Separation of Duty Administration

Stephen Perelson®

Reinhardt Botha®

Jan Eloff?

@ Faculty of Computer Studies, Port Elizabeth Technikon, Port Elizabeth
{stephen,reinhard}@petech.ac.za
b Department of Computer Science, Rand Afrikaans University, Johannesburg

eloff@rkw.rau.ac.za

Abstract

Access control administration is a huge task. Admin-
istration tools should assist the administrator in en-
suring that the access control requirements are met.
One example of an access control requirement is Sep-
aration of Duty (SoD). SoD requirements specify that
no single person may have sufficient authority to com-
plete a business process unilaterally.

The SoDA prototype administration tool has been
developed to assist administrators with the adminis-
tration of SoD requirements. It demonstrates how the
specification of both Static and Dynamic SoD require-
ments can be done based on the “conflicting entities”
paradigm. Static SoD requirements must be enforced
in the administration environment. The SoDA proto-
type, therefore, enforces the specified static SoD re-
quirements.

Keywords: Information Security, Access Control Ad-
ministration, Separation of Duty

Computing Review Categories: Dj.6, H2.7,
Hj.1, K6.5

1 Introduction

Security administrators must manage an ever-
increasing number of systems under their control. In
recent years, Role-based Access Control (RBAC) has
been promoted as a possible solution to the resultant
administration nightmares [5]. With the increasing
amount of information available electronically, it is
necessary not only to find a means to ease the job
of the security administrator, but also to ensure that
the information is protected and managed according
to organizational policies.

One expression of organizational policy can be
found in the age-old principle of Separation of Duty
(SoD). Saltzer and Schroeder [10] identified SoD, or
“separation of privilege” as they called it, as one of
eight design principles for the protection of informa-
tion in computer systems. They built on the obser-
vation that a security system with two keys is more
robust and flexible than one that requires a single
key. No single accident, deception or breach of trust is
therefore sufficient to compromise the system. Clark
and Wilson [4] identified SoD as one of the two ma-

64

jor mechanisms that can be implemented to ensure
data integrity. SoD serves as a mechanism to counter-
act fraud and error, while assuring correspondence be-
tween system objects and the real world objects that
they represent.

Furthermore, they [4] asserted that, at the pol-
icy level, processes are divided into tasks, with each
task being performed by a different person. [1] and [§]
observed that existing SoD models do not take work
processes into consideration. Work processes are of-
ten facilitated through the use of workflow systems.
Workflow systems are constructed around tasks that
are linked according to business rules to represent a
business process. This paper introduces the task as an
additional building block for expressing SoD require-
ments in workflow systems.

Even with the introduction of the task abstrac-
tion, the administration of SoD requirements remains
a mammoth task. In a large organization, there may
be thousands of objects that require protection. The
organization may have thousands of users, filling hun-
dreds of different positions in the organization. The
identification of all the access requirements requires a
huge effort. It is virtually impossible to maintain con-
sistency when performing such a huge task, unless the
administration tools provide appropriate assistance.

The SoDA prototype is introduced to assist se-
curity administrators with the specification of access
control requirements according to Role-based Access
Control principles. More specifically, the SoDA pro-
totype is intended to assist with the administration
of SoD requirements. In order to demonstrate the
“conflicting entities” administration paradigm as used
within the SoDA prototype, the remainder of the pa-
per is structured as follows. First, a brief review
of role-based access control principles is provided.
Thereafter, the additional concept of a task is intro-
duced. This is followed by a discussion on the use
of the “conflicting entities” paradigm to specify SoD
requirements. Finally, we illustrate how the SoDA
prototype is used to administer SoD requirements.

2 Basic Concepts

This section will provide the necessary background to
explain the principle of separation of duty within role-

SACJ / SART, No 27, 2001

Form Design I
Internal Purchase Order vl I Field Definition

E‘ EmPD etails Mame: itemno

EmpMo
Telho Type: I Stiing 'l
[Orderling
- Itterations: S

gty Apply |

- motivation

LClaze |

Figure 1: Form design environment used to create a
“Purchase Order”

based workflow systems.

