Monitors for History-Based Policies

Jan Chomicki! and Jorge Lobo?

! Dept. of Computer Science and Engineering
University at Buffalo
Buffalo, NY 14260-2000
chomicki@cse.buffalo.edu
2 Network Computing Research Dept.
Bell Labs
Murray Hill, NJ 07974
jlobo@research.bell-labs.com

Abstract. We investigate the issue of conflict detection and resolution
for policies formulated as sets of event-condition-action rules. We focus
on the temporal dimension of policies. In particular, we consider sequence
events in rules, conflict resolution through cancellation or delay, and
temporal action constraints. We formally define monitors — procedures
for resolving conflicts. We present algorithms for the computation of
optimal monitors.

1 Introduction

Policies are common in many software application areas: electronic commerce,
network management, telecommunications, security etc. Recently, there has been
a significant growth of interest in languages for formulating policies and mecha-
nisms for their implementation.

In [14] a declarative policy language PDL was proposed. PDL programs are
sets of ECA (Event-Condition-Action) rules. A paramount issue for such pro-
grams is how to detect and resolve action conflicts [7J9[1T]. We characterized
action conflicts as violations of action constraints in [7] and [9], in the context of
a subset of PDL containing rules for which the event part of the rule consisted
of primitive events and boolean operators. The actions produced by such rules
depend only on the current set of input events; past events are irrelevant. Thus
policies specified by such rules may be termed stateless. (They can be formally
defined as mappings from event sets to action sets.) We proposed the cancella-
tion of conflicting actions as a basic technique for resolving conflicts. We also
showed how to implement cancellation monitors—the procedures for detecting
and resolving conflicts.

However, the flow of time is important for policies. Not only concurrent but
also sequential occurrence of events is meaningful. There are rules with sequence
events in the full PDL. The actions produced by such rules depend not only on
the current set of input events but also on the history of past events. Time adds
also another dimension to conflict resolution. Conflicting actions can be delayed

M. Sloman, J. Lobo, and E. Lupu (Eds.): POLICY 2001, LNCS 1995, pp. 57-[2] 2001.
© Springer-Verlag Berlin Heidelberg 2001

58 Jan Chomicki and Jorge Lobo

until they can be executed without conflict. This observation leads to another
class of monitors, namely delay monitors. To illustrate the difference between
cancellation and delay monitors, consider the following example.

Ezxample 1. Suppose we want to restrict concurrent access to a resource, so if
there are two or more concurrent conflicting requests for the resource, only one
can be granted. A cancellation monitor will ignore all but one of such requests. A
delay monitor will delay the ignored requests instead, until they can be executed
without conflict.

The criteria to select the appropriate monitor in the context of a specific
application must consider the properties of conflicting actions in more detail.
If a conflicting action is unlikely to be repeated and makes sense even when it
is delayed, then it is better to use a delay monitor. Otherwise, a cancellation
monitor is more appropriate.

Actions should not be cancelled (or delayed) arbitrarily. Clearly, a monitor
should be as close to the policy as possible. This can be interpreted in two ways.
If we focus on canceling (or delaying) a minimal set of conflicting actions, we get
action monitors. On the other hand, if we choose to apply the original policy to
a maximal consistent reduction of the original input, we get event monitors.

To appreciate the need for event monitors, consider the following observation.
Sometimes a group of actions is always executed in tandem and if one of them is
cancelled, all of them must be cancelled. This is similar to a database transaction.
For example, suppose a piece of merchandise ordered by a customer arrived at
the stock location. After this event happens two actions are executed: the piece of
merchandise is shipped to the customer and the customer credit card is charged.
If the shipment is stopped by a conflict with another action (such as a recall
of the product due to a manufacturing defect), the charge should not be made.
This dependency is captured by event monitors. In action monitors, two actions
caused by the same event (or events) can be cancelled or delayed independently.

The last dimension of time addressed in the present paper deals with tem-
poral action constraints. Such constraints make it possible to restrict not only
concurrent but also sequential execution of actions.

