Decentralized Administration for a Temporal Access Control Model

Elisa Bertino Claudio Bettini
Elena Ferrari Pierangela Samarati

Dipartimento di Scienze dell’Informazione
Universita di Milano
Milano, Ttaly
Email: {ebertino,bettini,ferrarie,samarati}@dsi.unimi.it
Technical Report
176-96

Abstract

In this report we present a temporal access control model that provides for decentralized ad-
ministration of authorizations. Each access authorization, negative or positive, is associated with
a time interval limiting its validity. When the interval expires, the authorization is automatically
revoked. The model also permits the specification of rules, based on four different temporal op-
erators, to derive additional authorizations from the presence or absence of other authorizations.
Users creating objects can retain complete control over their objects or delegate other users the
privilege of administering accesses on the objects. Delegation can also be selectively enforced with
reference to specific access modes or time intervals. The resulting model provides a high degree
of flexibility and allows to express several protection requirements which cannot be expressed in
traditional access control models.

1 Introduction

Access control models available today allow the specification of authorizations stating permissions
for users to exercise operations on objects. When a user must be allowed for an operation on
an object, an authorization is granted to him. The user is then allowed for the access until the
authorization is explicitly removed. This simple paradigm of authorization model, on which almost
all the models available today are based, does not fit the real-life situations where more complex
security requirements may need to be specified. Organizational policies call for more flexibility
and expressiveness in authorization specification. In this respect, exception handling, temporal
authorizations, dependency rules among authorizations, explicit denials, task-based authorizations,
roles are all needed facilities. In this report we make a step in this direction with respect to the
treatment of temporal aspects in the specification of authorizations.

Access control mechanisms provided as part of commercial data management systems and re-
search prototypes [6, 7] do not have temporal capabilities. For example, in a typical Relational
DBMS (RDBMS) it is not possible to specify, by using the authorization command language, that
a user may access a relation only for a day or a month. If such a need arises, authorization manage-
ment and access control must be implemented as application programs, thus making authorization
management very difficult. However, in many application environments, there is a strong need for
authorizations with temporal validity. Consider for example the case of our University. Students
which attend a given course must be authorized to access the DBMS but only for the time of their
practice.

A temporal authorization model has been presented by us in a previous paper [3]. In that
model, authorizations have a temporal dimension, in that each authorization has an associated
time interval representing the set of time instants for which the authorization is given. Moreover
the model supports the specification of derivation rules expressing temporal dependencies among
authorizations. For example, a derivation rule can state that a user can read an object as long
as another user can read the same object. Derivation rules allow to derive new authorizations on
the basis of the presence (or absence) of other authorizations. Like authorizations, derivation rules
have an associated time interval representing the set of time instants in which the derivation rule
is applied. The model supports both positive authorizations and negative authorizations. A user
owning a negative authorization for an access mode on an object can neither access the object
nor grant or revoke other users the access on the object. Like positive authorizations, negative
authorizations for an access mode on an object can be granted by the owner of the object as well as
by any other user who owns an authorization on the object with the grant option. The capability
of supporting explicit denials, provided by negative authorizations, is very useful in a decentralized
model [5], where other users, besides the owner of an object, can grant access authorizations on
the object.

In this report we address the issue of decentralized administration of authorizations. In our
model, the owner can retain complete control over his objects or delegate other users the privilege
of administering accesses on the object. Delegation can be enforced by either giving a user the
privilege to administer the object, in which case the user can grant and revoke any authorization
(explicitly or through rules) on the object, or selectively, by granting authorizations with the grant
option. The grant option allows to delegate administration only with reference to specific privileges
and to specific time intervals. Although delegation of administrative privileges necessarily implies
some loss of control from the owners of the objects, our model still allows the owner to retain some
control on the privileges that others will allow to execute on his object: The owner can always
issue specific negative authorizations and derivation rules. Thus, the resulting model provides a
high degree of flexibility by supporting decentralized authorization administration, coupled with

the possibility of enforcing stricter controls on particular crucial data items, as we will illustrate in
Section 6. Revocation of authorizations is recursive: whenever a user revokes an authorization for
an object to another user, the authorizations that the revokee has granted thanks to the revoked
authorization may need to be removed or their time intervals modified. The revocation is iteratively
applied to all the users that received the access authorization from the revokee. The semantics of
recursive revocation, proposed by Griffiths and Wade in the framework of the System R database
model [10] and formally defined by Fagin [9], is used by current commercial DBMSs [8, 13, 15]. 1 We
extend the semantics of the recursive revocation to the consideration of temporal authorizations.
Since each authorization has a time interval, a revoke request can cause not only the deletion of
other authorizations, besides the ones whose deletion is explicitly required, but also the modification
of their time intervals or the splitting of one authorization in several authorizations.

Related work

The need to include time in security specifications and to provide more powerful languages for
the specification of authorizations has been recognized by other researchers. Temporal issues have
been first addressed in the authentication control of the Kerberos operating system [16]. In this
system, the ticket issued to clients for presentation to servers and for verifying that the sender
has been recently authenticated by Kerberos, includes an expiration time after which the ticket
is not valid anymore. However, time is used in Kerberos only to save the clients from having to
require a new ticket at each service request. By contrast, in our approach, time is included in
the specification of authorizations and derivation rules against which access control is enforced.
Thomas and Sandhu [17] recognize the need, in real-life situations, of expressing rules for the
derivation of authorizations on the basis of temporal relationships among authorizations. However,
they do not provide any model or framework for the specification of these dependencies. A general
language for expressing authorization rules has been proposed by Woo and Lam in [18]. Although
their language does not explicitly provide time and temporal relationships, these concepts could
be modeled by their rules. Unfortunately, the generality of this language, which has almost the
same expressive power of first order logic, impacts efficiency. The tradeoff between expressiveness
and efficiency seems to be strongly unbalanced in their approach. A different logic language, based
on modal logic, has been proposed by Abadi et Al. in [1]. However, their logic is mainly used to
model concepts such as roles and delegation of authorities and their framework does not provide
any mechanism to express temporal operators for authorization derivation. In [3] we have presented
an authorization model where authorizations, either explicitly specified or derived through rules,
have a time interval associated with them. In that model a very limited form of authorization
administration was considered. In this report we extend that model with a decentralized policy for
the administration of authorizations and formally define the operation for granting and revoking
authorizations and derivation rules.

Organization of the report

The remainder of the report is organized as follows. Section 2 illustrates the authorization model.
Section 3 deals with the formal semantics of authorizations and rules. The administrative operations
supported by our model are described in Section 4. Section 5 formally defines the semantics of the
revoke operations in terms of its effects on the authorization state and provides an algorithm to
enforce revocation of authorizations. Section 6 illustrates how our model can be used to express,

! Although with some variations in the different DBMSs.

in a flexible way, different protection requirements. Section 7 presents some final remarks. Finally,
Appendix A proves the correctness of the revoke algorithm presented in the report.

2 The authorization model

In this section we illustrate our authorization model. We do not make any assumption on the
underlying data model against which accesses must be controlled and on the access modes users
can exercise on the objects of the data model. The choice of the data model and the access modes
executable on the objects is to be made when the system is initialized. This generality makes our
authorization model applicable to the protection of information in different data models.

In the following U denotes the set of users, O the set of objects, and M the set of access modes.
We consider as users the identifiers with which users can connect to the system. We suppose
identifiers can refer to single users (e.g., Ann or Bob) or to user groups (e.g., staff or manager).

In our model, authorizations do not always exist from the time they are granted to the time
of their revocation. We associate with each authorization a temporal constraint representing the
set of time instants in which the authorization holds. We refer to authorizations together with
their temporal constraint as temporal authorization. Beside the specification of (explicit) temporal
authorizations, our model allows to specify derivation rules from which other authorizations can
be derived on the basis of the existing authorizations. Like authorizations, derivation rules have an
associated time interval, representing the set of instants in which the derivation rule can be applied.

In the following we assume time to be discrete. In particular, we take as our model of time
the natural numbers IN with the total order relation <. The results that we show using natural
numbers are valid for any set isomorphic to natural numbers.

We start by defining explicit authorizations. We then illustrate the rules for the derivation of
authorizations.

2.1 Temporal authorizations

In our model, authorizations can be positive or negative. A positive authorization represents a
permission for a user to exercise a privilege on an object. A negative authorization represents a
denial for a user to exercise a privilege on an object. Positive authorizations can also be granted
with the grant option. If a user holds an authorization for a privilege on an object with the grant
option, the user can also grant (and revoke) other users authorizations, positive or negative, for
the privilege on the object.? Authorizations are defined as follows.

Definition 2.1 (Authorization) An authorization is a 6-tuple (s,o,m,pn,g,go) where

s € U is the subject, i.e., the user to whom the authorization is granted;

o € O is the object to which the authorization refers;

m € M is the access mode, or privilege, for which the authorization is granted;
pn € {+, —} indicates whether the authorization is positive (+) or negative (-);

g € U is the user who granted the authorization;

2For simplicity, we consider that the grant option can only be associated to positive authorizations and that
users holding a positive authorization for a privilege on an object with the grant option can also grant negative
authorizations for the privilege on the object. The model could be easily extended to the consideration of two
different types of authorizations for the administration of positive or negative authorizations.

go € {yes,no} indicates whether s has the grant option for m on o.

