
Abstract — Assuring logical consistency among the specification of entities, relations and constraints in a role-based

access control (RBAC) schema becomes increasingly important and urgent as the access control systems increase their

spatial and temporal span. In this paper, we report an attempt to employ ALLOY, a lightweight modeling system with

automatic semantic analysis capability, to verify internal consistency of RBAC schema as well as explicit manifestation of

certain algebraic properties.

1. INTRODUCTION

Access control is used extensively in information systems as a security mechanism for protecting sensi-

tive information and resources from illegitimate access. Because correct specification and implemen-

tation of access control rules — known as access control schema or policies — are crucial to the correct

functioning of access control systems, it is impertinent that we analyze the access control schema and

verify the correctness of their implementation before putting them into actual use. A few classical access

control schema mainly variations of Bell-LaPadula [BLP75] and China Wall [BN89] models have been

carefully studied. However, these idealized models often fail to take into account the peculiarity of real-

life scenarios. Hence, the development of access control schema for practical applications remains an art

relying largely on experience and intuition.

With the advent of client-server systems and the Internet, access control becomes a critical means for

protecting information and resources available on the Internet. In addition to traditional mandatory and

discretionary access control, a new paradigm known as role-based access control (RBAC) [FK92]

[SCFY96][GI96] has gained popularity among commercial vendors and users as a promising way to

realize fine-grain access control of network databases. The essence of RBAC lies with the notion of roles

as an intermediary between conventional access control subjects and objects: roles are given permissions

to access objects while subjects are associated with roles. The introduction of roles greatly simplifies the

management of access control systems as it separates the dynamic associations between subjects and roles

from the relatively static associations between roles and permissions. It also enriches the access control

schema model by introducing the concepts of role hierarchies and association constraints. Along with the

flexibility of RBAC comes a vast management problem; the sheer number of roles and the dynamics of

associations make verifying the correctness of a RBAC schema a crucial and yet difficult task. One small

change to a permission assigned to a role may create security loopholes or introduce permission conflicts

that can hardly be detected by manual inspection. Furthermore, roles and constraints are often added,

John Zao, Hoetech Wee, Jonathan Chu, Daniel Jackson

RBAC Schema Verification Using Lightweight
Formal Model and Constraint Analysis

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 2 Submitted to SACMAT 2003

deleted or modified throughout the lifetime of a system by various personnel who have only partial

knowledge of the system. All these concerns imply that a reliable method for checking the consistency

among roles and constraints is desperately needed. Currently, the technology for automated verification

of RBAC schema is not yet developed although standard methods for schema specification have been

emerging; e.g., Ahn and Sandhu [AS00] developed the RCL-2000 language for specifying RBAC

constraints. In a DARPA funded project, ALLOY-based Value and Dependence Abstraction, (AVDA)

[Z+01], BBN developed a RBAC schema debugger prototype that uses a lightweight formal modeling

system developed in MIT called ALLOY [Jac00b] to verify the algebraic properties and the logical

consistencies of RBAC schema.

The RBAC Debugger uses a constraint analyzer built into the lightweight modeling system to search for

inconsistencies between the mappings among users, roles, objects, permissions and the prohibitive1 and

the obligatory2 constraints in a RBAC scheme. The debugger was demonstrated to have the following

capabilities: (1) specifying roles, user-role and role-permission associations according to RBAC-96

schema framework [SCFY96], (2) specifies static role/user/permission-centric separation-of-duty (SoD)

constraints as depicted in [AS00], (3) verifies consistency between user-role/role-permission associations

and static SoD constraints, (4) verifies consistencies between user-role/role-permission associations and

the algebraic properties of RBAC schema and (5) searches for a plausible realization of the RBAC

schema. The ability of ALLOY to conduct satisfiability analysis [G+96] using a built-in Constraint

Analyzer gives it an edge to surmount the challenge of automatic schema verification. In particular,

ALLOY can be used to perform the following two tasks:

1. Develop an “abstract” access control schema and then verify the correctness of different RBAC

implementations against the abstract schema;

2. Specifying the properties of RBAC entities such as subjects, objects, roles and their associations by

asserting prohibitive and obligatory constraints, and then check the consistency between the existing

constraints and the future changes to the RBAC entities and constraints.