2.1 Role-based Access Control

The concept of a role is pivotal in role-based ac-
cess control. Users receive access permissions based
on the roles that they may assume. Users are any-
one/anything that accesses resources in the system. A
user may, therefore, be an individual or another pro-
gram. Roles often correspond to positions in the orga-
nizational structure. It is thus a semantic construct,
created to ease the management of access rights. Per-
missions can be interpreted as the right to execute a
certain method of an object.

The SoDA prototype considers an object to be a
document containing various field objects. Users may
perform different actions on the field objects, e.g. add
another instance of the field object, delete a field ob-
ject, edit the contents of a field object or view the
contents of a field object. Individual field objects may
be grouped, resulting in composite objects. Figure
1 shows how a hierarchical view, representing object
containment, can be used to create the ‘Internal Pur-
chase Order’ object. Permissions could relate to any of
the field objects, or composite field objects, in the ‘In-
ternal Purchase Order’ object. Permissions assigned
to an object are inherited for objects contained by that
object. For example, the permission to edit Employee
Details will imply the permission to edit all fields that
form part of Employee Details on the form.

Roles may be related through a partial order. A
role inherits permissions assigned to the roles that are
junior to it in the partial order. For example, the
‘Manager’ role may be considered senior to the ‘Super-
visor’ role. The ‘Manager’ role will, therefore, inherit
the permissions assigned to the ‘Clerk’ role. Figure
2 shows how the SoDA prototype manages the asso-
ciations between roles. In SoDA, roles are related to
other roles within disjoint, named role networks. The
combination of all named role networks is similar to
the role-graph presented by [8], if an artificial maxi-

SART / SACJ, No 27, 2001

Research Articles

Role Relationships

o | FlhmeEEl REEs

Storez Manager

Ens Mapagef Stock Contraller
=l Supervisor
— Clerk
= Snr. Clerk.
— Clerk
—Used Roles
M anager
Supervizor
St Clerk
Clerl
Apply | Dlose |

Figure 2: SoDA associates roles according to named
role networks

mum and an artificial minimum role were introduced.
The concepts employed in RBAC are indeed very
powerful. However, Sandhu et al. [11] observed that:

“RBAC is not a panacea for all access con-
trol issues. More sophisticated methods are
required to deal with situations that control
operation sequences. [...| Other forms of ac-
cess control can be layered on top of RBAC
for this purpose.”

Workflow Systems provides an environment where
the sequences of operations are controlled according to
business rules. The next section introduces workflow
concepts, paving the way for the expression of access
control policies in terms of sequence of operations.

2.2 Workflow Concepts

Workflow Systems are concerned with the automation
and facilitation of business processes [6]. Business pro-
cesses are defined through process definitions. A pro-
cess definition consists of sets of tasks, connected ac-
cording to business rules.

The process definition is enacted by the workflow
engine. For each enactment of the business process,
e.g. for each ‘Internal Purchase Order’ that is issued,
a process instance is generated. Task instances are
generated on demand, based on the business rules en-
capsulated as part of the process definition.

SoDA is a tool that focuses on supporting access
control administration. Access control requirements
are, typically, described within the general context of
a business process and not for a specific enactment of
the workflow. The SoDA prototype is, therefore, only
concerned with the process and task definitions.

The “conflicting entities” paradigm relies on re-
stricting the associations between all the entities that
are involved, namely user, roles, permissions and
tasks.

65

Research Articles

3 SoDA — The “conflicting enti-
ties” paradigm

Separation of duty requirements are implemented by
restricting the associations allowed between entities.
This is to ensure that a single user may not receive
too many permissions. An example of such a con-
straint may specify that “the permission to approve
an order and the permission to issue an order may
not be assigned to the same role”.

Kuhn [7] explained how mutual exclusive roles, i.e.
roles that may not be assigned to the same user, can
be used to enforce SoD. Ahn and Sandhu [1] showed
through their RSL99 specification language that there
are several ways of expressing similar SoD require-
ments. SoDA builds on these observations, and ex-
tends it with the concept of conflicting tasks.