Tuple (s,o0,m,pn,g,go) states that user s can exercise (if pn=“+") or cannot exercise (if
pn=%“—") access mode m on object o and that this authorization was granted by user g. If go="“yes”,
s can also grant/revoke other users authorizations (positive or negative), and the grant option
on them, for m on o. Since only positive authorizations can be granted with the grant option,
authorizations with pn = “—” have necessarily go = “no”.

For instance, tuple (Ann,o;,write,+,Tom,yes) states that Ann is authorized by Tom to write
object o1. Ann is also entitled to grant other users the write access mode on o as well as the grant
option on it, and to prevent other users from writing oy, by granting them a negative authorization.
Tuple (Bob,o;,read,—,Ann,no) states that Bob is forbidden by Ann to read object o;.

As already stated, our model considers temporal authorizations, i.e., authorizations together
with a time interval of validity. Temporal authorizations are defined as follows.

Definition 2.2 (Temporal authorization) A temporal authorization is a triple (ts,time, auth),
where ts € IN is the time at which the authorization was granted ®, time is a time interval [t;,t;],
with t; € IN, t; € NUoo, ts < t; < t;, and auth is an authorization.

Temporal authorization (ts, [t;,t;],auth) states that authorization auth, specified at time
ts is granted for the time interval [t;,t;]. We require the starting time of the authorization to
be greater than or equal to the time at which the authorization is granted (t;>ts), i.e., it is not
possible to specify retroactive authorizations.

In the following, given a temporal authorization A = (ts, [t;,t;],(s,0,m,pn,g,go)), s(4),
o(A),m(A) ,pn(A) ,g(A) ,go(A) denote respectively the subject, the object, the privilege, the sign,
the grantor, and the grant option in A. Moreover, ts(A) denotes the time when A has been granted
and [t;(4),t;(A)] the temporal validity of A.

For example the temporal authorization (5,[10,40],(Alice,o0;,write,+,Bob,yes)) states
that at time 5 Bob granted Alice the authorization to write object oy between instants 10 and
40. Since the authorization is with the grant option, Alice can also grant other users positive or
negative authorizations for the write privilege on object oy for time intervals in [10,40].

Note that a user can only grant privileges he owns. Then, if a user holds an authorization for an
access mode on an object with the grant option for a time interval [t;,t;], his privilege to authorize
or deny other users to exercise the access mode on the object is limited to the interval [t;,t;].
For instance, with reference to the abovementioned authorization, all authorizations to read o
granted by Alice must have a time interval included in [10,40]. The time interval associated
with an authorization is specified by the grantor at the time the authorization is issued. If nothing
is specified the whole interval for which the authorization can be granted is taken. For instance,
with reference to the authorization above, the time interval [10,40] will be considered in case no
further restriction is specified by Alice.

2.2 Derivation rules

Additional authorizations can be derived from the authorizations explicitly specified. The deriva-
tion of authorizations is based on temporal propositions, used as rules, which allow new temporal
authorizations to be derived on the basis of the presence or the absence of other temporal author-
izations. Derivation rules can be applied to positive as well as to negative authorizations. Like

*Timestamps are introduced to prevent cycles among authorizations [10].

authorizations, derivation rules have a time interval. The time interval associated with a derivation
rule indicates the set of time instants for which the rule applies.
Derivation rules are defined as follows.

Definition 2.3 (Derivation rule) A derivation rule is defined as ([t;,t;]1,A;(op)A,), where [t;,t;]
is a time interval, t; € IN, t; € INUoo, t; < t;, A and A, are authorizations, g(4;) is the user who
specifies the rule, go(A;) =“no”, and (op) is one of the following operators: WHENEVER, ASLONGAS,
WHENEVERNOT, UNLESS.

Authorizations derived from derivation rules have as grantor the user who specifies the rule.
Note that for sake of simplicity, we restrict rules to the derivation of authorizations without the grant
option. Indeed, allowing grant option in rules would make authorization management cumbersome.

Derivation rules can also be parametric, meaning that not all elements in the two authorizations
of the rules are specified. The only element that cannot be parameterized is the sign of author-
izations. If a rule is parametric with respect to an element, the metacharacter “*¥”, meaning any
value, appears instead of a specific value for the element. We require that each time the symbol
“x” appears for either the subject, the object, or the access mode, of any of the two authorizations
in a rule, then it must also appear for the corresponding element of the other authorization. By
contrast, since we require derived authorizations to be without grant option and the grantor of a
derived authorization to be the user who specified the rule, symbol “*” cannot appear for grantor
and grant-option in the authorization on the left of the operator. However, it can be used in the
authorization on the right of the operator to denote any value for grantor or grant-option. Each
parametric rule is resolved by the system in several derivation rules for each possible value of the
elements for which symbol “*”
tuted for “#” with reference to either the subject, the object, or the access mode, the same value

is used. In the derived derivation rule, every time a value is substi-

is substituted for the same element in the other authorization.
The intuitive semantics of derivation rules is as follows:

o ([t;,t;],A; WHENEVER Ay). We can derive 4; for each instant in [t;,t;] for which 4, is
given or derived. For example, rule Ry in Figure 1, specified by Tom, states that every time in
[10,90] staff can read object bulletin, thanks to an authorization granted by Tom, also
secretarial-staff can read bulletin.

o ([t;,t;],A; ASLONGAS Ay). We can derive A; for each instant ¢ in [t;,t;] such that 4, is
either given or derived for each instant from t; to ¢. Unlike the WHENEVER operator, the
ASLONGAS operator does not allow to derive A; at an instant ¢ in [t;,t;] if there exists an
instant ¢, t; < ¢’ <, such that A, is not given and cannot be derived at ¢. For example, rule
Ry in Figure 1, specified by Tom, states that, until time 90, temporary-staff is authorized
on object bulletin for all access modes for which staff has been continuously authorized
from time 10.

o ([t;,t;],A; WHENEVERNOT A3). We can derive A; for each instant in [t;,t;] for which A,
is neither given nor derived. For example, rule R3 in Figure 1, specified by Tom, states that
staff-A can write object staff-document for every instant in [30,00] in which staff-Bis
not authorized to write it by Tom.

o ([t;,t;]1,A; UNLESS A3). We can derive A; for each instant ¢ in [t;,t;] such that A; is
neither given nor can be derived for each instant from t; to . Unlike the WHENEVERNOT,
the UNLESS operator does not allow to derive 4; at an instant ¢ in [t;,t;] if there exists an

instant ¢/, t; < ¢’ < t, such that A, is given or derived at ¢. For example, suppose that at time
40 new-staff cannot read object worksheet. Then rule Ry in Figure 1 states that staff
can read object worksheet until the minimum between time 300 and the time at which the
authorization for new-staff will start to hold.

Note that, the temporal operators WHENEVER and WHENEVERNOT allow to derive an author-
ization at a given time instant on the basis of the presence (or absence) of another temporal
authorization at the same instant, whereas ASLONGAS and UNLESS allow to derive an authorization
at a given instant on the basis of the presence (or absence) of another authorization at the same
and in past time instants. The authorization must be present (or absent) continuously from the
starting time of the derivation rule to the time of the derivation.

In the following, we also refer to WHENEVERNOT and UNLESS rules, which allow to derive
authorizations from the absence of other authorizations, as negative rules.

(4,) (5,([10,40], (staff,bulletin,read,+,Tom,yes)))

(42) (10,([10,50], (staff-B,staff-document,write,+,Tom,yes)))
(43) (10,([80,90], (staff-B,staff-document,write,+,Tom,yes)))
(44) (20,([50,100], (staff,bulletin,read,+,Tom,yes)))

(45) (60,([120,00], (new-staff,worksheet,write,+,Bob,yes)))

(Ry) ([10,90], (secretarial-staff,bulletin,read,+,Tom,no) WHENEVER
(staff,bulletin,read,+,Tom,*))

(Rz) ([10,90], (temporary-staff,bulletin,*,+,Tom,no) ASLONGAS
(staff,bulletin,*,+,Tom,*))

(R3) ([30,00],(staff-A,staff-document,write,+,Tom,no) WHENEVERNOT
(staff-B,staff-document,write,+,Tom,*))

(R4) ([40,300], (staff,worksheet,write,+,Bob,no) UNLESS
(new-staff,worksheet,write,+,%,%))

(Rs) ([20,00], (consultant,*,*,-,Bob,no) WHENEVER (temporary-staff,*,*,+,Tom,*))

Figure 1: An example of authorizations and derivation rules

Example 2.1 Consider the authorizations and derivation rules illustrated in Figure 1. The fol-
lowing temporal authorizations can be derived:

e ([10,40], (secretarial-staff,bulletin,read,+,Tom,no)), and
([50,90], (secretarial-staff,bulletin,read,+,Tom,no)), from authorizations A; and
A4 and rule Ry.

e ([10,40], (temporary-staff,bulletin,read,+,Tom,no)) from authorization A; and rule
Ro.

e ([51,79], (staff-A,staff-document,write,+,Tom,no)), and
([91,00], (staff-A,staff-document,write,+,Tom,no)), from authorizations Ay and As
and rule Rs.

o ([40,119], (staff,worksheet,write,+,Bob,no)) from authorization As and rule R4.

e ([20,40], (consultant,bulletin,read,-,Bob,no)) from authorization A; and rules R,
and Rs.

