
Determining Role Rights from Use Cases

E. B. Fernandez and J. C. Hawkins
Dept. of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431

{ed | jhawkins@cse.fau.edu}

Abstract
We propose a simple and complete method to determine
the needed rights for roles in a system. We make use of the
concept of use cases, commonly used to determine
requirements in object-oriented system development. We
extend use cases with rights specifications and we
determine all of a role’s rights from the collection of all use
cases for the system. This method is in strict accordance
with the least privilege principle.

Keywords : Authorization models, Object-oriented
analysis, Object-oriented authorization, RoIe-Based-
Access-Control, Use cases.

1. Introduction

User roles are the basis for many enterprise models,
including cooperative work models [Rupi94] and workflow
models [Kapp95]. Role-based access control is an attempt
to associate authorization rights with specific user roles
[Ferr95, Sand96]; that is, this approach is an embodiment
of the least privilege principle, where users acquire rights
according to their functions.

There is a good amount of work defining formal and
structural aspects of roles [Ferr92, Ferr95, Nyan94,
Sand96]. Some work focuses on mechanisms to group
users and to define the rights of groups [Fern95b].
However, there is little work on how these rights are
generated; that is, how to determine the rights to be given
to some role. As said above, roles can directly support the
least privilege principle, but to do so there must be some
method to assign only the needed rights to each role.

One of the most accepted methods to determine functional
requirements for the design of object-oriented systems is
the definition of use cases [Jaco92, Rumb94a]. The users of
the system are interviewed to elicit their ways of interacting
with the system and their interaction descriptions are
recorded in a specific format. Use cases are the basis for
precise requirement documents, for finding class operations
and even for finding classes. In our work, we have also
found that sequences of use cases are valuable to
understand the system and to define test cases [Fern97].

We propose here a method to determine the needed rights
for a role by considering use cases and sequences of use
cases. This approach guarantees that all the roles receive
their necessary rights so they can perform their functions
and no more than their functions. A security administrator
defines the authorization rules based on all the use cases for
the system.

Section 2 provides some background on use cases and their
sequences. Section 3 describes our extended use cases
where nonfunctional specifications can be added. Section 4
proposes an approach to generating rights for roles, while
Section 5 discusses administrative and enforcement
aspects. The last section provides some conclusions. We
illustrate these concepts with an example from a
manufacturing system.

2. Use cases and their sequences.

Use cases describe all the required interactions of users
with the system. They are textual semiformal descriptions
and can be complemented with graphical representations,
e.g., scenario (event trace) diagrams [Rumb9l]. Figure 1
shows a use case for shop order cutting, a step in the
processing of shop orders for manufacturing some type of
gadgets. A use case describes the actors (users, roles, or
other systems) that interact with the system. In the
example, the materials employee is the actor (which
corresponds to a given enterprise role). A use case also
includes a preconditions section, which specifies what must

be true in the system for the interaction to be feasible. The
description part indicates details of the interactions. An
exception indicates an abnormal, incorrect, or unusual
situation, e.g., lack of enough components to fabricate the
order. Finally, the postconditions section indicates what
must be true at the end of the interaction; in our example,
the shop order is in cut status and the required components
have been reserved.

Title: Shop Order cutting (“Cutting” indicates the start
of manufacturing)

Actors: Materials employee (this is a role in this
system)

Preconditions: Shop order is in firm status (created
from a customer order)

Description: Employee “cuts” a shop order for a given
number of gadgets of a specific type [exception:
component shortage].

Exceptions: Component shortage -- shop order is
delayed

 Postconditions : shop order is in “cut” status. The

 inventory has reserved the required components.