The term “conflicting entities” does not indicate
that there are any disharmony between the entities.
The “conflict” refer, rather to the disharmony that
the entities could cause between the actual and the
desired state of the system. Conflict thus indicates
a potential undesirable state of integrity. The “con-
flicting entities” paradigm, as employed in the SoDA
prototype, identifies four types of conflict [3]:

Conflicting permissions are permissions that can
result in unnecessary power if bestowed on the
same person. For example, a person with the per-
missions required for financial audits should not
receive permissions to approve financial transac-
tions. If this were allowed, auditors could lose
their independence.

Conflicting users are users who will together have
sufficient power to collude, and are likely to do
so. In practice, this may be family members or
previously known accomplices.

Conflicting roles are roles that together possess the
ability to conspire. This means that they are
assigned conflicting permissions. Consider, for
example, the ‘Auditor’ and ‘Financial Manager’
roles. It is common practice that auditors and
financial managers should be independent. The
roles may have certain permissions, e.g. ‘view or-
der’; in common. However, the ‘approve order’
and ‘approve audit’ permissions may be assigned
only to one of these roles.

Conflicting tasks are tasks requiring conflicting
permissions to complete. This would, for exam-
ple, imply that the ‘Audit Purchase Order’ task
and the ‘Approve Purchase Order’ task would be
conflicting since they require the ‘approve order’
and ‘approve audit’ permissions. These permis-
sions are, in turn, conflicting.

The “conflicting entities” paradigm is based on
the observation that power is vested in permissions.

66

The essence of the “conflicting entities” paradigm lies,
therefore, in conflicting permissions. It is argued, how-
ever, that tasks provide a more natural abstraction for
the specification of SoD requirements. The “conflict-
ing entities” paradigm allows for the specification of
both Static and Dynamic SoD requirements.

Static SoD requirements, on the one hand, con-
trol the associations between entities during admin-
istration time. They would, for example, disallow a
user to be assigned to a role if an SoD requirement
would be violated. Dynamic SoD, on the other hand,
does not restrict associations between entities at ad-
ministration time. Instead, it controls the execution of
permissions at run-time. It would, for example, allow
a user to belong to the ‘Manager’ and ‘Clerk’ roles.
However, during run-time, the user that initiated the
purchase order (using the ‘Clerk’ role) will not be able
to approve that purchase order (using the ‘Manager’
role).

The specification of both Static and Dynamic SoD
requirements within the SoDA prototype is similar.
This will be discussed in Section 4. Static SoD re-
quirements must, however, also be enforced in the ad-
ministration environment. The enforcement of Static
SoD requirements in the SoDA prototype is thus dis-
cussed in Section 5.

4 Separation of duty specifica-
tion in SoDA

The SoDA prototype allows for the specification of
conflicting users, conflicting roles, conflicting permis-
sions and conflicting tasks. A distinction is made be-
tween static and dynamic SoD. Conflicts are based on
the sets U, R, P and T, representing the user, role,
permission and task entities respectively. P is defined
as P C 20%M swhere O represents the objects and M
the methods that may be performed. Note that not
all the methods may necessarily be defined on all ob-
jects. Thus, the set of permissions is a subset of the
power set.

The specification of the conflicts is done through
the sets:

CUp,CUs,CRp,CRg,CPp,CPs,CTp, CTs.

The same naming convention is followed. C'X denotes
conflicting entities of type X, and the subscript indi-
cates whether the conflict must be checked statically
(CXg) or dynamically (CXp). The “conflicting en-
tities” relations are defined in a symmetric and non-
reflexive fashion:

CXy C X x X such that Vo, # z;
(.’L‘i7.’L‘j) € (CXy — (Jﬁj,l‘i) e CXy

The specification for all 8 sets can be derived by re-
placing X with the appropriate entity (U,R,P or T)

SACJ / SART, No 27, 2001

and Y with S or D, for Static and Dynamic respec-
tively.

Figure 3 shows how conflicting tasks are identified
within the SoDA prototype. The other conflicts are
specified in a similar manner. The interpretation of
the various conflicts is summarized in Table 1.