In this paper, we report both our effort in developing the RBAC schema debugger and the results of our

experiments with the debugger prototype. Next section contains a succinct summary of the principle and

the features of ALLOY system. Section 3 provides the first example of ALLOY use as we specified Bell-

1 Prohibitive constraints are the predicates specifying the instances that can never occur in a realization of the
RBAC model.
2 Obligatory constraints are the predicates specifying the conditions that must be satisfied by any realization of the
RBAC model.

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 3 Submitted to SACMAT 2003

LaPadula confidentiality service in ALLOY modeling language and verify its read/write properties using

ALLOY Constraint Analyzer. Section 4 gives the specification of entities and relations embodied in

RBAC-96 framework. Section 5 and 6 demonstrate ALLOY capability in performing the two tasks

mentioned above. Concluding comments are provided in Section 7.

2. ALLOY LIGHTWEIGHT MODELING SYSTEM

ALLOY [Jac99][Jac00a][Jac00b] is a textual notation designed for software system modeling. It is a

small language — much smaller than any programming language, and smaller than most modeling

languages. A subset of ALLOY can be expressed graphically. In addition to the standard set operators, it

provides a ‘navigation’ operator that allows structural constraints to be succinctly expressed, and supports

descriptions of evolution of system structures over time. Transitive closure is built-in, so there is no need

for iteration constructs. ALLOY is strongly but implicitly typed, so many simple errors in models are

caught without burdening the user with type declarations. By treating scalars as singleton sets, ALLOY

sidesteps the problem of undefined expressions, and allows relations and functions to be treated

uniformly. Figure 4 gives an example of an ALLOY model of human family relations. Note that ALLOY

supports the definition of operators and their association with entities. Also, it supports the assertion of

logical predicates, and its Constraint Analyzer can check the consistency of the assertion against the

model.

model Family {
domain {Person, Name}
state {

partition Man, Woman : static Person
Married : Person
parents : Person -> static Person
siblings : Person -> Person
wife (~husband) : Man ? -> Woman ?
name : Person -> Name !

}
def siblings {

all a, b | a in b.siblings <-> (a.parents = b.parents)
}
inv Basics {

all p | some p.wife <-> p in Man & Married
no p | p.wife / in p.siblings
all p | (sole p.parents & Ma n) && (sole p.parents & Woman)
no p | p in p.+parents
all p, q | p.name = q.name -> no (p.parents & q.parents)

}
op Marry (m: Man!, w: Woman!) {

m not in Married && w not in Married
m.wife’ = w
all p: Man - m | p.wife’ = p.wife
all p | p.name’ = p.name
all p | p.parents’ = p.parents
Person’ = Person

}
assert HusbandsWife {

all p : Married & Woman | p.husband.wife = p
}

}

Figure 1. ALLOY Model of Human Family Relations

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 4 Submitted to SACMAT 2003

2.1 ALLOY Logic System3

Figure 2. ALLOY Syntax, Type and Semantic Definitions

ALLOY was designed to be lightweight, precise and tractable. In other words, it should be (1) small and

yet capable of expressing common properties of object-based system tersely, (2) formally defined with

simple uniform mathematical semantics, and (3) amenable to efficient and automatic semantic analysis.

Figure 2 gives the definition of ALLOY logic system with abstract syntax on the left, type system in the

middle and semantics on the right. Following are a few remarks about the syntax and formal semantics of

ALLOY.

The syntax of ALLOY is mostly identical to standard mathematical syntax of the first order logic, but

uses ASCII rather than typographic symbols for the operators. The logic is strongly typed, and a formula

is accompanied by declarations of the set and relation variables; we call the combination of a formula and

its declarations a problem. Each declaration associates a type with a variable. There are three kinds of

type:

• Set type T, denoting sets of atoms drawn from T;

• Relation type S -> T, denoting relations from S to T;

• Function type T => t, denoting functions from atoms of T to values of type t.