To sum up, we extend in this paper the approach to conflict resolution pro-
posed in [7] and [9] to wider classes of policies and monitors. We show how
to define monitors for policies with rules that refer to sequence events. We also
show how to specify delay monitors. Finally, we address the issue of more general
action constraints formulated in Past Temporal Logic. All the above extensions
are founded on a more general notion of policy: a mapping from sequences of
event sets to sequences of action sets. In fact, the monitors defined in this paper
are applicable not only to PDL but also to any other policy language with the
formal semantics of the same kind.

The plan of the paper is as follows. In Section 2, we provide the basic defini-
tions. We introduce the syntax of PDL and define action constraints. In Section
Bl we define monitors, introduce several basic classes of monitors and show how
such monitors may be computed. In Section[], we introduce temporal action con-
straints and show how to accommodate such constraints in the monitors. Section

Monitors for History-Based Policies 59

Bldescribes our current implementation of a PDL policy server. In Section [6] we
briefly survey related work. We conclude the paper in Section [

2 Definitions

In [T4], Lobo, Bhatia and Naqvi introduced the language PDL, a policy descrip-
tion language that is being used as a programming language of a policy-based
network management system [16]. We consider here a subset of PDL.

2.1 Policies

A policy can be described as a reactive system that observes events happening in
the environment and reacts to them by trying to affect the environment through
the execution of actions (procedure calls). The reaction could be caused by the
occurrence of a single event or a number of events.

To write programs that implement policies we assume that both the events
observed by a policy and the actions that the policy generates have the structure
of terms. We fix two disjoint set of function symbols: primitive event symbols
and action symbols. These symbols are system-dependent and are given to the
user that defines the policies. There is also a set of standard ordered types such
as integers, floats, character strings, etc. Action and primitive event symbols may
be of any nonnegative arity. We refer to the arguments of a primitive event as its
attributes and to the arguments of an action as its parameters. Every attribute
and parameter has an associated type.

Definition 1. A policy is a finite collection of well-typed policy rules of the form
event causes action if condition, (1)

where the event, action and condition parts of a rule are defined below.

Definition 2. The event part of a policy rule is either an expression of the form:

1. e1& ... &e,, where each e; is an event term (defined below) and & is inter-
preted as a conjunction of events; or an expression of the form

2. e1,...,e, where each e; is a conjunction of event terms and “,” is interpreted
as a sequence of events; or an expression of the form
3. le1,...,en] where each e; is a conjunction of event terms and the sequence

is interpreted as a relax-sequence of events.

An event term is a typed term of the form e(t1,...,t,), where e is a primitive
event symbol of n arguments and each t; is a constant or a variable. An event
instance is a ground event term (i.e., an event term without variables).

60 Jan Chomicki and Jorge Lobo

Definition 3. The action part of a policy rule is a typed action term of the form
a(ty, ..., t,), where a is an action symbol of n arguments and each t; is either
(1) a variable that appears in the event part of the rule, (2) a constant, or (3) a
well-formed expression of variables, constants and operations from the standard
types. An action is a ground action term.

Definition 4. The condition part of a policy rule is an expression of the form
P1,---,Pn, where each p; is a predicate of the form t10ts, 0 is a relation operator
from the set {=,#,<,<,>,>} and each t; is either (1) a variable that appears
in the event part of the rule, (2) a constant, or (3) a well-formed expression
of variables, constants and operations from the standard types. The condition
represents the conjunction of the predicates.

In general, several events can occur simultaneously in the environment. We
refer to the collection of event instances that are considered to occur simultane-
ously as an epoch. From the policy point of view, the epoch defines simultaneity.
The implementation of the concept though is domain-dependent. In some cases
the right epoch granularity is an hour, in other a day, or even an arbitrarily
defined period of time. An implementation of epochs is described in Section
To a policy the environment is presented as a finite sequence of epochs to which
the policy responds by generating actions.

Definition 5. A finite set of event instances is an epoch. A finite set of actions
s an action set. A finite sequence of epochs is called an E-history, and a finite
sequence of action sets an A-history.

Definition 6. A substitution is a function that maps typed variables to constants
of the appropriate type. The application of a substitution o to a term t, denoted
by to, is the simultaneous replacement of the variables in t that are in the domain
of o by the constants assigned to the variables by o.