3 Semantics of authorizations and rules

The possibility of specifying both positive and negative authorizations introduces potential conflicts
among authorizations. A positive authorization states that a user can exercise a privilege on an
object whereas a negative authorization states he cannot. A conflict therefore would arise in case a
user holds both a positive and a negative authorization for a privilege on an object for a given time
interval. We solve conflicts due to the simultaneous presence of positive and negative authorizations
according to the denials-take-precedence principle. Then, whenever a user has both a positive and
a negative authorization for a given access, the access will be denied. The positive authorization,
although still present in the system cannot be used.

Example 3.1 Consider the two authorizations:
(4,) (5,[40,100],(Bob,o0y,write,+,Ann,yes)) and
(Ay) (20,[50,70],(Bob,oq,write,—,Tom,no))
In the time interval [50,70] the negative authorization overrides the positive authorization.
Then, Bob will be allowed to write oy only in the time intervals [40,49] and [71,100]. a

Before illustrating the semantics of authorizations and rules we introduce the concept of temporal
authorization base as the set of authorizations and rules present at a given time in the system.

Definition 3.1 (Temporal Authorization Base) A Temporal Authorization Base (TAB) is a
set of temporal authorizations and derivation rules.

The semantics of a TAB is given as a set of clauses in a general logic program [12, page 52].
Table 1 illustrates the clause/set of clauses corresponding to each type of authorization/rule con-
sidered by our model.

The set of clauses reported in Table 1 represents an extension to the semantics given in [3].
All the results obtained in [3] are easily applied to the current authorization model. We use a
logic with two sorts, the natural numbers (IN) as a temporal sort and a generic domain (D) as
the other sort. The language includes constant symbols 1,2, ... for natural numbers, a finite set
of constant symbols (e.g. si,01,m1,81,—,+, 801, S2, ...) for elements in D, and temporal variable
symbols £, ', t". Predicate symbols include the temporal predicate symbols < and < with the fixed
interpretation of the corresponding order relation on natural numbers, and the predicate symbols
F(),Fn(),Fp() and G(). Intuitively, the predicate F'() is used to represent the authorizations at
specific instants. The fact that F'(¢,A) is true in an interpretation corresponds to the validity of
A at instant ¢ according to that interpretation. The predicates G(), Fx() and Fp() are auxiliary
predicates, used to avoid quantification. Intuitively, G(¢,s,o,m) is true in an interpretation if
there is at least one negative authorization, with the same s,o,m, valid at instant ¢ according to

[ti;tj]; (s,o,m,—,g,no_) :
F(t,s,o,m,— g, no) « t; <t <t

[tiatj]a (S,o,m,-l-,g,gO) :
F(t,s,o,m,+,g,g0) < t; <t <t;, ~G(t,s,0,m)

[ti,t5], (s1,01,m1, —, g1,n0) WHENEVER (s3,02,m2,pn, g2, g0) :
F(taslaolamla_aglano) —t; S t S tj) F(taSQ;OQﬂmQ)Pn)gQ’go)

[ti,t5], (s1,01,m1,+,g1,n0) WHENEVER (s3,02,m2,pn, g2, 80) :
F(t;slaolam1a+ag1an°) «—t; <t< t;, F(t,S2,oz,m2,pn,g2,go)) —|G(t,s1,o1,m1)

[ti,t;], (s1,01,m, —, g1,n0) ASLONGAS (sS2,09,m3,pn, g2, 80) :
F(taslaolamla_aglano) —t Stf 1"'j) F(taSQaOQ;mQapnagQ;go)) _'FN(tiat;SQaOQJmQaPnagQJgO)

[ti,t;], (s1,01,m1,+,81,n0) ASLONGAS (s2,02,T2,Pn, g2, g0)
F(taslaolam1a+ag1an°) — ti S t S tj) F(taSQaOQ;mQapnagQ;go))
_'FN(ti;taSQaOQamQ;Pn;gQago)) _'G(taslaolaml)

[ti,t;], (s1,01,m1, —, g1,n0) WHENEVERNOT (s3,02,M2,pm, g2, g0) :
F(t;slaolamla_aglano) —t Stf tj) _'F(taSQaOQﬂm2)Pnag2)go)

[ti,t5], (s1,01,m1, +, g1,n0) WHENEVERNOT (s2,03,m2,Pn, g2, 80) :
F(t,sl,ol,m1,+,g1,no) — t; Sts tj) _'F(tas2a°2am27pnag27go)) ﬁG(taslaolaml)

[ti,t;], (s1,01,m, —, g1,n0) UNLESS (S2,09,m3,pn, g, go) :
F(t,s1,01,m;,—,g1,n0)—t; <t <tj, 7F(t,85,09,my,pn,g5,80) , 7Fp(t;, 1,53, 02,my,pn, g, g0)

[ti,t;], (s1,01,m1,+,g1,n0) UNLESS (s3,032,mz,pn, g2, go) :
F(taslaolamla-l'aglano) —t, <t < t;, —|F(t,sz,02,m2,pn,gg,go))
_'FP(ti;taSQ,O?amQ;Pnag%go)) —|G(t,s1,o1,m1)

Fp(t" t,;s,0,m,pn,g,go) « t" <t <t, F(t',s,o,m,pn,g,go0)
Fn(t",t,;s,0,m,pn,g,go) « t" <t' <t, ~F(t';s,o,m,pn,g,go)

G(t,s,o,m) « F(t,s,0,m,~,g,no)

Table 1: Semantics of temporal authorizations and rules

10

that interpretation. Fy(t",¢,A) is true in an interpretation if there is at least an instant ¢, with
t" < t' < t, at which authorization A is false according to that interpretation. Finally, Fp(t", t,A)
is true in an interpretation if there is at least an instant ¢/, with ¢ < #' < ¢, at which authorization
A is true according to that interpretation. The resulting language is very similar to the temporal
deductive language proposed in [2], the main difference being the negation in our rules.

The presence of negative derivation rules, that is, rules involving the WHENEVERNOT and UNLESS
operator, introduces the problem of generating a unique set of authorizations from a given set of
authorizations and rules. The set of derived authorizations could depend on the evaluation order,
as illustrated by the following example.

Example 3.2 Consider a TAB containing the following rules:

(R1) ([10,100], Ay WHENEVERNOT Aj)

(Rg) ([10,100], A WHENEVERNOT A;)

Suppose that there are no explicit authorizations in TAB. If we consider first Ry and then Ry we

derive ([10,100],4;). By contrast, if we consider first Ry and then R; we derive ([10,100],4,).
O

From the point of view of the semantics, the property of always having a unique set of valid
authorizations is guaranteed only if there exists a unigue model of the program corresponding to the
TAB. To solve these difficulties we have introduced appropriate syntactic restrictions on rules [3],
to avoid set of rules as the one shown in the example above. Intuitively, those restrictions avoid
recursion on negative rules. We have proposed an approach to stratify authorizations and derivation
rules, that is, we have defined an evaluation order for authorizations and rules, and an algorithm
to detect if a given TAB can be stratified. We have proved that if a TAB can be stratified, then
the corresponding program has a unique model. The formal treatment given in [3] can be easily
extended to the consideration of authorizations with the grant option.

4 Authorization administration

The user creating an object receives the own privilege on it. As owner, the the user to grant/revoke
other users authorizations on the object either explicitly or through rules. The owner of an object
can also delegate other users the privilege to administer authorizations on the object. Two different
administrative privileges are considered: refer and administer. If a user has the refer privilege
on an object, he can specify derivation rules in which the object appears in the authorization on
the right of the temporal operator. If a user has the administer privilege on an object he can grant
to and revoke from other users authorizations (negative or positive and with or without the grant
option) on the object either explicitly or through rules.

Decentralized administration of authorizations can also be selectively granted on single priv-
ileges, through the use of the grant option. Note however that users holding the grant option
for a privilege on an object can grant only explicit authorizations for the privilege on the object;
they are not allowed to specify rules for the derivation of these authorizations. The reason for
this restriction is that rules can be very powerful and computationally expensive. Rules for the
derivation of authorizations on an object can be specified only by users holding either the own or
the administer privilege on the object.

Granting and revoking authorizations and administrative privileges are enforced through ad-
ministrative operations. Administrative operations allow users to add and remove temporal au-
thorizations and derivation rules, and to grant or revoke other users administrative privileges on
the objects. Each temporal authorization and each derivation rule in the TAB is identified by a

11

unique label assigned by the system at the time of its insertion. The label allows the user to refer
to a specific temporal authorization or derivation rule upon execution of administrative operations.
In the following we discuss the administrative operations supported by our model. The syntax of

the operations in BNF form is given in Figure 2. With reference to the figure, non terminal symbols
(subject), (object),(access-mode), (auth-t), (grant-option), and (nat-number) represent ele-
ments of the domains U, O, M, {+, —}, {yes,no} and IN respectively. Non terminal symbols (aid)
and (rid) represent system labels. Symbol # can be used in the specification of the starting time
for an authorization/rule to indicate the time at which the administrative request is submitted to

the system.