3 This brief description of ALLOY syntax and semantics was extracted from [Jac00b].

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 5 Submitted to SACMAT 2003

Types are constructed from basic types that denote disjoint sets of atoms. Functions correspond to

predicates of arity greater than two. There are no scalar types. To declare a scalar variable, we declare it

to be a set v : T and add a constraint that makes the set a singleton:

some x: T | x = v

This allows navigation expressions to be written uniformly, without the need to convert back and forth

between scalars and sets, sidesteps the partial function problem, and simplifies the semantics and its

implementation. Finally, expressions are formed using the standard set operators (union, intersection and

difference), the unary relational operators (transpose and transitive closure), and the dot operator, that is

used to form navigation expressions.

The semantics of ALLOY is defined by a standard denotational semantics with two meaning functions:

M, which interprets a formula as true or false, and X, which interprets an expression as a value. Values

are either binary relations over atoms or functions from atoms to values. Interpretation is always in the

context of an environment that binds variables and basic types to values, so each meaning function takes

both a syntactic object and an environment as arguments.

All operators have their standard interpretation, except the dot operator, which does double duty. Its

semantic definition is like relational composition, but with one argument transposed and the arguments

reversed. Our motivation for defining dot this way is that, when s is a set and r is a relation, s.r denotes

the image of s under r. Combining this with the treatment of scalars as singleton sets results in a uniform

syntax for navigation expressions. For example, if p is a person, p.mother will denote p’s mother;

p.parents will denote the set of p’s parents; p.parents.brother will denote p’s uncles; etc.

The environments for which the formula is true are called the instances or solutions4 of the formula. If a

formula has at least one solution, it is said to be consistent; when every well-formed environment is a

model, the formula is valid. The negation of a valid formula is inconsistent, so to check an assertion, we

look for a model to its negation; if one is found, it is a counterexample . Since the logic is undecidable, it

is impossible to determine automatically whether a formula is valid or consistent. We therefore limit our

analysis to a finite scope that bounds the sizes of the carrier sets of the basic types. We say that a model is

within a scope of k if it assigns to each type a set consisting of no more than k elements. Clearly, if we

succeed in finding a model to a formula, we have demonstrated that it is consistent. Failure to find a

model within a given scope, however, does not prove that the formula is inconsistent (although in

practice, for a large enough scope, it often strongly suggests it).

4 They are also referred to as the models in formal logic.

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 6 Submitted to SACMAT 2003

2.2 ALLOY Constraint Analyzer

The ALLOY modeling system is equipped with the ALLOY Constraint Analyzer [JSS00], which can

simulate ALLOY specifications, generate sample structures and transitions, and check user-defined

properties. Presently, it is the only tool that can perform automatic semantic analysis of structural

models. ALLOY is undecidable, so it is not possible to check arbitrary properties. Instead, the analyzer

checks claims by looking for counterexamples. Using new satisfiability (SAT) solving technology, it can

perform an exhaustive search of all structures involving a fixed number of atomic elements. Searches

involving 1060 structures can usually be completed in seconds. Figure 3 shows a screen shot of ALLOY

Constraint Analyzer in operation.

Figure 3. Sample display of ALLOY Constraint Analyzer

3. SPECIFICATION OF BELL-LAPADULA CONFIDENTIALITY SERVICE

As a demonstration of the expressive power of ALLOY and the analysis capability of its Constraint

Analyzer, we used the formal modeling system to specify the read-down and write-up (*-property) rules

of Bell-LaPadula confidentiality protection scheme [BLP75].