Note: Our notion of substitution corresponds to that of the ground substitu-
tion in logic programming.
We say that:

— an event e occurs in an epoch if an instance of the event term e(X7, ..., X,)
is member of the epochEI;

— a conjunction e1& ... &e,, of event instances occurs in an epoch if each e;,
1 <4 < m, occurs in the epoch.

Definition 7. Given an E-history Hg = (F1,..., En, Fni1), we say that

1. the conjunction of event instances e1& . ..&e,, occurs in Hg if it occurs in
En+1;

! In the term the X;’s are distinct variables of the appropriate type.

Monitors for History-Based Policies 61

2. the sequence of conjunctions of event instances eq, ..., e, occurs in Hg if
every e;, 1 <1 < m, occurs in Enpy1_(m—i),

3. the relaz-sequence of conjunctions of event instances [e1,...,em] occurs in
Hpg if there is a sequence of epochs Ej ..., E; such that (1) 1 < j; <
o< gm=mn+1, (2) foralli, 1 <i<m, e; occurs in Ej;, and (3) for all
1, 1 <i<m—1, e;41 does not occur in any epoch between Ej;, and Ej,, .
The difference between sequence and relax-sequence of events is that in the

latter the events do not have to appear in consecutive epochs.

Definition 8. The semantics of a policy P is recursively defined as the following
function Tp from E-histories to A-histories:

1. For an E-history Hg = (E1), of length 1, Tp(HEg) = (A1) iff for every
a € Ay, there is a policy rule “E causes A if C” in P and a substitution o
such that Eo occurs in Hg, Co is satisfied and Ao = a.

2. For an E-history Hg = (E1,...,Ent1), of length n + 1, Tp(Hg) =
(A1,..., An, Apy1) iff for every a € Apy1, there is a policy rule
“E causes A if C” in P and a substitution o such that Eoc occurs in
Hg, Co is satisfied, Ao = a, and Tp((Ex,...,Ep)) = (A1,..., 4,).

Note that by definition policies are prefix-closed. That is, for any E-history
Hg = (E1,..., En, Ent1),

if
Tp(Hg) = (A1,..., An, Apt1)

then
Tp((E1,...,En)) = (A1,..., Ap).

This is essential for policies to be evaluable incrementally. The output of a policy
on a given E-history never changes when the history is extended with further
epochs.

Example 2. A CD club service wants to implement its customer policy using
PDL. The club gives bonuses to clients that place orders in two consecutive
months if the total cost of the orders in those months is above a certain thresh-
old ¢. A client can close an account in any month, and orders are shipped as
soon as they are received. This policy can be written with three PDL rules:

order(Cust, Cost, Itm)causes ship(Cust, Itm).
order(Cust, Costy, Itmy), order(Cust, Costy, [tms)causes bonus(Cust)
if Costy + Costy > c.
close(Cust)causes close Acc(Cust).

62 Jan Chomicki and Jorge Lobo

2.2 Action Constraints

Independently of the policies there might be some restrictions imposed on the
kind of A-histories that are considered possible or correct in the system. For
example, there might be restrictions, identified by the policy administrators,
that do not let two particular actions appear in the same action set in the
history (i.e., the actions cannot be executed simultaneously). The restrictions
on A-histories are called action constraints. Thus, action conflicts are captured
as violations of action constraints.

Definition 9. An action constraint is an expression of the form
never ai A...Aa, if C.

Each a; in the expression is an action term and C' a condition like in (1)). Vari-
ables in C must also appear as parameters of the action terms. The informal
reading of the constraint is: “never allow the simultaneous execution of the ac-
tions ay, ..., anm if the condition C' holds.” The constraint formally represents
the formula V—=(a1 A ... ANay, AC).

Ezxample 3. Returning to our CD club example we can specify the restriction
that we cannot simultaneously close an account and process a shipment associ-
ated with the same account using the constraint:

never ship(Cust, Item) A close Acc(Cust).

Ezxample 4. We extend the CD club example with several rules about enroll-
ment. Assume that a customer receives an initial offer upon enrollment but can
enroll only once. Subsequent attempts to enroll by the same customer result in
a declination. This can be expressed in PDL as:

enroll(Cust) causes offer(Cust).
[enroll(Cust), enroll(Cust)] causes decline(Cust).

and the constraint
never offer(Cust) A decline(Cust).