Figure 1. A use case for shop order cutting

Figure 2 shows a scenario diagram for shop order cutting.
In general, there are several scenarios for each use case that
correspond to the normal case and to the exceptions. From
the scenario of Figure 2 we can see that only one actor is
involved (the Materials employee); getBOM indicates
getting the Bill of Materials from the gadget object to find
out what components are required for its fabrication. The
CompInv objects represent the component inventory
objects (that keep track of component quantities), and Dist
are the locations of these components in storage bins. Note
that after the Materials employee applies the cut command,

 cut
 getBOM

 reserve
 . localReserve
 reserve
 localReserve

Materials Shop Gadget Comp Comp Dist i Dist j
Employee Order Inv i Inv j

Figure 2. The normal scenario for shop order cutting.

a series of messages between the internal objects is
triggered. The specific set of messages depends on the
object model of the system; here, each needed component
is reserved in the inventory and in the storage bin.

Sequences of use cases may also be important, e.g., a use
case must be preceded or followed by other use cases to be
meaningful or valid [Fern97]. In our example, shop order
creation must be followed by cutting, picking and
completion; revision can happen only before completion
while cancellation can happen at any time.

3. Extended use cases
We need now to relate use cases to authorization rights to
access specific object operations. Authorization rules can
take the form (S, O, T, P), where S represents the subject
(user or role), O represents the object being accessed, T
represents the type of access allowed, and P represents an
optional predicate defining access constraints. Object-
oriented applications are especially suitable to apply
authorization controls of this type since object data access
is limited to that provided by specific object member
methods or operations [Fern93]. We consider here rights of
this type associated with specific roles.

It is clear that actors correspond to functional roles; i.e.,
some actor initiates a function, other actors may approve it,
others may receive the result of some action.

Preconditions provide a way to indicate explicitly the
authorizations required by the actors in a use case to
perform their actions. Exceptions can be used to specify the
action to be taken by the system in case of an attempted
illegal access. Postconditions can be used to define
shutdown final conditions in case of aborted access or other
security actions, e.g., logging.

Security specifications correspond to nonfunctional
specifications. Conventional use cases only allow the
definition of functional specifications and we have
proposed elsewhere an extension of use cases to indicate
nonfunctional specifications by means of stereotypes
[Hawk97]. A stereotype is a metaclassification of a UML
element and is used to distinguish various classes in a
model [UML97]. Here it distinguishes the type of
requirement being expressed. Some stereotypical system
architecture requirements are load, fault tolerance, security,
and safety. In the example of Figure 3 we show the shop
order use case of Figure 1 extended with security
stereotypes to indicate access constraints. It is easy for the
persons writing the use case (an application expert in
conjunction with an object-oriented analysis expert) to

decide what type of access is needed for each actor (role) to
perform its function.

Because use cases exercise all the possible functions of the
system we can deduce all the needed role rights by
considering the methods that need to be invoked by the
corresponding actors. We formalize this principle in the
next section.

 Title: Shop order cutting
 Actors: Materials employee
 Preconditions : Shop order is in firm status. {security:
 Materials employee can cut shop orders }

 Description: Employee cuts a shop order for a given

 number of gadgets of a specific type [exception:

 component shortage]. {security

 exception: Employee not authorized}

Exceptions: Component shortage - shop order is
delayed {security: Employee not authorized - Log
attempt, disable user interface}

 Postconditions : Shop order is in cut status. The

 inventory has reserved the required components

 {security: interaction has been logged}

 Figure 3. An extended use case.

4. Role-based Security Authorization

 method j

 method j+1
 .
 .
 method j+m

 actor i object_k object_k+m

 Authorized actions for actor i in UseCase_q

Figure 4. A generic scenario diagram for UseCase_q

We can get a formal expression for role rights by looking at
a generic scenario diagram (Figure 4). In this example,
actor_i interacts with object_k and object_k+l by invoking
some of the objects’ member methods, method j ... method
j+m. Thus, UseCase_q defines a set of authorization rights,

each of which is identified by the particular actor, method,
and object. (In a non-object-oriented environment these
methods would not be member methods, however the
authorization right for a particular actor could still be
identified by the method/function/procedure and target data
structure.) Symbolically, an authorization right, R, is
identified by the triplet:

R (Ai, Mj, Ok)

where A i is an actor, Mj is a method, and Ok is an object. A
right for a particular actor, Ai, to access object Ok using
method Mj can be described as:

R j, k (Ai) = (Mj, Ok)

For every actor there exists a set of rights implied by a use
case, Uq. This set of rights is given by:

Ruq(Ai) = U {Rjq, kq(Ai)}
 jq, kq = 1..n

The union of the sets of rights across all use cases for a
particular actor is the complete set of authorization rights
for the actor denoted by:

R(Ai) = U {Ruq(Ai)}
 q = 1..n

This set of rights constitutes the role-based rights for actor
(role) Ai. The union of the set of authorization rights across
all use cases for every actor defines the complete set of
authorization rights for the system, all of which are
intended to perform a specific role-related function.

5 Administration and enforcement aspects
Based on our previous discussion, it is clear that all that the
security administrator needs to do is analyze all the use
case preconditions to decide what authorization rights are
needed for each role. Depending on the system these rules
may be written explicitly or may be deduced from group
structuring [Fern95b]. In fact, they could be generated
automatically from the use cases; tools such as Paradigm+
or Rational Rose now can keep track of use cases, they
could be extended to generate the required authorization
rules. From the use case exceptions the administrator
implements the actions needed for security violations. The
constraints in the preconditions are written when the use
cases are developed by the application and analysis experts.

Addition or deletion of authorization rules is only necessary
in case a use case is added or deleted or some of the actions
of a use case are changed. There should be no other reason
to add or delete rules. This is important to preserve the least
privilege principle. Users are assigned to roles based on
their job descriptions.

Consistently with this approach, authorization should be
enforced at the user interface. Object-oriented systems use
approaches based on model-view separation, e.g., the MVC
[Rumb94b] or PAC architectures [Losa97]. These two
models separate the conceptual model objects; shop orders,
inventory in our example, from user interfaces that can
observe and modify these conceptual objects. The user
views should be defined based on use cases [Losa97], and
it is clear that they should be the only way to interact with
the system. The user views should have access to the set of
authorization rules to allow or deny access to the
conceptual objects in the system (Figure 5).

Clearly, the lower levels must participate in the
enforcement of the rules [Fern95a, Neum86], the user
should not be able to bypass the authorization defined in
the views. Approaches such as capabilities, cryptography,
etc., are valuable for this purpose but security restrictions
should not be defined at these levels, these approaches only
enforce the rules defined at the application level.

Notice that the approach is independent of the actual
system implementation. Only the actor’s commands to the
system need to be authorized, not the internal object
accesses triggered by these commands. As far as the
external view of the system does not change, there is no
need to change authorization rules when the
implementation changes. This is in consistency with the
information hiding property of object-oriented systems.

Sequences of use cases can be used to define a workflow
that requires a specific set of authorizations for different
roles. For example, a shop order can only be created by an
Order Entry employee, cut and picked by a Materials
employee, and completed by a Manufacturing employee.
This complete workflow could be authorized as a unit.

 Authorization
 Model Classes User Views Rules

 ShopOrder UC1

 . .
 . .
 . .
 Inventory UCn
 : Users

Figure 5. Authorization enforcement

6. Conclusions
We have proposed use cases as a convenient way to
originate authorization rights for enterprise roles. This is
consistent with the principle of defining authorization at the
highest possible level, where their semantics are explicit
[Fern93]. This way of defining authorization is based on
enterprise needs and is in sharp contrast to “computer-
oriented” policies, e.g. ownership, where a user creating a
file gets all rights for it; we believe, policies of that type are
poor from a security point of view. Notice that use cases
are needed not only to develop new systems but to
reengineer corporations around the object model [Newm95]
and to define new architectures for legacy systems using
distributed objects [Henn96].

The security administration and use of such a system
should be much easier than current systems, where
authorizations are not originated in enterprise modeling and
are based on computer application perspectives. The need
to define rights in this way has already been expressed a
while ago [Moff88], but almost no commercial system
follows this approach.

Future work includes development of more details and
more formalization for the proposed approach. For
example, this authorization structure can be described using
objects. Another interesting aspect is the application of this
approach to workflow systems [Kapp95].