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 7 Submitted to SACMAT 2003

It is well known that classical access control schema such as Bell-LaPadula and China Wall are lattice

based and can be specified in terms of partial order relations. Since ALLOY was built upon first-order

logic, the modeling system permits its users to define mathematical relations by specifying their algebraic

properties. The following ALLOY statements define partial order as a reflexive, anti-symmetric and

transitive relation, and used it to establish a lattice structure among four security levels, Regular or

Unclassified (R), Classified (C), Sercet (S) and Top Secret (TS). Figure 4 displays a graphic rendering of

the lattice that was produced by ALLOY Constraint Analyzer.

state {
 partition R, C, S, TS: fixed Labels!
 leq: Labels -> Labels+ }
inv PartialOrderRelations {
 // reflexive
 all r1 | r1 in r1.leq
 // transitive
 all r1, r2 | r1 in r2.*leq -> r1 in r2.leq
 // anti-symmetric
 all r1, r2 |
 r1 in r2.leq && r2 in r1.leq -> r1 = r2 }
inv SecurityLevelOrder {
 C in R.leq
 S in C.leq
 TS in S.leq }

Based on the lattice structure, we can easily express the read-down

(canRead) and write-up (canWrite) rules as follow:

domain {
 fixed SecurityLabels,
 fixed Documents,
 fixed Users
}
state {
 secClass: Documents -> static SecurityLabels!
 secClearance: Users -> static SecurityLabels!
 leq: SecurityLabels -> SecurityLabels+
 canRead: Users -> Documents
 }
def canRead {
// read down property:
 all u | u.canRead = { d | u.secClearance in d.secClass.leq }
}
def canWrite {
// write up or * - property
 all u | u.canWrite = { d | u.secClearance in d.secClass.geq }
}

The analytical power of ALLOY was clear when we made the assertion that people with higher security

clearances can read all the documents that can be read by those with lower clearances:

assert MorePowerfulCanReadMore {
 all u1, u2 |
 u2.secClearance in u1.secClearance.leq
 -> u1.canRead in u2.canRead
}

Figure 4. Partial-order relations
among Bell-LaPadula security
levels

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 8 Submitted to SACMAT 2003

and then tested the validity of the assertion using the Constraint Analyzer. Similarly, we also made the

assertion that the partial-order relations among the security levels and the read-down rules applicable to

their subjects are equivalent:

 cond Equivalent {
 all u1, u2 | u2.secClearance in u1.secClearance.leq <-> u1.canRead in
u2.canRead
 }

4. SPECIFICATION OF RBAC-96 SCHEMA FRAMEWORK

ALLOY is a general-purpose modeling system. We must adapt it to the task of RBAC schema specifi-

cation and verification by providing it with the definitions of RBAC entities including subjects (which

can be subdivided into users and principals), roles and permissions (which are composed of objects and

operations) as well as relations among different entities. These definitions should be written in ALLOY

modeling language and loaded into the modeling system as a macro library. Significant amount of effort

has been spent to develop the macro library based upon a common framework for RBAC schema

specification [SCFY96]. Figure 5 shows the Entity-Relationship diagram of RBAC-96 Framework.

Appendix A supplies the ALLOY definition of RBAC-96 entities and relations.

Figure 5. Entity-Relationship Diagram of RBAC-96 Schema Framework

5. VERIFICATION OF SCHEMA PROPERTIES AND IMPLEMENTATION CORRECTNESS

With the macro library of RBAC-96 definitions, we were able to demonstrate the two potential uses of

RBAC schema analysis: (1) verifying the correctness of different RBAC implementation of an abstract

access control model and (2) checking the consistency among entities, relations and constraints of a

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 9 Submitted to SACMAT 2003

RBAC schema as well as finding a plausible instance of the schema. We shall examine the first

application in this section and study the second one in the next.

In order to verify the correctness of a RBAC implementation, ALLOY Constraint Analyzer must process

the specification of two models: an abstract model that articulates the conceptual entities in an access

control system, and a concrete mode l that describes the corresponding entities in a particular imple-

mentation. The Constraint Analyzer then tests the assertions of equivalent relations among corresponding

entities of the two models: a positive thus affirms the correctness of the implementation while a negative

result denies it.