To complete this example, we need to indicate that if both offer and decline are
generated in an epoch, decline should have priority (being more specific). We
will show how to do it in the next section.

Definition 10. Let a be an action, ac = “never aj A...Aa, if C” an action
constraint, and A an action set. Using the standard logical notation, we write
A E « to denote that A is a model of . Specifically:

Monitors for History-Based Policies 63

1. AEaiffae A;
2. A | ac if for every substitution 6, C0 is false or there is an i, 1 < i < m,
A l;é aié.

An A-history Ha = (A1,...,A,) satisfies ac (resp. AC) if A, = ac (resp.
A, E AC). Ha is prefiz-consistent with AC if for every m < n, (A1,...,An)
satisfies AC.

This definition generalizes to sets of constraints in an obvious way.

3 Monitors

A monitor of a set of action constraints generates only outputs without conflicts
(without constraint violations).

Definition 11. Given a set of action constraints AC, an AC-monitor wac is
a mapping from E-histories to A-histories of the same length such that for every
E-history Hg, wac(HE) is prefiz-closed and prefiz-consistent with AC. (If the
set of constraints AC' is clear from the context, we will use the term “monitor”
instead of “AC-monitor”.)

Notice that every monitor is prefix-closed, and thus — like a policy — can be
evaluated incrementally. Our goal is to take policies together with action con-
straints and automatically generate monitors. We have identified two basic ways
in which a monitor can handle conflicts. One is for the monitor to cancel some of
the actions that generate the conflict. Such a monitor will be called a cancella-
tion monitor. The other is to delay some conflicting actions until their execution
does not cause conflicts. Such a monitor will be called a delay monitor. Within
the classes of cancellation and delay monitors we introduce further subdivisions
into action and event monitors. Intuitively, action monitors decide which actions
to delay or cancel looking exclusively at the output of a policy (a set of actions).
Event monitors, on the other hand, take also the input events into account.

Example 5. Consider again Example 2l Assume an order event and a close event
occur in a single epoch. Therefore, because of the conflict between ship and
closeAce, one of those actions needs to be cancelled (or delayed). Assume ship
is cancelled (delaying it does not make much sense). Assume also that another
order event occurred in the preceding epoch and the condition for the bonus
action to be executed is satisfied. The bonus action can be executed without
conflict but it does not seem natural to do that since the order supporting
the bonus was cancelled. An event-cancellation monitor avoids this problem by
ignoring the event order and therefore also indirectly cancelling both actions it
causes. Such a monitor selects a consistent reduction of the input epoch, in that
case the reduction contains only the close event. Therefore, both ship and bonus
are effectively cancelled.

64 Jan Chomicki and Jorge Lobo

In some cases ignoring all the actions caused by an event is not necessarily
desirable.

Exzample 6. Consider Example @ in the case when an enrollment event of a cus-
tomer is followed by another enrollment event of the same customer. In this case
the second event causes two actions: offer and decline, which result in a conflict.
An event monitor cancels or delays that event, and consequently neither of the
actions is output. Intuitively, this is not a correct behavior: we expect exactly
one of them to be output in this situation.

A comprehensive policy management system should provide both action and
event monitors, as well as their combinations. Consequently, we will have four
basic classes of monitors: action-cancellation, event-cancellation, action-delay,
and event-delay. The monitors will be defined through algorithms that construct
them. Each algorithm is nondeterministic and thus defines a family of monitors.
Each of those will, however, enjoy suitable maximality properties, as elaborated
in the next section.

3.1 Action Monitors

Notation: tail((A1,...,A4,)) = Ax.
The following algorithm computes

ME(Ey, ... E,) = (A1,..., A,)

for some action-cancellation AC-monitor M[, of P:

Action Cancellation Monitor for ¢ := 1 to n do
A =
U := tail(Tp((El, ceey EZ)))
while true do
select a € U — A; such that A; U {a} E AC
if select successful then A; := A; U {a}
else break
end
end

The following algorithm computes
MEU(Ey,. ... E,) = (Ay,..., A)

for some action-delay AC-monitor Mf, of P:

Monitors for History-Based Policies 65

Action Delay Monitor D := ()
for i := 1 ton do
Ai = @
U:=DU tail(Tp((E1, ey El)))
while true do
select a € U — A; such that A; U {a} E AC
if select successful then A; := A; U {a}

else break
end
D = U — AL
end

In some cases it is natural to define a priority ordering between actions.
For example, if an action represents an exception, it should have priority over
the more general action. In Example @] we remarked that decline, being more
specific, should have priority over offer. Action priorities can be easily added
to the above algorithms: the action selection inside the while loop should be
selected according to the priorities.