(grant)

(deny)

(revoke)

(add-rule)

(drop-rule)

grant-adm)
revoke-adm)
grant-ref)
revoke-ref)

(
(
(
(

GRANT (access-mode) ON (object) TO (subject)
FROMTIME (start-time) TOTIME (end-time)

DENY (access-mode) ON (object) TO (subject)
FROMTIME (start-time) TOTIME (end-time)

REVOKE (aid) |

REVOKE (access-mode) ON (object) FROM (subject)
FROMTIME (start-time) TOTIME (end-time)

REVOKE NEGATION (access-mode) ON (object) FROM (subject)
FROMTIME (start-time) TOTIME (end-time)

ADDRULE (subj) (obj) (acc-mod) (auth-t) (temp-operator)
(subj) (obj) (acc-mod) (auth-t) (subj) (grant-op)
FROMTIME (start-time) TOTIME (end-time)

DROPRULE (rid)

GRANTADM ON (object) TO (subject)
REVOKEADM ON (object) FROM (subject)
GRANTREF ON (object) TO (subject)
REVOKEREF ON (object) FROM (subject)

WHENEVER | ASLONGAS | WHENEVERNOT | UNLESS
subject | *

object | *

access-mode | *

grant-option | *

| (nat-number)

oo | (nat-number) | +(nat-number)

Figure 2: Syntax of administrative operations

Administrative operations can be classified into three groups:

e Operations involving explicit authorizations
These operations allow users to grant or revoke explicit authorizations on an object. The user
issuing these operations them must have the own or the administer privilege on the object
or an authorization for the privilege on the object with the grant option. Note that, if a user
owns the authorization for an access mode on an object with the grant option for the interval
[t;,t;], he can authorize or deny other users the access mode on the object but only for the
interval [t;,t;]. Moreover, a user can revoke only authorizations and rules he granted. The

grant and revoke operations are as follows.

12

Grant privilege: GRANT m ON o TO s FROMTIME t; TOTIME t;
To grant subject s the authorization for the access mode m on object o for the time
interval [t;,t;]. The starting time of the authorization must be greater than or equal
to the time at which the authorization is inserted, i.e., it is not possible to specify
retroactive authorizations.

Deny privilege: DENY m ON o TO s FROMTIME t; TOTIME t;

To deny subject s the access mode m on object o for the time interval [t;,t;]. The deny
operation results in the addition of a new explicit temporal negative authorization.

Revoke authorization: REVOKE aid
To revoke the temporal authorizations whose label is aid. The specified authorization
is removed from TAB. The user issuing the revoke request must be the user appearing
as grantor on the authorization.

Revoke privilege: REVOKE m ON o FROM s FROMTIME t; TOTIME t;
To revoke from subject s access mode m on object o for the time interval [t;,t;]. It
results in the deletion or modification (to exclude interval [ti,tj]) of all the temporal
authorizations of s for m on o, granted by the user requesting the revoke operation. If the
authorizations revoked or modified are with the grant option, the authorizations granted
by the revokee may need to be reconsidered. We discuss the semantics of the revocation
and the methods to implement it in Section 5.

Revoke negation: REVOKE NEGATION m ON o FROM s FROMTIME t; TOTIME t;
To revoke from subject s the negation for the access mode m on object o for the time
interval [t;,t;]. The revoke operation results in the deletion or modification (to exclude
the interval [t;,t;]) of all the negative temporal authorizations of s for m on o, granted
by the user issuing the revoke operation. Since negative authorizations cannot be granted
with the grant option, there is no need to propagate the effect of the revocation.

Operations involving rules

These are requests for creating or deleting rules. The user invoking these operations must
have either the own or the administer privilege on the object appearing at the left of the
temporal operator and either the own, administer, or refer privilege on the object appearing
at the right of the temporal operator.

Add rule: ADDRULE s; 0; m; pn; operator sy 0y my pny g go FROMTIME t; TOTIME t;
To add rule ([t;,t;]1,(s1,01,m ,pn;,g,00) operator (s;,02,my,pn,g,go)) to TAB,
where g; is the user who issued the request. The grantor of the authorization appearing
at the left of the temporal operator, that is, g, identifies the user inserting the rule.
Like for authorizations, the starting time of the interval associated with the rule must
be greater than the time at which the request is specified.

Drop rule: DROPRULE rid

To drop the derivation rule labeled rid. The user issuing the request must be the user
appearing as grantor in the authorization on the left of the operator in the rule.

Operations involving administrative privileges

These are requests for granting or revoking administrative privileges on an object. They can
be executed only by the owner of the object.

13

Grant administer: GRANTADM ON o TO s
To grant the administer privilege on object o to subject s.

Revoke administer: REVOKEADM ON o FROM s
To revoke the administer privilege on object o to subject s. All the authorizations on
o and all the derivation rules where o appears in the authorization at the left of the
operator specified by s are deleted. If s does not have the reference privilege on o, also

the derivation rules where o appears in the authorization at the right of the operator
are deleted.

Grant refer: GRANTREF ON 0 TO s
To grant the refer privilege on object o to subject s.

Revoke refer: REVOKEREF ON o FROM s

To revoke the refer privilege on object o from subject s. All the derivation rules granted
by s where o appears in the authorization at the right of the operator are deleted, if s
does not have the administer privilege on o.

5 Revocation of authorizations

In our model, the revoke operation can be required for a single authorization, by specifying its
label, or for an access mode on an object, with respect to a given time interval. In the following
we consider the case of the revocation of an access mode on an object for a given time interval. All
the results shown for this case apply to the revocation of specific authorizations as well.

Suppose a user revokes an access mode on an object for a given time interval from another user.
The TAB resulting from the revoke operation has to be as if the revokee had never received by the
revoker an authorization for the access mode on the object for the interval specified in the revoke
request. More precisely, the semantics of the revocation of access mode m on object o from user y
by user x in the interval [t;,to] is:

i) to HlOdify or revoke the authorizations that x had granted to y to exclude the interval [tl ,tg] s
g y
and

(ii) to modify or revoke the authorizations in TAB to exclude from their time intervals the time
instants in which they would not have existed if x had never granted to y an authorization
for m on o, for the time instants eliminated by step (7).

In the following we represent the sequence of grant operations for an access mode on an object by
a labeled graph, where each node represents a user and an arc between node u; and uj indicates that
user u; granted uy the access mode. Every arc is labeled with a 5-tuple (id,timestamp,interval,
sign,grant-op), where: id is the identifier of the authorization; timestamp is the time when the
authorization was granted; interval is the time interval of the authorization; sign is the sign
(‘“+7,¢—?) of the authorization; and grant-op indicates whether the authorization is with the
grant option. We use symbol ‘g’ to indicate that the authorization is with the grant option and
nothing if the authorization is without grant option. A node with no incoming arcs denotes the
owner of the object or one of its administrators.

The revocation of an authorization may imply: deleting temporal authorizations, modifying the
time interval associated with authorizations, or splitting temporal authorizations in several tem-
poral authorizations (the last operation can be necessary when a subset of the instants associated
with a temporal authorization needs to be excluded). The following example illustrates a case of
revoke operation.

14

A; : 5,[50,200] + g ——— A, : 55,[55,180] + g ———_ As : 60,[60,70]—
manager staff-A staff-B staff-C

As:50,[80,150] + g

(a)

A} :5,[50,59]+g ~——~ A5:55,[55,59]+g
manager 7 7 staff-A i 7 staff-B
Al :55,[80,150]+ g

As:50,[80,150] + g

(b)

Figure 3: An example of revoke operation.

Example 5.1 Consider a TAB consisting of the following authorizations:
(A7) (5,[50,200], (staff-A,o0,read,+,manager,yes))

(A7) (55,[55,180],(staff-B,o0,read,+,staff-A,yes))

(A3) (60, [60,70], (staff-C,o0,read,-,staff-B,no))

(Ay) (50,[80,150], (staff-A,o,read,+,staff-D,yes))

The corresponding graph is illustrated in Figure 3(a). Suppose that, at time 52, manager issues
the following command:

REVOKE read ON o FROM staff-A FROMTIME 60 TOTIME 200

According to the semantics of the revoke operation, interval [60,200] must be removed from
all positive authorizations for the read privilege on o granted by manager to staff-A. In case the
modified authorizations are with the grant option, the revocation has to be propagated also on the
authorizations that staff-A granted, and recursively on the authorizations granted by any users
for which some authorizations with the grant option are modified/deleted. The resulting effect on
the TAB has to be as if staff-A had never received the read privilege on o from manager for the
interval [60,200].

Let us now illustrate the effect of the revoke operation. The only authorization for the read
privilege on o granted by manager to staff-A is authorization A;. As required by manager, this
authorization is modified to exclude time interval [60,200]. Since the authorization is with the
grant option, also the authorizations granted by staff-A have to be reconsidered. In doing so,
the fact that staff-A has also other authorizations for the read privilege on o with the grant
option (authorization A4 granted by staff-D) must be taken into account. After 4; is modified,
staff-A still remains with the privilege of granting authorizations for the read privilege on o
but only for the intervals [50,59] (thanks to manager) and [80,150] (thanks to staff-D)% The
authorizations granted by staff-A must therefore be restricted to these intervals. Accordingly,

‘Note that if manager wants to strictly forbid staff-A to read o in interval [60,200], he can enter a negative
authorization.