In the project, we tested the correctness of a RBAC implementation of Bell-LaPadula confidentiality

service against the abstract specification of its classic lattice model [Sect.3].

With RBAC-96 definitions , the roles and permissions that implement the Bell-LaPadula model can be

specified by the following ALLOY code5:

state {
// enumerating operations & roles
partition ReadOp, WriteOp: fixed Operations!
partition ReadRoles, WriteRoles: Roles

 }
def canReadRoles {
 all u | u.canReadRoles
 = { d | some r: u.UserRolesExt | d in ReadOp.RolePermissions[r] }
}
def canWriteRoles {
 all u | u.canWriteRoles
 = { d | some r: u.UserRolesExt | d in WriteOp.RolePermissions[r] }
}

After accepting the specification of the abstract model and its RBAC implementation, the ALLOY

Constraint Analyzer was fed the following two assertions of equivalence between read/write permissions

of the users in the abstract models and the corresponding roles in the RBAC implementation:

assert EquivCanRead {
 all u | u.canRead = u.canReadRoles
}
assert EquivCanWrite {
 all u | u.canWrite = u.canWriteRoles
}

The validity of the two assertions confirms the correctness of the RBAC implementation.

5 Only the essential statements of the specification are included in this paper. Reader may refer to AVDA Project
Report [Z+01] for the complete code listing.

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 10 Submitted to SACMAT 2003

6. VERIFICATION OF SCHEMA CONSISTENCY AND REALIZABILITY

In this section, we demonstrate ALLOY capability in verifying the consistency of a RBAC schema and

searching for a plausible solution instance. We devised a simple schema of a simple four-person project

as shown in Figure 6.

6.1 Roles

The RBAC model for the simple project consists of four roles

:Project Manager (ProjMgr), 1st Engineer (Engr1), 2nd Engineer

(Engr2) and Tester. These roles are linked by two relations:

Permission inheritance. Marked by arrows, the relation mandates

that permissions are propagated along the direction of the arrows

— the role at the end of an arrow inherits all the permissions of the

role at the base of the arrow. In our model, both Engr1 and

Engr2 inherit the permissions assigned to Tester.

Separation of Duty (SOD). Marked by crossed dashes, the relation mandates that the roles in the relation

cannot be occupied by the same user. In our model, ProjMgr, Engr1 and Engr2 are linked by pair-wise

SOD relations; thus, each of these roles must be occupied by a different user.

6.2 Read Permissions

The four roles are permitted to read from three types of files, Management Files, Design Files, and Test

Files. Figure 7 shows the read permissions as arrows pointing at each role. Note that the inheritance

relations among the roles are consistent with the read permissions; hence, no contradiction is detected and

no other read permission can be inferred from inheritance.

Proj Mgr

Engr 1 Engr 2

Tester

Mgmt File

Design File

Test File

Figure 7. Read permission assignments for the small project team

Proj Mgr

Engr 1 Engr 2

Tester

Figure 6.Project Role Hierarchy

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 11 Submitted to SACMAT 2003

6.3 Write Permissions

The four roles are also permitted to write to the three types of files. Figure 8 draws the write permissions

using two different kinds of arrows: the primary permissions established explicitly by the administrators

are drawn as solid arrows, and the inferred permissions derived from the inheritance relations are drawn

as dashed arrows. The inferred permissions are imposed by the inheritance relations, which mandate the

Engineers to have all the permissions assigned to the Tester.

Mgmt File

Design File

Test File

Proj Mgr

Engr 1 Engr 2

Tester

Figure 8. Write permission assignments for the small project team

6.4 User-Role Assignments

The Separation of Duty (SOD) relations among ProjMgr, Engr1 and Engr2 force these roles to be

assigned to different individuals. Nonetheless, the Tester can be occupied by any of the people who are

occupying the other roles since there is no rule prohibiting such arrangements. Figure 9 shows the

minimum bindings between three people and four roles.