3.2 Event Monitors

In this case, the set of actions is computed in two steps. First, a reduction of
the input E-history is computed and then the policy is applied to this reduced
E-history to obtain a set of actions without conflicts.

The following algorithm computes

ME(Ey,....E,) = (Ay,...,A)

for some event-cancellation AC-monitor M, of P:

Event Cancellation Monitor for i := 1 to n do
E =10
while true do
select e € E; — E’
such that tail(Tp(En,...,Ei—1, E' U{e})) E AC
if select successful then E' := E’' U {e}

else break
end
A; = tail(Tp(En, ..., Ei—1, E,))
end

The following algorithm computes
ME(Er,... Ey) = (A1, ..., Ay)

for some event-delay AC-monitor ML, of P:

66 Jan Chomicki and Jorge Lobo

Event Delay Monitor D :=)
for i :=1tondo
E =1
while true do
select e€e DUE; — E’
such that tail(Tp(Ex,...,Ei—1, E' U{e})) E AC
if select successful then E’' := E’ U {e}
else break
end
A; = tail(Tp(En, ..., Ei—1, El))
D:=DUE; - F
end

Similar to action monitors, priorities of events can be incorporated into the
event selection inside the while loops. There are also situations in which events
cannot be ignored or delayed, for example time events always occur. persistent
events can also be incorporated by never selecting them in algorithms. How-
ever, having persistent events may caused a policy to have no event cancellation
monitors.

3.3 Computational Complexity

It is easy to see that all the above monitors can be computed in time polyno-
mial in the number of events in the input E-history. In [9] we showed that the
simulation problem for event-cancellation monitors of stateless PDL policies is
NP-complete. That result does not contradict the above observation: The simu-
lation problem requires the monitor to produce a given set of actions and thus
is possibly more difficult than the problem of computing an arbitrary (maximal)
monitor.

3.4 General Properties of Monitors

Note that according to the definitions, a monitor that cancels all the actions for
any input is an AC-monitor for any policy P and set of constraints AC'. It is even
an action delay and an event delay monitor since the effect of such a monitor can
be characterized as delaying the actions or the events for ever. However, it does
not make sense to cancel (or delay) an action or an event if it is not involved
in a conflict. If we could order the monitors in such a way that the higher the
monitor in the order the closer its behavior is to the original policy, we would
certainly like monitors that are maximal in this order. Such monitors would
cancel or delay the minimum number of actions or events needed to eliminate
conflicts. Furthermore, in the case of delay monitors, actions and events should
be delayed as little as possible.

We have developed formal characterizations of the orders suitable for compar-
ing monitors in all the classes discussed in this paper: action cancellation/delay

Monitors for History-Based Policies 67

and event cancellation/delay. We have proved that the monitors defined by Al-
gorithms 1-4 are maximal in these orders. Details of the definitions and proofs
can be found in [8].

4 Temporal Action Constraints

In many applications, it is natural to impose constraints not only on concurrent
but also on sequential execution of actions. For example, some actions should
(or shouldn’t) appear in a specific order. This kind of constraint cannot be di-
rectly captured within the framework described so far. However, the appropriate
extension is rather easy.

We add temporal connectives to the language of action constraints. We choose
the past connectives of linear-time temporal logic [6]. The language of action
constraints allows now not only action terms but also action expressions. An
action expression is:

1. an action term,

2. previous a where a is an action expression (meaning “a was executed in
the previous epoch”), or

3. ay since ay where a; and ay are action expressions (meaning “a; has been
executed in every epoch since as was executed”).