The enforcement of Dynamic SoD requires inter-
pretation of the process instance. Thus it is the re-
sponsibility of the workflow system. Consequently, it
falls outside the scope of the administrative tool. For
a more detailed discussing regarding dynamic SoD the
interested reader are refered to [3]. Static SoD must,
however, be enforced in the administration environ-
ment. The next section discusses how this is imple-
mented in the SoDA prototype.

5 Static Separation of Duty en-
forcement in SoDA

In order to enforce Static SoD, the SoDA prototype
ensures that the integrity of the associations between
entities is maintained. If an action cannot be per-
formed, remedial actions are suggested. For exam-
ple, if conflicting tasks are assigned to non-conflicting
roles, the user is given the option of making the roles
conflicting. The associations that are allowed are sum-
marized in Table 2 [9].

To illustrate how the SoDA prototype maintains
the associations, this section will review different
static SoD implementations of the requirement: “A
person who issues stock may never approve an order”.
Three approaches to enforcing this SoD requirement in
a static fashion are proposed. This is done by rephras-
ing the SoD requirement in the following ways:

(SoD1) A manager and a stock controller may not
perform the same tasks.

(SoD2) The ‘Issue Stock’ permission and the ‘Ap-
prove Order’ permission may not be assigned to
the same user.

(SoD3) The ‘Issue Stock’ task may not be performed
by someone who performs the ‘Approve Order’
task.

These SoD constraints will be implemented as con-
flicting roles, conflicting permissions and conflicting
tasks. Conflicting users can be used in combination
with these.

Conflicting users are interpreted in the same way
as in [AS99]. If two users are conflicting, it means
that the chances of them colluding are very high. In
essence, they should, therefore, be treated as if they
were one user. For example, if two tasks may not be
performed by the same user, two conflicting users may
not perform them either as the chances of a conspir-
acy are high. We shall now consider how each of the
approaches can, in turn, be handled in the prototype.

SART / SACJ, No 27, 2001

Research Articles

Conflicting Tasks
Process:
|Intemal Purchaze Order j

[[] Complate order Farr

Approve order

[[] Check stock

[] Order stock.
= ck

[C1"write rejection letter

Apply Static: Conflict

Apply Dynamic Conflict

Cloze |

Figure 3: Specifying conflicting tasks
5.1 Conflicting Roles

First consider (SoD1) - A manager and a stock con-
troller may not perform the same tasks.

Since managers approve orders, and stock con-
trollers issue stock, the ‘Manager’ role in the ‘Ad-
min’ role network and the ‘Stock Controller’ role in
the ‘Stores’ role network may be set to conflict. Due
to the inheritance property of role networks, conflict-
ing roles cannot exist in the same role network. If
conflicting roles were allowed in one role network, the
topmost role in that role network would inherit the
permissions of both conflicting roles. This clearly de-
feats the purpose. A role may conflict with more than
one role in another network. Conflicts are, however,
inherited up the partial order and setting more than
one conflict, as such, may not be necessary. The SoDA
prototype will remove any unnecessary conflict.

In Figure 4, the ‘Stores Manager’ inherits the con-
flict set upon ‘Stock Controller’. ‘Stores Manager’
will, therefore, also conflict with the ‘Manager’ role
in the ‘Admin’ role network. In Figure 3, the ‘Ap-
prove order’ and ‘Issue stock’ tasks were made con-
flicting tasks. Conflicting roles and conflicting tasks
impact on the allowable associations as follows. Only
non-conflicting users may be assigned to conflicting
roles. Conflicting tasks must be performed by conflict-
ing roles. Recall that the ‘Stock Controller’ role and
the ‘Stores Manager’ role were identified as conflicting
with the ‘Manager’ role. Figure 5 depicts the ‘Man-
ager’ role as being assigned to the ‘Approve Order’
task. Figure 5 shows, furthermore, that subsequently
only the two roles conflicting with the ‘Manager’ role,
namely the ‘Stock Controller’ and ‘Stores Manager’
roles, may be assigned to the ‘issue stock’ task. If two
tasks are initially not indicated to be conflicting, but
they are assigned to conflicting roles, the tasks are
made conflicting tasks.