Proj Mgr

Engr 1 Engr 2

Tester

Luke

Leia

Han

Vader

Figure 9. User-role assignments for the small project team

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 12 Submitted to SACMAT 2003

6.5 Full RBAC Model

We obtained the complete model of the project by combining all the relations mentioned in the previous

sections. The entity-relation diagram of the entire model.

Proj Mgr

Engr 1 Engr 2

Tester

Mgmt File

Design File

Test File

Luke

Leira

Han

Vader

Figure 10. Full RBAC model for the small project team

7. CONCLUSIONS

From our exercises in using ALLOY in access control modeling and building an RBAC Schema

Debugger, we can draw the following conclusions:

The ALLOY language has sufficient expressive power to prescribe implementation independent

specification of access control systems. The examples we provided in this report provide sufficient

evidence.

The ALLOY Constraint Analyzer can be used to verify the algebraic characteristics of access control

schema. The confirmation of equivalence between the algebraic specification of the Bell-LaPadula model

and its RBAC implementation demonstrated this capability.

The ALLOY Constraint Analyzer can be extended and used to verify the consistency (or to “debug”)

between entities and relations within an evolving RBAC scheme. The successful development of the

RBAC Schema Debugger prototype confirms this ability.

8. REFERENCE

[AS00] Gail-Joon Ahn and Ravi S. Sandhu, “Role -based Authorization Constraint Specification.”
Transactions on Information and System Security 3(4) ACM Press, 2000.

[BLP75] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathematical Foundations and
Models”, M74-244, Mitre Corp., Bedford, MA, 1975. (Also available through National Technical
Information Service, Springfield , VA, NTIS AD-771543).

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 13 Submitted to SACMAT 2003

[BK85] W. E. Boebert and R. Y. Kain. “A Practical Alternative to Hierarchical Integrity Policies.” In
Proceedings of the Eighth National Computer Security Conference, 1985.

[BN89] D. F. C. Brewer and M. J. Nash, “The Chinese Wall Security Policy”, Proceedings IEEE
Symposium on Security and Privacy, pp. 215–228, 1989.

[CZ01] J. Chu and J. K. Zao, “ALLOY-based RBAC Debugger Prototype – Test Case I: Simple Project
Model,” AVDA Technical Notes, BBN Technologies, July 2001.

[DW98] D. F. D’Souza and A. Cameron Wills. Objects, Components and Frameworks With Uml: The
Catalysis Approach. Addison-Wesley, 1998.

[FK92] D. Ferraiolo, and R. Kuhn, “Role Based Access Control” , Proceedings of 15th National
Computer Security Conference, 1992

[G+96] J. Gu, P. W. Purdom, J. Franco and B. W. Wah, “Algorithms for the Satisfiability (SAT) Problem:
A Survey”, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1996.

[GGF98] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo. “On the formal denition of separation-of-duty
policies and their composition”. Proceedings of IEEE Symposium on Research in Security and
Privacy, pp. 172–183, Oakland, CA, May 1998.

[GI96] L. Giuri and P. Iglio. “A formal model for role -based access control with constraints”. Proceedings
of IEEE Computer Security Foundations Workshop, pp. 136–145, Kenmare, Ireland, June 1996.

[Jac00a] D. Jackson. “ALLOY: A Lightweight Object Modeling Notation”. Technical Report 797, MIT
Lab for Computer Science , February 2000.

[Jac00b] D. Jackson. “Automating First-Order Relational Logic”.Proc. ACM SIGSOFT Conf.
Foundations of Software Engineering, San Diego, November 2000.

[Jac99] D. Jackson. “A Comparison of Object Modelling Notations: ALLOY, UML and Z”. Unpublished
manuscript. August 1999.

[JSS00] D. Jackson, I. Schechter and I. Shlyakhter. “Alcoa: the ALLOY Constraint Analyzer”. Proc.
International Conference on Software Engineering, Limerick, Ireland, June 2000.