15

authorization A, is modified to exclude time intervals [60,79] and [151,180]. This causes the
splitting of the authorization in two authorizations, one for interval [55,59] and the other for
the interval [80,150]. Since authorization Ay was with the grant option, again the effect must be
propagated and the time instants deleted from As must be deleted from the authorizations staff-B
has granted. The only authorization granted by staff-B is authorization A3z whose interval must
be completely excluded. As a consequence the authorization is deleted. The TAB’ resulting after
the revoke operation, illustrated in Figure 3(b), is composed of the following authorizations:

(A (5,[50,59], (staff-A,0,read,+,manager,yes))

(A) (55,[55,59], (staff-B,o,read,+,staff-A,yes))

(&%) (55,[80,150], (staff-B,o0,read,+,staff-A,yes))

(Ay) (50,[80,150], (staff-A,o0,read,+,staff-D,yes)). O

Before formally introducing the semantics of revocation, we need some preliminary definitions
on authorizations of TAB.

Definition 5.1 (Supporting authorization) Let A; and Ay be two authorizations. We say that
Ay supports Ay at time t, t € [t;(Ay),t;(A2)], (written Ay 4 Ay), iff:

e A1 and Ay are authorizations for the same access mode on the same object: m(A1) = m(Ay),
o(A;) =o(Ay);

o the subject of Ay is the grantor of Ay: s(41) = g(43);
o the timestamp of Ay is smaller than the timestamp of Ay: ts(A1) < ts(Ay);
e authorization Ay is with the grant option: go(A;) =‘yes”;

o time instant t belongs to the time interval of authorization Ay: t € [t;(A;),t;(A;)].

With reference to the TAB illustrated in Figure 3(a), Vt € [65,180] 4, Loy, V€ [60, 70]
Ay 5 A5, and Vt € [80,150] A4 — A,.

A sequence of authorizations each one supporting the next is called chain and is defined as
follows.

Definition 5.2 (Supporting chain) Assume that Ay,...,A, are authorizations for access mode
m on object o. We say that (Ay,...,A,)", n > 1, is a supporting chain for A, at time t, iff the

grantor of A1 has either the own or the administer privilege on object o, and A 4 A, —t>, .. .,—t> A,.

With reference to Figure 3(a), V¢ € [55,180] (A1,A3)" is a supporting chain for A,, V¢ € [80, 150]
(A4,A2)" is a supporting chain for Ay, V¢ € [60,70] (A1,As,A3)" is a supporting chain for As.

Each authorization A for a privilege on an object must either be granted by the object’s owner,
by any of the object’s administrators, or by a user who holds the authorization for the privilege on
the object with the grant option for all time instants in [t;(A),t;(A)]. An authorization satisfying
these requirements is said to be legal.

Definition 5.3 (Legal authorization) An authorization A in TAB is legal, iff Vt € [t;(4) ,t;(A)]
there exists a supporting chain (Ay, ..., An, A) for A with Ay,...,A, in TAB.

16

Note that several supporting chains can be present to make a single authorization legal.

In the following, we use a set of disjoint® intervals T = {[t;, t;],...,[t,, ts]} as a compact
notation for the set of natural numbers included in these intervals. Hence, the operations of union
(T1UT,), intersection (17 N1T3), difference (17\12), and inclusion (I; C I) have the usual semantics
of set operations. However, we implement those operations so that they can be performed using
intervals and giving the result as a set of disjoint intervals. We use two kinds of set membership:
t € T is true if t is one of the natural numbers represented by 7', [t;, t;] € T is true if the interval
[t;, t;] is exactly one of the disjoint intervals of 7.

To formalize the semantics of the revoke operation we use function ‘Delete()’ that takes as
argument two sets of authorizations S; and S3. For each authorization A in S5, the function
checks if an authorization A’ exists in S1 having the same timestamp, subject, object, access mode,
sign, grantor and grant option as A, and whose time interval is not disjoint from that of A. If the
time intervals of A and A’ coincide, then A’ is removed from S;. Otherwise, A" is replaced by a
set of authorizations which differ from A’ only for their time intervals, which are the elements of
{0t (A7), t; (AN I\ [t (A) ,t;(A)]}.

In the following we use the notation (x,m,o0,y,t1,t2) to denote a request by user x to revoke
access mode m on object o from user y, from time t; to time t,. We formalize the semantics of the
revoke operation by a function named ‘rvk()’, defined as follows.

Definition 5.4 (Rvk function) Given a TAB containing only legal authorization, let (x ,m,0,y,t1,t2)
be a request for revocation of access mode m on object o. Function rvk() generates a new temporal
authorization base TAB' defined as:

TAB' = Delete(TAB, (REV (TAB)URREV (TAB))), where:

REV (TAB) ={(ts, [tg,t;] ;auth) | 3 (ts, [t;,t;],auth) €TAB, where subject,object, access mode,
sign and grantor in auth are y,o,m,‘+’ ,x, respectively, and [t},t’] = ([t;,t;1N [t1,t2])# 0}.
RREV (TAB) ={(ts, [t/ ,t;] ,auth)| 3 A=(ts, [t;,t;],auth) € TAB, [t} ,t;] Clt:,t;], [t] ,t;] *

0, and ¥t €[t},t/1 A (A1,...,An,A)', with Ay,...,Ay,A € Delete(TAB, REV (TAB))}.

REV(TAB) denotes the set of authorizations in TAB whose revocation is explicitly required,
whereas RREV(TAB) (Recursive REV) denotes the set of authorizations that, after deleting the
authorizations in REV (TAB), are not legal in TAB.

Example 5.2 Consider the TAB and the revoke operation of Example 5.1.

REV(TAB) = {(5,[60,200], (staff-A,o0,read,+,manager,yes)) }.
RREV(TAB) = {(55,[60,79], (staff-B,o,read,+,staff-A,yes)),
(55,[151,180], (staff-B,o,read,+,staff-A,yes)),
(60,[60,70], (staff-C,o0,read, —,staff-B,no)) }.
TAB' = {(5,[50,59], (staff-A,o0,read,+,manager,yes)),
(55,[55,59] (staff-B,o,read,+,staff-A,yes)),
(55,[80,150], (staff-B,o,read,+,staff-A,yes)),
(50,[80,150], (staff-A,o0,read,+,staff-D,yes)) }.

O

An algorithm implementing function rvk() is illustrated in Figure 4. The algorithm works
as follows. Suppose that user x revokes access mode m on object o from user y for the interval

®Two intervals are considered disjoint if they cannot be collapsed into a single one (note that [1,2] and [3, 4] are
not disjoint).

17

Algorithm 5.1 Revoke Algorithm

INPUT: 1) A TAB.
2) A revoke request (revoker,acc-mode,object,revokee,tl,t2).
OUTPUT: TAB' = rvk(TAB,(revoker,acc-mode,object,revokee,t1,t2)).
METHOD:
(1) for each authorization in TAB with t; = oo, substitute t; with tyas
(2) if t1 = co then substitute t1 with tmaes
(3) T is initialized to be empty
(4) for each A € TAB such that s(A)=revokee,o(A)=object, m(A)=acc-mode,
pn(A)=‘+",g(A)=revoker, [t;(A),t;(A)IN[t1,t2]1# 0 do
(a) Delete(TAB,{(ts(4), [t;(4),t;(A)INLt1,2], (s(A),0(A),m(4),pn(4),g(h),go(h))}
(b) if go(A) = “yes” then T := T U {[t;(4),t;(A)IN[t1,t2]}
endfor
(5) if T' # 0 then casc_revoke(revokee,object,acc-mode,T)
(6) for each authorization in TAB with t; = t,,,4,, substitute t; with oo

casc_revoke(user,obj,mode, T)

(1) 7" and T are initialized to be empty
(2) for each s; € S such that exists A € TAB, s(4)=s;,0(4)=0bj,
m(A)=mode,g(A)=user, {[t;(4),t;(A)1}NT # B do
(a) for each Ar € TAB such that s(Ar)=s;,0(Ar)=0bj,
m(Ag)=mode, g(Ag)=user,{[t; (Ax),t; (&)1 }NT # 0§ do
(1) I:={[t;(Ap),t;(A)1I N T
(2) for each A, € TAB such that s(4,)=g(4;),0(4,)=0(ag), m(A,)=m(4s),
pn(A,)="4",go (A,) ="“yes” ts(h,)<ts(hz), {[t;(A,),t; (A,)1INT # 0, do
I:=1T\ {[t;(A,),t;(A,)]}
endfor
(3) Delete(TAB {(ts(Ag), [t;,t;]1, (s(Ax),0(Ag) ,m(Ag), pn(Ag),g(Ag),go(Ae)))|[ti,t;]1€ T}
(4) if go(Ag)=“yes” then T" :=T" U I
endfor

(b) if 7" # 0 then casc_revoke(s;,obj,mode,T")

endfor

Figure 4: Revoke Algorithm

18

[t1,t2]. In steps 1 and 2, t,,4, is substituted for each occurrence of symbol ‘oo’ in time intervals
associated with the authorizations in TAB and in the revoke request. We define t,,,, to be the
first instant greater than the maximum temporal constant appearing in a temporal authorization
in TAB. There is no need to consider all time instants up to oo as, for instants greater than t,,,,
the authorizations that are legal remain unchanged (this fact is formally proved as part of the proof
of Theorem 5.1). Step 4 iteratively considers all the authorizations A in TAB for m on o granted
by x to y whose time interval contains an instant in [t1,t2] (step 4) and deletes or modifies it to
exclude the interval [t1,t2] (step 4a). If authorization & is with the grant option then the interval
in which authorization A has been revoked is added to T (step 4b). If T" is empty the algorithm
terminates, since the revoke operation does not have any other effect on the authorizations in TAB.
Otherwise the Revoke algorithm calls procedure ‘casc_revoke()’ (step 5). Procedure ‘casc_revoke()’
is a recursive procedure that determines which other authorizations have to be deleted or modified
upon the revoke request. For this reason, step 2 of the procedure iteratively considers all the
users s; who had received an authorization for m on o from y for an instant ¢ € 1. Step 2.a
verifies which authorization A for m on o granted by y to s; has to be revoked or modified. All
the authorizations that support A in the time interval [t;(A),t;(A)INT are considered by step
2.a.2. After the execution of this step, / contains the time intervals representing the time instants
in [t;(A),t;(A)INT in which A does not have a supporting authorization. Then, / is removed
from the time interval of A by step 2.a.3. The process is then repeated for every user s; whose
authorizations have been modified. The final step of the main algorithm (step 6), replaces each
value t,,.» appearing in the authorizations of TAB with the symbol ‘co’. The following example
illustrates an application of the Revoke Algorithm.