5.2 Conflicting Permissions

Now consider (SoD2) — The ‘Issue Stock’ permission
and the ‘Approve Order’ permission may not be as-
signed to the same user.

67

Research Articles

Conflict

| Static

| Dynamic

Conflicting
Roles

May not have the same user
(or conflicting users) as mem-
bers

May not be assumed by
the same user (or conflicting
users) in one process instance

Conflicting
Permissions

Must be assigned to conflict-
ing roles

May not be exercised by
the same user (or conflicting
users) for a specific process
instance

Conflicting
Users

May not belong to the same
role or conflicting roles

May not perform conflicting
tasks in the same process in-
stance

Conflicting
Tasks

Must be assigned to conflict-
ing roles

May mnot be executed by
the same user (or conflicting
users) in the same process in-

stance

Table 1: Interpretation of conflicts according to the “conflicting entities” paradigm

May be associated Roles
with Conflicting | Non-conflicting
Users Conflicting N Y
Non-conflicting Y Y
Permissions Conflicting Y N
Non-conflicting Y Y
Conflicting Y N
Task

aAsks Non-conflicting Y Y

Table 2: Static SoD — Allowable associations

Tazk Role Aszignment [x| Task Role Assignment
Process: Proces::
IIntemaI Purchage Order j IIntemaI Purchase Order j
Tasks: Roles: Tazks: Rales:
|D:-rnEIete order farm r Complete arder farm [] Stores Manager
[Supervisor Approve arder ;i ontraller
Check stock [Snr Clerk Check stock
Order stack Order stock,
[Clerk.
lzsue stock

[] Stares Manager

WWiite rejection letter
[Stack Controller

write rejection letter

Apply Elose

Cloge

Apply

Figure 5: Conflicting tasks must be assigned to conflicting roles

68 SACJ / SART, No 27, 2001

Conflicting Roles
IAdmin 'l IStores 'l
Manager [7] Staores Manager
[Supervisor Stock Controller
15k Clerk.
[Clerk
Apply Static Conflict | Apply Dynamic Conflict | Close

Figure 4: Conflicting roles

The permissions involved are editing the ‘Ap-
proval’ and ‘IssueRec’ field groups on the ‘Internal
Order Form’ object. Conflicting permissions may only
be assigned to conflicting roles. If this is not enforced,
conflicting permissions could be assigned to conflict-
ing users. These conflicting users belong to non-
conflicting roles, which have conflicting permissions
that were incorrectly assigned to the non-conflicting
roles. This clearly opens the door for a conspiracy.
The SoDA prototype, therefore, only allows conflict-
ing roles to receive conflicting permissions.

If the roles are not conflicting, they are made con-
flicting, subject to additional integrity checking. Roles
cannot be made conflicting if conflicting users are as-
signed to the said roles. It can, therefore, be seen that
even if the ‘Manager’ and ‘Stock Controller’ roles were
not initially identified to be conflicting, they will be
made conflicting when the two conflicting permissions
are assigned to these two roles. Similar to section 4,
the tasks assigned to these two roles will also be made
conflicting.

5.3 Conflicting Tasks

Consider (SoD2c) — The ‘Issue stock’ task may not be
performed by someone who may perform the ‘Approve
order’ task. In section 5.1, it was shown how conflict-
ing roles could only be assigned to conflicting tasks.
If conflicting roles were assigned to tasks, these tasks
were automatically made conflicting. This approach
can be considered to be the reverse of that. Two tasks
are defined to be conflicting. Subsequently, the roles
that must be assigned to the user must be conflict-
ing. If two non-conflicting roles are assigned, the roles
are made conflicting, subject to a series of integrity
checks being performed. It is evident that the same
result is achieved, irrespective of the approach used,
since automatic maintenance of conflict relationships
is performed.