[JSS01] D. Jackson, I. Shlyakhter and M. Sridharan, “A Micromodularity Mechanism”, Proceedings of
ACM Foundations of Software Engineering / European Software Engineering Conference
(FSE/ESEC '01), Vienna, Sept. 2001.

[LG00] B. Liskov and J. V. Guttag, Program Development in Java: Abstraction, Specification, and
Object-Oriented Design; Addison-Wesley, 2000

[OB85] Department of Defense, Trusted Computer Security Evaluation Criteria, DoD 5200.28-STD,
1985.

[PBSM00] J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fredette, P. Helinek, P. Krishnan, A. Jackson, D.
Mankins, M. Shepard, S. Kent. "Domain Based Internet Security Policy Management".
Proceedings of DARPA Information Survivability Conference and Exposition (DISCEX'00), vol.
1, pp. 41–53, January 25–27, 2000.

[RJB99] J. Rumbaugh, I. Jacobson and G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

[San93] Ravi S. Sandhu, “Lattice-based Access Control Models.” IEEE Computer 26(11): 9-19, IEEE
Press, 1993

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 14 Submitted to SACMAT 2003

[SBM99] R. Sandhu, V. Bhamidipati, and Q. Munawer. “The ARBAC97 model for role -based
administration of roles”. ACM Transactions on Information and Systems Security 2(1):105–135,
February 1999.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.Youman. “Role -based access control
models”. IEEE Computer 29(2):38–47, February 1996.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Second edition, Prentice Hall, 1992.

[SZ97] R. T. Simon and M. E. Zurko. “Separation of duty in role -based environments”. Proceedings of
IEEE Computer Security Foundations Workshop, pp. 183–194, Rockport, MA, December 1997.

[WBEM01] Web-Based Enterprise Management Initiative, Distributed Management Task Force (DMTF)
Inc., July 2001, http://www.dmtf.org/standards/standard_wbem.php.

[WK99] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley, 1999.

[XML01] Extensible Markup Language (XML), The World Wide Web Consortium (W3C)., November
200], http://www.w3.org/XML/.

[Z+01] J. K. Zao, D. Jackson, H. Wee, J. Chu and R. Oliphant, “ALLOY-based Value and Dependency
Abstraction (AVDA) Final Project Report”, BBN Technical Notes, December 2001.

[Zha00] D. Zhang. Collaborative Arrival Planner: Its Design and Analysis Using Object Modelling.
Masters of Engineering thesis. Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, Mass. May 2000.

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 15

Appendix A. ALLOY SPECIFICATION OF RBAC-96 FRAMEWORK

In order to specify general RBAC96 models (describable using RCL2000), we have written domain, state and formulae paragraphs that define the

generic entities and relations used in RBAC96 and described in RCL2000. Following is the relevant excerpts.

model rbac96 {

 domain {Users, Roles, fixed Operations, Objects, Sessions}

 state {
 userRole : Users -> Roles //(UA): roles directly assign to user
 permissions : Operations -> Objects //Permissions definition
 rolePermis [Roles]: Operations -> Objects //(PA): roles directly assigned to permissions
 userRoleExt: Users -> Roles //Roles* (u_i): all roles a user can fill
 objectOprToRole[Objects]: Operations -> Roles //Roles (p_i) :
 objectOprToRoleExt [Objects]: Operations -> Roles //Roles* (p_i): all roles that has permis
 roleObjToOperation[Roles]: Objects -> Operations //Given Role & Objs, what operations poss?
 conflictRoles : Roles -> Roles //Role-centric SOD
 conflictObjects: Objects -> Objects //Permissions-centric SOD
 conflictUsers: Users -> Users //User-centric SOD
 inherits : Roles -> Roles + //Set of roles that role inherits
 }

 // Inheritance -- Partial Order Relation
 // Properties:
 // 1) Reflexive
 // 2) Transitive
 // 3) anti-symmetric
 inv inherits_qualities {
 all r | r in r.inherits
 all r | r.*inherits in r.inherits
 all r1, r2 | (r1 in r2.inherits && r2 in r1.inherits) -> r1 = r2
 }