Formally, we define satisfaction for temporal action constraints by extending
Definition [10

Definition 12. Let a be an action expression, ac = “never ajA...Aap, if C”

a temporal action constraint, and Ha = (41,...,A,) an A-history. Now
1. Ha Ea iff:
(a) a is an action term and A, [a, or

(b) a =previous a’ andn >1 and (A1,...,Ap_1) Ed, or
(c) a =a since o iff for some i, 1 <i<mn, (A1,...,4;) = ad” and for all
7,1 <j<mn, (Al,...,Aj) |:a’.
2. Ha E ac iff for every substitution §, C§ is false or there is an i, 1 <i < m,
HA b& aié.

Using this language, one can formulate constraints such as an action B shouldn’t
be executed before A as follows:

never A A (true since B)

where true is an action executed in every epoch (there are several ways to define
such an action).

The monitors defined in Section [3 should be appropriately generalized. Now
action constraints need to be evaluated not only in the last state in a history
but in the entire history. The techniques that automatically derive what kind of
auxiliary historical information needs to be kept in every state to avoid looking
at the entire history are well known [6].

68 Jan Chomicki and Jorge Lobo

5 System Implementation

In this section we present an algorithm for evaluating policies specified using
PDL. The algorithm is implemented as the Policy Engine of a Policy Server
embedded in the “softswitch”, a next generation switch for circuit and packet
telephony networks, and has been used to implement policies for detecting alarm
conditions, fail-overs, device configuration and provisioning, service class config-
uration, congestion control etc., [16]. This implementation covers the full version
of PDL, which is more general than the language we consider in the paper. The
softswitch manages an unbounded number of policy servers that are able to run
policies written in PDLE When a policy is loaded into a policy server the server
creates a policy evaluator for the input policy, contacts the devices (i.e., routers,
hubs, computers, etc.) that can potentially generate instances of the events of
interest to the policy, and registers the interest with the devices. The registration
happens at policy enabling points (PEPs) that wrap around the devices to act
as interfaces between the devices and the policy servers. Events generated by a
device are intercepted by its assigned PEP, translated into event terms and sent
to the appropriate policy server. When an event arrives at a policy server, the
server gives copies of the event to each policy evaluator that is running a policy
that mentions the event. Each evaluator accumulates the events in a buffer and
using a time constant 7" given to the evaluator during initialization, the evaluator
groups events from the buffer into epochs based on the following criterion:

An event e arriving at a buffer at time Ty belongs to the same epoch than
the previous event in the buffer if the difference between the time of the
beginning of the previous event epoch and Ty is less than or equal to T.
Otherwise, the arriving event belongs to a new epoch and the beginning
time of this new epoch is set to Ty. For the special case in which e is
the first event sent to the evaluator, the first epoch is started with the
beginning time also set to Ty.

Each policy evaluator runs with the appropriate epoch as input. The eval-
uator works by simulating the finite automata encoded in the event part of
a policy rules. The transitions of the automata are labeled by set of primitive
event symbols. Sequences are translated directly: there is a transition and a state
per each conjunction of events in the sequence plus the initial state. For relax-
sequences there is also a transition and a state per each conjunction of events,
but in addition there is a self-loop transition coming out from each state that
skips irrelevant events until the next conjunction of events in the relax-sequence
appears.

We present the algorithm for a single policy rule since rules can be evaluated
independently of one another. At any epoch ¢ the algorithm maintains for the
policy rule, the set R(t) of all its possible distinct partial evaluations in the event
history that may lead to the triggering of an action in a rule in some future epoch.
We refer to these distinct partial evaluations as active threads and they are built

2 Tt is bounded only by the capacity of the computers used.

Monitors for History-Based Policies 69

as follows. Let a “sub-epoch” of an epoch refer to a subset of the primitive
events in the epoch. Note that a “sub-epoch” is by definition an epoch. Given
an E-history £ = (F1, ..., E,), a sequence of “sub-epochs” & = (E{,...,E}) is
a sub-history of £ if and only if E] C E; for 1 <i <n.