The results of the conflicting role and conflict-
ing task approaches are thus identical. The conflict-
ing permission approach can, however, be considered
stricter. Conflicting permissions must be performed

SART / SACJ, No 27, 2001

Research Articles

by conflicting roles. However, conflicting roles do not
only have conflicting permissions. For example, the
‘Manager’ and ‘Stock Controller’ roles are conflicting,
but both should still be allowed the ‘view purchase
order’ permission. The conflicting permissions ‘Edit
Approval’ and ‘Edit Issuerec’ may, however, also be
assigned to the ‘Manager’ and ‘Stock Controller’ roles
respectively.

6 Conclusion

This paper demonstrated the “conflicting entities”
paradigm as a way of specifying SoD requirements.
This paradigm uses the task abstraction to intuitively
define separation of duty requirements that involve se-
quence of operations. It was shown that both Static
and Dynamic SoD requirements can be formulated ac-
cording to the “conflicting entities” paradigm in the
SoDA prototype.

It was, furthermore, shown that the SoDA proto-
type enforces Static SoD requirements. By specifying
one SoD requirement in three different ways, it was
explained that equivalent results can be achieved.

It should be noted that Static SoD requirements
are extremely restrictive on the organizations func-
tioning. Consider, for example (SoD1). To assume
that a managers and a stock controller could never do
the same job could be, especially for a small company,
very restrictive. Dynamic SoD requirements addresses
this issue by imposing the restrictions per process in-
stance.

Other issues that could be of concern are the po-
tential of a lock-out situation. A situation could arise
that, for example no roles are available to assign to
a task. This would immediately be noticable to the
system administrator and he/she will have to rectify
the situation manually. However, due the extremely
strict restrictions imposed by static separation of duty,
it is likely to be used sparingly. This makes the like-
lihood of a lock-out occurring extremely small and
thus feasible for the adminstrator to manually cor-
rect. The issue of lock-out occuring due to dynamic
SoD requirements are much more complex and state-
of-the-art work regrading that may be found in [2].

References

[1] G-J. Ahn and R. S. Sandhu. The RSL99 language
for role-based separation of duty constraints. In
Proceedings of the Jth ACM Workshop on Role-
based Access Control, pages 43 — 54, 28 — 29 Oct.
1999.

[2] E. Bertino, E. Ferrari, and V. Atluri. Speci-
fication and enforcement of authorization con-
straints in workflow management systems. ACM

69

Research Articles

[10]

[11]

Transactions on Information and System Secu-
rity, 2(1):65-104, Feb 1999.

R. A. Botha and J. H. P. Eloff. Separation of
duties for access control enforcement in workflow
environments. IBM Systems Journal, 40(3), 2001.

D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security poli-
cies. In Proceedings of the 1987 IEEE Symposium
on Security and Privacy, pages 184 — 194, Apr.
1987.

D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A
role-based access control model and reference im-
plementation within a corporate intranet. ACM

Transaction on Information and System Security,
2(1):34 — 64, Feb. 1999.

D. Hollingsworth. The workflow reference model.
Technical Report TC-00-1003, Workflow Man-
agement Coalition, www.wfmc.org, Jan 1995.

D. R. Kuhn. Mutual exclusion of roles as a means
of implementing separation of duty in role-based
access control systems. In Proceedings of the 2nd
ACM Workshop on Role-based Access Control,
pages 23 — 30, Oct. 1997.

M. Nyanchama and S. Osborn. The role-graph
model and conflict of interest. ACM Transactions
on Information and System Security, 2(1):3 — 33,
Feb. 1999.

S. Perelson and R. A. Botha. Conflict analysis
as a means of enforcing static separation of duty
requirements in workflow environments. South
African Computer Journal, (26):212 — 216, Nov.
2000.

J. H. Saltzer and M. D. Schroeder. The protection
of information in computer systems. Proceedings
of IEEE, 63(9):1278 — 1308, 1975.

R. S. Sandhu, E. J. Coyne, H. L. Fenstein, and
C. E. Youman. Role-based access control models.
IEEE Computer, 29(2):38 — 47, Feb 1996.

Received: 10/00, Accepted: 5/01

70

SACJ / SART, No 27, 2001