 // Inheritance does not occur when 1 role's permissions is a subset of another
 // For example, engr1 does not inherit from engr2
 // Inheritance is a user-placed constraint
 inv inherits_inv {
 all r1, r2 | all opr |
 r1 in r2.inherits -> (all obj : opr.rolePermis[r1] | r2 in opr. objectOprToRoleExt[obj])
 }

 // userRoleExt: set of roles, an individual role can takes

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 16

 // ie. all the roles >= this
 def userRoleExt {
 all u : Users |
 u.userRoleExt = {r | some r1: u.userRole | r in r1.inherits}
 }

 // objectOprToRole [Objects] : Operations -> Roles
 // Roles (p_i) : all roles assigned to permission
 def objectOprToRole {
 all o : Objects | all p : Operations |
 p.objectOprToRole[o] = {r | o in p.rolePermis[r]}
 }

 // objectOprToRoleExt [Objects] : Operations -> Roles
 // Roles*(p_i) : all roles associated with permission (both assigned/inherited)
 def objectOprToRoleExt {
 all o : Objects | all p : Operations |
 p.objectOprToRoleExt[o] = {r1 | some r : Roles | r in r1.inherits && o in p.rolePermis[r]}
 }

 // roleObjToOperation[Roles]: Objects -> Operations
 // Operations : given a role && obj, what operations are available
 def roleObjToOperation {
 all r : Roles | all o : Objects |
 o.roleObjToOperation[r] = {p | o in p.rolePermis[r] }
 }

 //Rules for User-role conflicts
 // - Enforces "inherited conflicts"
 // ex. r1 conflicts r2 (no user can be both r1, r2)
 // r3 >= r2
 // -> r1 conflicts r3
 // - non-reflexive
 inv conflictRoleRule{
 no r | r in r.conflictRoles //irreflexive
 all u | no r1, r2, r3 |
 r1 in u.userRole &&
 r1 in r2.conflictRoles &&
 r2 in r3.inherits &&
 r3 in u.userRole
 }

 //All permissions in RolePermis must be an existing Permission
 inv matchRolePermis {
 all r| all opr | all obj : opr.rolePermis[r] | obj in opr.permissions

RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis Zao et. al.

 17

 }

 //Define all permissions {
 inv definePermissions {
 all obj | all opr | obj in opr.permissions
 }
}

 //Constraints for Role-centric SOD
 // -Irreflexive
 // -Enforces rule: user cannot fill two conflictRoles (below rule)
 // -Enforces "inherited conflicts"
 // ex. r1 conflicts r2 (no user can be both r1, r2)
 // r3 >= r2 -> r1 conflicts r3
 inv conflictRoleRule{
 no r | r in r.conflictRoles //irreflexive
 all r1, r2 | r1 in r2.conflictRoles -> r2 in r1.conflictRoles //symmetric
 all u | no r1, r2, r3 |
 r1 in u.userRole &&
 r1 in r2.conflictRoles &&
 r2 in r3.inherits &&
 r3 in u.userRole
 }

 //Constraints for User-centric SOD
 // Irreflexive
 // -Enforces rule: 2 conflict users cannot collectively fill 2 roles in conflict
 // (similar to conflictRoles)
 // - also conflictPermissions: 2 conflict users cannot collectively be capable of 2 permissions in conflict
 inv conflictUserRule{
 no u | u in u.conflictUsers //irreflexive
 all u1, u2 | u1 in u2.conflictUsers -> u2 in u1.conflictUsers //symmetric
 no u1, u2 | u1 in u2.conflictUsers &&
 some r1, r2, r3 |
 r1 in u1.userRole &&
 r1 in r2.conflictRoles &&
 r2 in r3.inherits &&
 r3 in u2.userRole
 }

RBAC Schema Verification using Lightweight Formal Model and Constraint Analysis Zao et. al.

 18 Submitted to SACMAT 2003