Example 5.3 Suppose that the Revoke algorithm receives as input the TAB and the revoke op-
eration of Example 5.1. Symbol ‘co’ does not appear in any authorizations in TAB, nor in the
revoke request; thus steps 1 and 2 are not executed. Step 4 of the algorithm considers all the
positive authorizations in TAB for the read access mode on o granted by manager to staff-A
whose time interval is not disjoint from the interval [60,200]. The only authorization satisfying
these conditions is authorization A;.

Thus, Ay is replaced by the authorization Aj=(5,[50,59], (staff-A,0,read,+ ,manager,yes))
by step 4.a. As authorization A; is with the grant option the interval [60,200] is added to
T by step 4.b. Then, procedure casc_revoke(staff-A,0,read,{[60,200]}) is executed. Step 2
of the procedure considers all the subjects which had received an authorization from staff-A
to read o for a time instant in [60,200]. During the first iteration of step 2, staff-B is con-
sidered. Authorization A, is considered by step 2.a and all the authorizations supporting it in
the interval [60,180]1=[55,180]N[60,200] are detected by step 2.a.2. The only authorization
detected by step 2.a.2 is authorization A4, which supports As for the interval [80,150]. Thus, after
the execution of step 2.a.2, I = {[60,79]}. Therefore A, is replaced by the two authorizations:
(55,[55,59], (staff-B,0,read,+,staff-A,yes)) and (55,[80,150], (staff-B,o,read,+,
staff-A,yes)) by step 2.a.3. Since A, is the only authorization in TAB granted by staff-A
to staff-B, step 2.a terminates and casc_revoke(staff-B,o,read,{[60,79]}) is executed. The
only authorization which satisfies the conditions of step 2.a is authorization Az. No supporting
authorization for A3 is detected by step 2.a.2 for the interval [60,70] = [60,70]1N[60,79], thus
authorization A3 is removed from TAB by step 2.a.3. As Ag is without the grant option 7'=0), thus
procedure ‘casc_revoke()" is not called by step 2.b. No other iteration of step 2 is executed, as there
is no other subject receiving an authorization from staff-A. Hence the algorithm terminates. The
resulting TAB is:

{(5,[50,59], (staff-A,0,read,+,manager,yes)),

19

(55,[55,59], (staff-B,o,read,+,staff-A,yes)),
(55,[80,150],(staff-B,o0,read,+,staff-A,yes)),
(50,[80,150], (staff-A,o0,read,+,staff-D,yes)) }.

The correctness of the Revoke Algorithm is stated by the following theorem.
Theorem 5.1 (i) Algorithm 5.1 terminates. (ii) Algorithm 5.1 computes function rvk().

The formal proof is reported in Appendix.

6 Expressiveness of the model

Our model supports the derivation of authorizations on the basis of four different temporal oper-
ators. The only operator of our model for which a correspondence exists in current authorization
models is the WHENEVER operator, corresponding to a simple implication relationship between
authorizations. By contrast, no correspondence exists for the other three operators. However,
these operators, together with time specifications and temporal operators, make our model able to
represent different protection requirements that traditional authorization models cannot support
or can support only partially. In the following, we illustrate some examples of how those operators
can be used to represent different protection requirements.

The WHENEVERNOT operator derives authorizations on the basis of the absence of other author-
izations. As an example where this operator can turn useful, suppose that two different subjects
must be authorized for an access over complementary time intervals. This requirement can be
expressed by specifying the authorizations for the first subject and then derive the authorizations
for the second subject for every instant in which the other subject does not have (WHENEVER)
the authorization. Consider for example rule Ry in Figure 1, which derives the authorization for
staff-A to write staff-document for every instant, starting from time 30, in which staff-B is
not authorized.

Like the WHENEVER operator, the ASLONGAS operator derives an authorization on the basis
of the existence of another authorization. It differs from the WHENEVERNOT operator in that it
does not allow any derivation at and after the first instant in which the authorization on the right
of the operator does not hold, regardless of whether it will start holding again. Analogously, the
UNLESS operator, similar to the WHENEVERNOT operator, differs from the latter in that it derives
an authorization only up to the instant in which the authorization on the right of the operator
starts to hold. The ASLONGAS and UNLESS operators can be used to express constraints where the
fact that an authorization starts or stops to hold has implication on authorizations to be derived.

To illustrate an example of use of ASLONGAS suppose that temporary-staff is to be authorized
for all the authorizations on bulletin currently held by staff, until these authorizations hold
or, at most, until time 300. This requirement cannot be expressed by a WHENEVER rule, which
would cause the derivation of authorizations for temporary-staff also for authorizations that
have not been holding continuously since the time at which the rule was specified. By contrast,
the use of the ASLONGAS operator allows to limit the derivation only up to the time where the
authorizations on the right of the operator satisfies the condition to have been continuously holding.
Rule Ry in Figure 1 expresses the requirement above. According to this rule the authorization for
temporary-staff to read bulletin is derived in time interval [10,40]. A WHENEVER rule would
have derived the authorization also in the interval [50,100].

20

To illustrate the UNLESS operator, suppose that new-staff will be hired and is to be authorized
to write worksheet. Until that time, staff should be authorized for it. Since the time from which
the new-staff will be authorized may not be known apriori and the authorization for new-staff
may be even specified by a different person, no specific endpoint for the authorization for staff
can be specified. This requirement is instead easily expressed by the UNLESs rule R4 in Figure 1.
Authorization As, specified later on, for new-staff will limit the derivation of authorizations by
rule Ry only up to time 119. The use of WHENEVERNOT would have not been appropriate since it
would have allowed to derive again the authorization for staff upon revocation of the authorization
of new-staff.

Our model provides also flexibility in the administration of authorizations since it allows users to
retain complete control over the objects created or delegate other users the privilege of administering
accesses on the object. Delegation can be enforced by either giving a user the privilege to administer
the object, or selectively by granting authorizations with the grant option. The grant option allows
to delegate administration only with reference to specific privileges and to specific time intervals.
The combination of administer privilege and grant-option thus provides a flexible framework for
expressing delegation. For instance, user Tom can create object document and grant manager the
administer privilege on it. Moreover, Tom can grant secretary the authorization to read document
in time interval [10,100] with the grant option. As a result, manager will be able to grant all
privileges on document, whereas secretary will be allowed only to grant the read privilege and
only for time instants in [10,100].

Note that, although delegation of administrative privileges necessarily implies some loss of
control from the owners of the objects, our model still allows the owner to retain some control on
the accesses that others will allow to execute on his objects, by specifying negative authorizations
and derivation rules. For instance, with reference to the example just mentioned, Tom can forbid
user consultant to read the document simply by specifying a negative authorization for it. As a
consequence, consultant will not be allowed to read document even if an authorization is specified
for it by manager or secretary. Again, as another example, Tom can forbid staff-A and staff-B
to simultaneously hold a privilege on document, by specifying a WHENEVER rule that derives a
negative authorization for any privilege on document for staff-A whenever staff-B is authorized
for the privilege.

These are only some examples of protection and administrative requirements that can be ex-
pressed in our model. We believe that many other requirements arise in real-world applications
which cannot be expressed in traditional authorization models and can instead be expressed in our
model by properly combining authorizations, administrative capabilities, and derivation rules.

As a final remark, note that an important benefit of the WHENEVERNOT operator is to sup-
port both the open and closed policies within the same system with reference to specific accesses
(for instance, depending on the object or the access mode). Like most discretionary models, our
model is based on a closed world policy, i.e., only accesses explicitly authorized are allowed. The
coexistence of positive and negative authorizations is regulated by the denials-take-precedence
principle, i.e., negative authorizations override positive authorizations. As a result, a subject is
allowed for an access if and only if he has a positive authorization for it and he has no negative
authorizations for it. An alternative policy is the open policy, where only negative authorizations
can be specified and subjects are allowed for an access only if they are not explicitly denied for
it. The combination of negative and positive authorizations together with WHENEVERNOT rules
allows us to easily enforce the open policy, as follows. A WHENEVERNOT rule can be specified
stating that a positive authorization can be derived whenevernot a corresponding negative author-
ization holds. For instance, rule ([1,00], ((*,public-document,*,+,Tom,no) WHENEVERNOT
(*,public-document,*,-,*,*)) states that a positive authorization on public-document can be

21

derived for each subject and each access mode for which no negative authorization is specified. As a
consequence, all accesses not explicitly denied will be authorized. The advantage of our approach is
that users are not constrained to the use of a single policy. Rather they can choose the policy that
best suits their needs. For instance, the closed policy can be used by default and the open policy
be used on public documents to which access should be given to everybody apart of few exceptions.
Closed and open policies can then be both used within the same system with specific reference
to the object, subject or access mode to which the policy applies. For instance, by substituting
the metacharacter “*” with access mode read in the rule above, the closed policy will be enforced
only with reference to the read access mode. This flexibility is a main advantage of our model.
As a matter of fact, several authors [11, 4, 14] have recognized the need for building models and
mechanisms able to support multiple policies in a flexible way.