An active thread A(t) at epoch t is maintained as a tuple (A (t), A2 (t)) where
Aq(t) is a path in the automaton for the event E of the policy rule and As(t)
is a sub-history (called the partial trace) of a suffix of the history at epoch t.
The path A;(¢) starts from an initial state of the automaton and is the path
taken when the automaton is simulated on input As(¢). An active thread also
carries with it the attribute values of the different events that come from the
partial trace Aa(t) and are necessary to evaluate the condition and the action
of the policy rule. Note that an active thread may have, in a future epoch,
enough information to fully evaluate the policy rule. The algorithm ensures that
every active thread leads to a distinct evaluation of the policy rule. Each time
an epoch is evaluated new threads are started and active threads are moved
or killed according to their location in the automata. Details of the algorithm
and complexity results on policy evaluation can be found in [3]. Following the
policy evaluations, each policy evaluator returns a set of actions. The server
takes these actions and sends them to the appropriate PEPs which translate
them into device-specific operations. The architecture of the server is depicted
in Figure [l The system is completely written in Java except for some parts of
the PEPs which are device-dependent.

Evewi Heg Palicy Exerution
Engime
Tl [
i
,
o3
& o,

: i

PEF "
At Evemt
i | | Filat Euaran | | Pt
Erm. Migper Em, | [Miapper

Dheviee Inierfase [e ——

f L

Hatereri Elsrnant Hetwnsh Elere i

Fig. 1. System Architecture

Given that monitors, like policies, are prefix-closed, we can compute the A-
history output by the monitor incrementally: when a new epoch is input only
the new action set of the corresponding expanded A-history is computed.

To implement an action cancellation monitor we only need to intercept the
set of actions generated by a policy evaluator each time an epoch is evaluated.

70 Jan Chomicki and Jorge Lobo

Then, we run the while loop in Algorithm Bl setting U to be the set of actions
returned by the evaluator and ¢ = n. The actual action set sent to the PEPs is
the resulting set A,,.

To implement an event cancellation monitor, following Algorithm B2 E;
is set to the current epoch, and Tp((E1,...,E;—1,E' U {e})) is replaced by
a simulation of the policy evaluation with E’ U {e} as the input epoch. The
simulation is done to trap the actions triggered by the epoch and check whether
the set of action constraints AC is violated. If the AC set is violated, the selection
fails and a new event has to be selected. After all the events from E; have been
covered and E’ has been completed, an actual execution (not a simulation) of the
policy evaluation is done with E’. The set of actions generated by the execution
is sent to the PEPs.

The implementation of delay monitors is a little bit trickier since the infor-
mation that events or actions are being delayed must be passed from the current
epoch to the next epoch. This effect is achieved by introducing “fake” events and
new rules triggered by these events into the policy. In the case of action delay we
introduce a new event symbol e, for every action symbol a with the same arity as
a. Also, we extend the original policy P to an extended policy P’ that contains
all the rules of P plus a rule of the from “e,(X;...,X,) causes a(X; ..., X,)”
for each action symbol a. If an action a(ty,...,t,) is ignored, the corresponding
event eq(t1,...,t,) will be added to the next epoch by the policy evaluator.

Similarly, for event delay, we introduce a new event symbol e’ for every
original event e. Also, we extend the original policy P to an extended policy
P’ that contains all the rules of P plus the copies of the rules in P in which
every event e is replaced by €. When an event is ignored, the event ¢’ is added
to the incoming epoch. If the event €’ is ignored again, the same ¢’ is added to
the next epoch.

6 Related Work

Conflict resolution for production rules in Al and databases has been addressed
in [1412]. Results about the complexity of testing consistency of production
rules can be found in [5]. However, in contrast to our view, those works assume
interpreted actions (variable assignments or database updates) and mostly ignore
the event part of the rules. Also, conflicts are typically between rules, not actions.
The work in [T3] deals with a model that is closer to ours, although the conflicts
studied are still between rules, not actions, and the events are not taken into
account.

The notion of action constraints was independently introduced in [7] and
[I1]. Conflict resolution is only one of the many issues addressed in [11] and
the authors limit themselves to proposing a construct equivalent to maximal
action cancellation monitors for stateless policies. Event cancellation, sequence
events, conflict resolution through delay, or temporal action constraints are not
considered.

Monitors for History-Based Policies 71

7 Conclusions

In this paper we have studied conflict resolution for history-based policies. We
have defined monitors (procedures for resolving action conflicts) and identified
several dimensions of monitors: action vs. event-based (introduced in [9] in the
context of stateless policies), cancellation vs. delay-based (new). We have pro-
vided polynomial algorithms for computing maximal monitors in each class.