References
[Fern93] E. B. Fernandez, M. M. Larrondo-Petrie, and E.
Gudes, “Object-oriented database authorization: A method-
based model”, Proc. OOPSLA Workshop on security of
object-oriented systems, 1993.

[Fern95a] E. B. Fernandez and R. B. France, “Formal
specification of real-time dependable systems,”
Proceedings of First IEEE International Conference on
Engineering of Complex Computer Systems ‘95, pp. 342-
348.

[Fern95b] E. B. Fernandez, J. Wu, and M. H. Fernandez,
“User group Structures in Object-Oriented Database
Authorization,” in Database Security VIII: Status and
Prospects, J. Biskup et al., (Eds.), North-Holland Elsevier,
1995, pp. 57-76.

[Fern97] E. B. Fernandez and M. M. Anwar, “Using
sequences of use cases and activities in object-oriented
analysis”, FAU Technical Report TR-CSE-97-10, February
1997.

[Ferr92] D. Ferraiolo and R. Kuhn, “Role-based access
controls”, Proc. 15th NIST-NCSC Nat. Computer Security
Conf., NIST 1992, pp.554-563.

[Ferr95] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-
Based Access Control (RBAC): Features and motivations”,
Proc. 11th Comp. Sec. Applications Conf., 1995.

[Hawk97] J. C. Hawkins and E. B. Fernandez, “Extending
use cases and interaction diagrams to develop distributed
system architecture requirements”, FAU Technical Report
TR-CSE-97-47, May 1997.

[Henn96] P. Hennessey, R. Scheid, and J. R. Kirkley, III,
“An integration framework for distributed systems”, Object
Magazine, March 1996, 36-42.

[Jaco92] I. Jacobson. Object-Oriented Software
Engineering, Addison-Wesley, Reading, MA, 1992.

[Jaco95a] I. Jacobson and M. Christerson, “A growing
consensus on use cases,” Journal of Object Oriented
Programming, March-April 1995, pp.15-19.

[Kapp95] G. Kappel et al., “Workflow management based
on objects, rules, and roles”, Data Engineering, vol. 18, No
1, March 1995, pp.11-18.

[Losa97] F. Losavio and A. Matteo, “Use case and
multiagent models for object-oriented design of user
interfaces”, Journal of Object-Oriented Programming, May
1997, pp. 30-40.

[Moff88] J. D. Moffett and M. S. Sloman, “The source of
authority for commercial access control”, Computer, vol.
21,No 2, February 1988, pp. 59-69.

[Neum86] P. G. Neumann, “On hierarchical design of
computer systems for critical applications,” IEEE
Transactions on Software Engineering , September 1986,
pp. 905-920.

[Newm95] D. S. Newman, “Transforming information
systems organizations through class-based reengineering”,
Object Magazine, March-April 1995, pp.43-49 and 87.

[Nyan94] M. Nyanchama and S. Osborn, “Access rights
administration in role-based security systems”, in Database
Security VIII: Status and Prospectus, J. Biskup et al. (Eds.),
North Holland-Elsevier, 1994, pp.37-56.

[Rumb9l] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object-Oriented Modeling and Design,
Prentice Hall, Englewood Cliffs, NJ, 1991.

[Rumb94a] J. Rumbaugh, “Getting started: Using use cases
to capture requirements”, Journal of Object-Oriented
Programming, September 1994, pp.8-12, 23.

[Rumb94b] J. Rumbaugh, “Modeling models and viewing
views: A look at the model-view-controller framework”,
Journal of Object-Oriented Programming, May 1994, pp.
15-20 and 29.

[Rupi94] W. Rupietta, “Organization models for
cooperative office applications”, Proc. DEXA ‘94, pp.114-
124.

[Sand96] R. S. Sandhu, E. J. Coyne, H.L. Feinstein, and C.
E. Youman, “Role-Based Access Control Models,”
Computer, February 1996, pp.38-47.

[UML97] Unified Modeling Language notation, version
1.0, Rational Software Corp., Santa Clara, CA, 1997.
http://www.rational.com