7 Concluding remarks and future work

In this report we have presented a decentralized administrative policy for a temporal authorization
model previously proposed by us [3]. We have described the basic concepts of the model and
illustrated the operations for granting and revoking authorizations and administrative privileges.
The semantics of the revoke operation is to delete from the authorization state all the authorizations
which would have not existed had the revoked authorization never been granted. We have extended
this semantics, first proposed for the System R database system, to the consideration of temporal
authorizations. In our model, every time a user is revoked an authorization, the authorizations
the user has consequently granted may need to be revoked or their time interval be modified.
As a consequence of a revocation, an authorization can also be split into several authorizations
with disjoint time intervals. We have given the formal semantics of the revoke operation in our
model together with an algorithm implementing it. We have also illustrated how our model, with its
temporal and administrative capabilities, can be used to represent different protection requirements
that arise in real-life applications.

The work presented in this report can be extended in several directions. An important issue
that we are investigating concerns the consideration of different temporal operators for the deriva-
tion of authorizations and periodic authorizations/rules. A further issue concerns implementation
strategies for efficiently enforcing derived authorizations. Another important direction concerns the
development of authorization administration tools. Administration tools are particularly crucial
when dealing with sophisticated authorization models. The area of administration tools has not,
however, been so far widely investigated. We plan to invest a major effort in this direction.

References

[1] M. Abadi, M. Burrows, B.W. Lampson, and G. Plotkin. A calculus for access control in
distributed systems. ACM Transactions on Programming Languages and Systems, 15(4):706—
734, September 1993.

[2] M. Baudinet, M. Niézette, and P. Wolper. On the representation of infinite temporal data and
queries (extended abstract). In Proc. ACM Symp. on Principles of Database Systems, pages
280-290, Denver, CO, May 1991.

[3] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A temporal access control mechanism for
database systems. IEFFE Trans. on Knowledge and Data FEngineering, to appear 1996.

22

[4] E. Bertino, S. Jajodia, and P. Samarati. Supporting multiple access control policies in database
systems. In Proc. of the 1996 IFEFE Symposium on Security and Privacy, Oakland, CA, USA,
1996.

[5] E. Bertino, P. Samarati, and S. Jajodia. Authorizations in relational database management
systems. In Proc. First ACM Conference on Computer and Communications Security, Fairfax,
Virginia, November 1993.

[6] S. Bobrowski. Safeguarding. DBMS, pages 44-52, September 1993.

[7] S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database security. Addison Wesley,
1995.

[8] Oracle Corporation. SQI Language-Reference Manual. Version 7.0. 1992.

[9] R. Fagin. On an authorization mechanism. ACM Trans. on Database Systems, 3(6):310-319,
Nov 1976.

[10] P. P. Griffiths and B. W. Wade. An authorization mechanism for a relational database system.
ACM Trans. on Database Systems, 1(3):242-255, September 1976.

[11] D. Jonscher and K. Dittrich. Argos - a configurable access control system for interoperable
environments. In Proc.of the IFIP WG11.3 Working Conference on Database Security, pages
39-66, Rensselaerville, NY, USA, 1994.

[12] J. V. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1974.

[13] J. Melton. Ansi x3h2-90-309,. Technical report, (ISO/ANSI working draft) Database Language
SQI.2., August 1990.

[14] E.A. Schneider. A security framework for policy-neutral object managers. In 227, 1995.

[15] Informix Software. Informiz-OnLine/Secure Security Features User’s Guide. Inc., Menlo Park,

CA, 1993.

[16] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An authentication
service for open network systems. In USENIX Conference Proceedings, pages 191-202, Dallas,
TX, Winter 1988. USENIX.

[17] R.K. Thomas and R.S. Sandhu. Discretionary access control in object-oriented databases:

Issues and research directions. In Proc. 16th National Computer Security Conference, pages
63-74, Baltimore, MD, Sept. 1993.

[18] T.Y.C. Woo and S.S. Lam. Authorizations in distributed systems: A new approach. Journal
of Computer Security, 2(2 & 3):107-136, 1993.

A Correctness of the Revoke Algorithm

Proof of Theorem 5.1

(i) Termination. To prove the termination of the Revoke algorithm is sufficient to prove the ter-
mination of procedure ‘casc_revoke()’ (step 5), since step 4 of the algorithm is a finite iteration
bounded by the number of authorizations in TAB. Consider procedure ‘casc_revoke()’. Suppose

23

that procedure ‘casc_revoke()’ never terminates. This means that it indefinitively calls itself. Pro-
cedure ‘casc_revoke()’ continues to call itself if at each iteration the set T’ is not empty. 7" is a set
of time intervals representing the set of time instants of the authorizations of subject s; for m on o,
received as arguments by function ‘Delete() till the current point in the computation. It is easy to
verify that procedure ‘casc_revoke()’ does not add any authorization to TAB nor increases the time
interval of the existing authorizations. Moreover, by the semantics of function ‘Delete()’, the next
time s; is examined by procedure ‘casc_revoke()’ the time intervals of the remaining authorizations
of s; for m on o do not contain any instant in the set 7’ computed in the previous call. Then,
since the time intervals of the authorizations for s; are subsets of the finite interval [1,t,,4.],
procedure‘casc_revoke()’ terminates.

(ii). Let TAB’ be the TAB resulting from the execution of the Revoke Algorithm. By definition
5.4 proving the thesis is equivalent to prove: TAB'=Delete(TAB,(REV (TAB)URREV(TAB))).
Since our algorithm considers only instants less than constant t,,,, it is first necessary to prove
the following lemma.

Lemma A.1 Given a TAB, let TABy, _ be the TAB obtained by substituling each occurrence of
symbol ‘oo’ appearing in a temporal authorization in TAB with t,,.,.. Steps 1, ..., 5 of algorithm
5.1 compute Delete(TABy,, ,(REV (TABx,, ,)JRREV(TAB, .))).

Proof Note that, the Revoke algorithm neither adds any authorization to TABy_ nor increases
the time interval of the existing authorizations; updates to TAB¢ are only performed by call-
ing function ‘Delete()’. Therefore, to prove the thesis is sufficient to prove that the overall set
of authorizations received as argument by function ‘Delete()’ is equal to {REV(TABy) U
RREV(TABy,)}. For brevity in the following we use REV (RREV) for REV(TABy,)
(RREV(TABg_ _)) The only steps in which function ‘Delete()’ is called are step 4a of the Revoke
algorithm and step 2.a.3 of procedure ‘casc_revoke()’. Let DE Ly be the overall set of authorizations
received as argument by function ‘Delete()’during the execution of step 4a of the algorithm. It is
trivial to prove that DEL; is equal to RE'V. Thus, we have only to prove that the set of authoriza-
tions received as argument by function ‘Delete()’ during the execution of procedure ‘casc_revoke()’
is equal to RREV . Let DF Lg be the overall set of authorizations received as argument by function
‘Delete()’ during the execution of procedure ‘casc_revoke()’. We have to prove A € DELy; < A €
RREYV. Let us first prove A€ DFELy = A € RREV. Suppose that A€ DELyand A ¢ RREV. Let
A be one of the authorizations in DF Ly not belonging to RREV with the minimum timestamp.
There could be more than one authorization in DF Ly with the same timestamp, but the choice of
the one considered is not relevant for the proof. Let A = (ts, [t;,t;],auth]). By hypothesis, A ¢
RREV, then it means that one of the following conditions hold: (i) A A" = (ts, [t},t}],auth]l)€
TAB such that [t;(4),t;(4)]1C [t;,t;], or (i1) 3t €[t;(4),t;(A)] and 3(A4,.. A, ,A)!, such that
Ai,...A, A € Delete(TABy _,REV). Suppose that (i) holds. It means that there does not exist in
TAB an authorization A’ having the same timestamp, subject,object,access mode,sign,grantor and
grant option as A and such that [t;(A),t;(A)1C [t;(A"),t;(4")]. Therefore, from how the set I is
computed by steps 2.a.1 and 2.a.2 of procedure ‘casc_revoke()’, A ¢ DF Ly, which contradicts the
assumption. Let us now suppose condition (ii) holds, that is, 3t € [t;(4) ,t;(A)] and 3(Ay,...,A,,
A), such that Ay, .. .,A,,A € Delete(TABy, . REV), where A, is a generic authorization supporting
A at time £. Since Delete(TABy ,REV) is the TAB resulting from the execution of step 4 of the
algorithm, when procedure ‘casc_revoke()’ is called by step 5, there exists in TABg_ a supporting
authorization for A at time ¢. Since there exists a supporting chain (Ay,...,4,, A)! for A, at time ¢
such that Aq,...,A,,A € Delete(TABy, . ,REV), then there exists a supporting chain (4y,...,4,)