The techniques presented in this paper can be generalized to more general
policies. For instance, handling negated events in history-based policies can be
done along the same lines as in stateless policies [9]. The solution proposed
there is based on making ignored events undefined, as opposed to making their
negations true.

We envision several directions for future research. It should be worthwhile to
study further classes of monitors, in particular hybrid monitors that allow cancel-
lation of some events and delay of others. Another direction is static analysis of
policies. Perhaps some policies never lead to conflicts — for them monitors repre-
sent an unnecessary overhead. This question becomes interesting in the presence
of negated events or additional information about events. Work on detecting
statically potential conflicts is reported in [15]. This work might be useful to
generate the action constraints we need as input for the monitors. Still another
direction consists of studying the expressive power of different subsets of PDL.

References

1. R. Agrawal, R. Cochrane, and B. G. Lindsay. On maintaining priorities in a
production rule system. In VLDB, pages 479-487, 1991.

2. C. Baral, J. Lobo, and G. Trajcevski. Formal characterizations of active databases:
II. In Proc. of the International Conference on Deductive and Object Oriented
Databases, Lecture Notes in Computer Science. Springer, Switzerland, December
1997.

3. R. Bhatia, J. Lobo, and M. Kohli: Policy Evaluation for Network Management.
In Proc. of the 19th Conference on Computer Communication, INFOCOM 2000.
Israel, March 2000.

4. L. Brownston, R. Farell, E. Kant, and N. Martin. Programming Ezpert Systems in
OPS5: An Introduction to Rule-Based Programming. Addison-Wesley, 1985.

5. H. Kleine Biining, U. Léwen, and S. Schmitgen. Inconsistency of production sys-
tems. Journal of Data and Knowledge Engineering, 3:245-260, 1988/89.

6. J. Chomicki. Efficient Checking of Temporal Integrity Constraints Using Bounded
History Encoding. ACM Transactions on Database Systems, 20(2):149-186, June
1995.

7. J. Chomicki, J. Lobo, and S. Naqvi. Axiomatic conflict resolution in policy man-
agement. Technical Report I'TD-99-36448R, Bell Labs, February 1999.

8. J. Chomicki and J. Lobo. Monitors for History-Based Policies. Technical report,
Lucent Bell Labs, 2000.

9. J. Chomicki, J. Lobo, and S. Naqvi. A Logic Programming Approach to Conflict
Resolution in Policy Management. In International Conference on Principles of
Knowledge Representation and Reasoning, Breckenridge, Colorado, April 2000.

72

10.

11.

12.

13.

14.

15.

16.

Jan Chomicki and Jorge Lobo

T. Eiter and V.S. Subrahmanian. Heterogeneous active agents, II: Algorithms and
complexity. Artificial Intelligence, 108:257-307, March 1999.

T. Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous active agents, I: Seman-
tics. Artificial Intelligence, 108:179-255, March 1999.

Y. E. Ioannidis and T. K. Sellis. Supporting inconsistent rules in database systems.
Journal of Intelligent Information Systems, 1(3/4), 1992.

H. V. Jagadish, A. O. Mendelzon, and I. S. Mumick. Managing conflicts be-
tween rules. In Proc. 15th ACM SIGACT/SIGMOD Symposium on Principles of
Database Systems, pages 192-201, 1996.

J. Lobo, R. Bhatia, and S. Naqvi. A policy description language. In Proc. of AAAI
Orlando, FL, July 1999.

E. C. Lupu and M. Sloman. Conflict analysis for management policies. In R. Stadler
A. Lazar, R. Saraco, editor, Proc. 5th IFIP/IEEE International Symposium on
Integrated Network Management, pages 430-443, 1997.

A. Virmani, J. Lobo, and M. Kohli. NETMON: Network management for the
SARAS softswitch. In Proc. of the IEEE/IFIP Network Operations and Manage-
ment Symposium, April 2000.

	Introduction
	Definitions
	Policies
	Action Constraints

	Monitors
	Action Monitors
	Event Monitors
	Computational Complexity
	General Properties of Monitors

	Temporal Action Constraints
	System Implementation
	Related Work
	Conclusions

