wireman, 1994] Wireman, T., “Computerized Maintenance Management Systems”, Industrial Press, Inc,
1994.