24

for A,, at time ¢ such that Ay,...A, € Delete(TABy, ,REV). Therefore there does not exists
in RREV an authorization with the same timestamp, subject,object,access mode,sign,grantor and
grant option as A, and such that its time interval contains instant . Such an authorization does
not belong also to DFE L, since A is the element of DFE Ly not belonging to RREV with the min-
imum timestamp, and by the definition of supporting chain ts(4,)<ts(A). DF L, represents the
overall set of authorizations received as argument by function ‘Delete()’ during the execution of
procedure ‘casc_revoke()’. Thus, by the semantics of function ‘Delete()’, there exists in TAB’ an
authorization with the same timestamp, subject,object,access mode,sign,grantor and grant option
as A, containing ¢ in its time interval, that is, there exists in TAB’ an authorization supporting A
at time £. We have already proved that, since A € DF Ly, there exists in TAB an authorization
A’ having the same timestamp, subject,object,access mode,sign,grantor and grant option as A and
such that [t;(A),t;(A)1C [t;(A"),t;(A)]. Authorizations A and A’ have the same supporting
authorizations in the interval [t;(4),t;(A)]. Thus, when A" is considered by step 2.a, t ¢ I at the
end of step 2.a.2, as there exits in TAB’ an authorization supporting A at time ¢. Therefore, there
does not exists in DKLy an authorization with the same timestamp, subject, object, access mode
sign, grantor and grant option as A" and such that ¢ belongs to its time interval Then, A ¢ DF Ly,
as by hypothesis A is an authorization which differs from A’ only for its time interval and such that
t €[t;(A),t;(A)], which contradicts the assumption.

We now prove that A € RREV = A € DEL;. Suppose A € RREV and A ¢ DEL,. Let A be
one of the authorizations in RREV not belonging to DE Ly with the minimum timestamp. As
in the previous case, there could be more than one authorization in RRFEV with the minimum
timestamp, but the choice of the one to be considered is not relevant. If A€ RRFV, it means
that, V& €[t;(4),t;(A)] A(Ay,...,A,,A)", such that Ay,...,A, ,A € Delete(TABt _,REV), that
is, there does not exists in Delete(TABy, _,REV) a supporting chain for A for each instant of its
time interval. Let ¢ €[t;(4),t;(4)]. By definition of supporting chain, it means that either there
does not exists in Delete(TABt _,REV) an authorization supporting A at time f or, for each au-

thorization A’ € Delete(TABy, = REV), supporting A at time 7, A(A1, ..., Ay ,A")!, with Ay, ... A,
€ Delete(TABy, _,REV). If there does not exists in Delete(TABy, ,REV) an authorization
supporting A at time ¢, then, when procedure ‘casc_revoke()’ is executed, there does not exist in
TAB an authorization supporting A at time £. If for each authorization A’ € Delete(TABy _,REV)
supporting A at time 7, A(A1, ..., Ay ,A")", with &,...,A,, € Delete(TABg, . ,REV), then for each
authorization in TAB supporting A at #, there exists in RREV an authorization with the same
timestamp, subject, object, access mode, sign, grantor and grant option and with ¢ belonging to
its time interval. The authorizations supporting A that are in RRFEV are also in DELgy as, by
hypothesis, A is the authorization in RREV not belonging to DF Ly with the minimum timestamp
and each authorization supporting A has the timestamp lesser than the timestamp of A. Thus, the
authorizations supporting A which are in DFE Ly are received as argument by function ‘Delete()’
in step 2.a.3 of procedure ‘casc_revoke()’. Therefore, there does not exist in TAB' an authoriz-
ation supporting A at time . The same considerations hold V¢ €[t;(4),t;(A)]. Therefore each
authorization supporting A in TAB does not belong to TAB'. Since A € RREV, it means that exis-
ted in TAB an authorization A* with the same timestamp,subject,object,access mode, sign,grantor
and grant option of A, such that [t;(A),t;(A)] C[t;(A*),t;(A*)]. As, by hypothesis, TAB con-
tains only legal authorizations, there exists in TAB a supporting authorization for A* for each
instant of its time interval. V¢ € [t;(A),t;(A)], A and A* have the same supporting authorizations.
Since A does not have any supporting authorization in TAB', when A* is considered by step 2.a
of procedure ‘casc_revoke()’, [t;(A),t;(A)]1 C T, as T represents the set time instants of the au-
thorizations of s(A*) for m(A*) on o(A*) deleted till the current point of the computation. Then,

25

[t;(A),t;(A)]1C I at the end step 2.a.3, as A does not have any supporting authorization. Thus,
A is added to DFE Ly, which contradicts the assumption. a

We are now ready to prove the theorem. We are now ready to prove the theorem. We have to
prove that A € TAB' &

A € Delete(TAB,(REV (TAB)URREV (TAB))).

Let us first prove that A € TAB' = A € Delete(TAB,(REVURREV)). Let A= (ts, [t;,t;],auth).
Suppose that t,,., € [t;,t;]1. Then, if A € TAB’, by lemma A.1 A € Delete(TABy,__,(REV U
RREV)). By the semantics of function ‘Delete()’ this implies that A A'=(ts, [t;,t}],auth) €
(REV U RREV) such that [t;-,t;-]ﬁ [ti,t;1# 0. It is easy to prove that this implies that A" ¢
(REV(TAB)URREV (TAB)), as TABt___ is obtained by replacing each symbol ‘co’ occurring in
the time interval of authorizations in TAB with t,,,,. Indeed if A" € REV it means that one of
the following conditions hold: (i) auth is not a positive authorization whose revocation is explicitly
required, and then A’ does not belong also to REV(TAB), or (ii) V(ts, [t,,t,],auth) € TABy,
[ty,t,JN[t1,t2]=0, where [t1,t2] is the time interval for which the revocation of auth has
been requested. If (i) is true, then the same condition holds in TAB. Therefore, A’ ¢ REV (TAB).
If A" ¢ RREV, it means that one of the following conditions hold: (i) A (ts, [t,,t,],auth) €
TABg,,,, such that [t},t51C [t,,t,], or (i) 3t €[t},t)] and 3(4;,...A,,A")", with Ay, .. A, A €
Delete(TABy, , ,REV). If (i)is true, then such an authorization does not exist also in TAB. Then
A" ¢ RREV(TAB). If (i) is false, than (i) holds. This implies that authorizations Ay,...A,,A" €
Delete(TAB,REV (TAB)), as , by the previous step, REV = REV(TAB). Thus A’ ¢ RREV (TAB).
Then A € Delete(TAB,REV(TAB)URREV(TAB)). Now suppose that tm,.. € [t;,t;]. By step
6 of the algorithm this means that t; = co. By lemma A.1, this implies that there exists A’ €
Delete(TABy, . ,(REV U RREV)) such that A" = (ts, [t;,tm4s],auth). By the semantics of
function ‘Delete()’ this implies that A (ts, [t},t}],auth) € (REV URREV) such that [t{,t;1N
[t;,tmazr]# 0. This means that this authorization neither belongs to REV nor to RREV. Thus,
Ain REV an authorization (ts, [t;,t;] ,auth) such that [t;-,t;-]ﬂ [ti,tmacl# 0. It is easy to
prove, analogously to the previous case, that this authorization does not exist also in REV (TAB).
By the definition of t,,,., this implies that Ain REV(TAB) an authorization (ts, [t},t"],auth)

IR
such that [t/,t’1N [t;,00]# 0. Similarly, it can be proved that since A in RREV an author-

ization (ts, [t;ft;] ,auth) such that [té,t;]ﬂ[ti,tmw];& (), then this authorization does not
exist also in RREV(TAB). By the definition of t,,,;, this implies that there does not exist in
RREV(TAB) an authorization (ts, [t;-,t;-] ,auth) such that [t;-,t;-]ﬂ [t;,00]# (). Therefore A

€ Delete(TAB,REV (TAB)URREV (TAB)).

We have finally to prove A € Delete(TAB,(REV(TAB)URREV (TAB))) = A € TAB'. Suppose that
tmar & [£:(A),t;(A)]. If A € Delete(TAB,(REV(TAB)URREV(TAB))), it is easy to prove, using
considerations analogous to the ones used in the previous step, that A € Delete(TABy, _,(REV U
RREV)). Then, by lemma A.1 A € TAB/, since t;(A)< tpq.. Suppose now that tp,.. €
[t; (A),t;(A)]. By definition of t,,,;, this implies t;(A) = oco. Let A = (ts, [t;,00] ,auth).

A € Delete(TAB,(REV (TAB)URREV (TAB))) implies that A (ts, [t},t};],auth) €
(REV(TAB)URREV (TAB)) such that [t},t.1N [t;,00]# (. This implies that A (ts, [t},t}],auth)
€ (REV(TAB)URREV (TAB)) such that [t! ,t;-] N [t tmaz] 7# 0. Ttis trivial to prove that this im-
plies that such an authorization does not exist also in (REVURRFEYV). Therefore (ts, [t;,tmar] ,auth)
€ Delete(TABg, _,(REV URREV)). Then, by lemma A.1 (ts, [t;,tymq2] ,auth) belongs to the
TAB resulting from the execution of steps 1,...,5 of the algorithm. Therefore step 6 substitutes
the interval [t;,tmar] With [t;,00]. Then A = (ts, [t;,00c] ,auth) € TAB'. |

26

