
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Domain and Type Enforcement for Linux

Serge E. Hallyn
College of William and Mary

hallyn@cs.wm.edu, http://www.cs.wm.edu/˜hallyn

Phil Kearns

College of William and Mary
kearns@cs.wm.edu, http://www.cs.wm.edu/˜kearns

Abstract

Access control in Linux is currently very
limited. This paper details the implementation
of Domain and Type Enforcement (DTE) in
Linux, which gives the system administrator a
significant advantage in securing his systems. We
control access from domains to types, domain
transitions, and signal access between domains,
based on a policy which is read at boot time.

1 Introduction

Access control in Linux currently con-
sists of traditional Unix permissions and
POSIX capabilities[Caps-faq]. Domain and
Type Enforcement (DTE) has been presented
[DTE95, DTE96] as a useful method for enhanc-
ing access control. DTE groups processes into
domains, and files into types, and restricts access
from domains to types as well as from domains
to other domains. Type access can be any of read,
write, execute, create, and directory descend.
Domain access refers the right to send signals
as well as that to transition to a new domain.
A process belongs to exactly one domain at
any particular time. A process transitions to a
new domain by executing a file which has been
defined as anentry point to that domain. The
three types of domain transitions areauto, exec,
or none. If Domain A has auto access to domain
B, and a process in domain A executes an entry
point for domain B, then the process will be auto-
matically switched to domain B. If domain A has
exec access to domain B, then a process running

under domain A can choose whether to switch to
domain B on execution of one of B’s entry points.

DTE can be considered an abbreviated form
of classical capabilities[Dennis66]. In a system
based upon classical capabilities, a process
carries with itself a set of access rights to
particular objects. At any point, a process
can give up, or reclaim (if permitted) some
of its capabilities. POSIX capabilities work
similarly, but these capabilities are limited to
a predefined subset of superuser access rights
such as the ability to nice a process, boot the
system or open a privileged (< 1024) port.
In DTE, a process carries with itself only an
indicator of the domain in which it runs, and
this determines the process’ access rights.
A process can enter a new domain (and hence
change its access rights) only upon file execution.

Trusted Information Systems has used DTE
in its proprietary firewalls, but details of its
implementation were not publicly available,
and TIS appears to have stopped using DTE
altogether. A group at SAIC has recently begun
a DTE for Linux implementation[SAIC-DTE].
Jonathon Tidswell and John Potter[Tidswell97]
submitted theoretical work on extending DTE
to allow safe dynamic policy changes, but have
attempted no implementation.

Presented here is our prototype implementa-
tion of DTE for Linux version 2.3.

2 Implementation

We have implemented a DTE prototype in the
2.3.28 Linux kernel. Our implementation of
DTE attaches type information to VFS inodes
and domain information to process descriptors
(task structs). A DTE policy is read at boot time
from the text file/etc/dte.conf .

Traditional UNIX permissions are still en-
forced. There are several reason for this, such as
user and system administrator familiarity with
traditional UNIX protection. Most importantly,
however, DTE is designed to provide mandatory
access control to protect a system from subverted
superuser processes. A DTE policy to replace
traditional UNIX access control would be very
large and complex. However, one could com-
pletely void traditional access control by simply
giving all users full access to all files. Similarly,
one can bypass DTE by creating a DTE policy
with only one type and one domain, and full
access from the sole domain to the sole type.

2.1 Data Management

At boot time, we build a structure for each
domain as specified in the DTE policy file.
This structure contains information regarding
permitted access to types, permitted transitions
and signal access to other domains, and entry
points. Every process’ task structure will contain
a pointer to the structure for the domain to which
it currently belongs.

At this time we also create an array containing
the names of all types. Types are then compared
by the offset of the type name in this array. Every
inode contains three pointers which either are
NULL or point into this array. The three pointers
represent theetype, rtype andutypevalues. The
etypevalue is the type of this particular file or
directory. Thertype represents the value of this
directory and its children, whereas theutype
represents only the type of its children.

The type of a file is determined in one of three

ways. First, if we have previously determined
the type, then the inode’setypewill be set and
we simply use it. If this is the first time we are
looking up this file, and a rule exists assigning
it a type, then that rule is used. Finally, if a rule
does not exist assigning a type to the file, then
the values are inherited from the parent’sutype1.
The etypeof an inode is always set. If there is
no rule specifying theetypefor the file, then the
etypeis set to the parent’sutype. The utypeof
an inode must therefore also exist. It is set, in
order of preference, to the assignedutype, the
assignedrtype, or the parent’sutype. The rtype
of an inode is set only if a rule assigns anrtype
to the inode’s path.

Since type information always comes from
either the DTE policy or from an inode’s an-
cestors in the filesystem tree, no information
needs to be added to the filesystem on disk. The
type assignment rules are represented in memory
by a tree ofmap nodeswhich is constructed
at boot time from the type assignment rules in
the policy. A sample tree for a particular set of
rules is shown in Figure 1, along with the type
information in corresponding inodes. The map
nodes are only used to determine whether a rule
exists binding a path to a type. Once an inode’s
type is set, subsequent lookups will not cause us
to check the map nodes again.

2.2 Type Access Enforcement

When a process performs anopensystem call,
the modified kernel checks for DTE permission
before checking the standard UNIX permissions.
We use the domain structure pointed to by the
current task structure to check whether the cur-
rent domain has the requested access to the type
to which the file being opened belongs. If this
access is granted, then we proceed to perform
the normal UNIX checks. A check for DTE
execute permission is delayed until the actual
call toexecve. If the execution causes an allowed
domain transition, then this transition should
occur before the check for execute access, since
the new domain may be the only one allowed to
execute the entry point.

1The type of the root of the filesystem is set explicitly in
the DTE policy.

e
r
u

e
r
u

e
r
u

e
r
u

e
r
u

e
r
u

e
r
u

/

var

adm

default_rtype root_t
assign −r /var/adm log_t

/

var etc

adm

MAP NODES INODES

extract from the sample policy:

NULL

log_t
NULL

NULL

NULL
root_t

root_t
root_t
root_t

root_t
NULL
root_t

root_t
NULL
root_t

log_t
log_t
log_t

NULL

Figure 1: Sample DTE assign rules and corresponding map nodes

Domain to type access information is kept
in a set of hash tables. Each domain structure
has a hash table keyed by the type name, and
each entry lists the domain’s access rights to the
particular type. A type access check, therefore,
consists of simply calculating the hash value of
the type name to find the appropriate domain to
type access entry for the current domain, and
comparing the requested access to the permitted
access. This is done regardless of username, so
that the superuser is not exempt from the DTE
policy.

2.3 Domain Access Enforcement

Our DTE implementation enforces restric-
tions on signals between processes in different
domains. Each domain structure contains a
linked list of dte signal accessstructures, which
contain the signal number and a pointer to
the domain to which it may be sent. One of

these structures exists for every signal which
may be sent to another domain. However, for
the sake of abbreviation, setting the domain
to null allows the specified signal to be sent
to all domains, and setting the signal to 0 al-
lows all signals to be sent to the specified domain.

2.4 Domain Transition Enforcement

Three types of domain transition are possible
each time a file is executed. The first is anauto,
or mandatory, domain transition. Since this
must be automatic, it means that each time a
process callsexecve , we must check whether
the file being executed is an entry point into a
domain to which the current domain hasauto
access. The second type of transition is anexec,
or user-requested, transition. This is facilitated
by a new system call,sys dte execve , which
takes an additional argument overexecve
containing the name of the requested domain.
The third and default type of transition is the
NULL transition, wherein the domain is not

changed.

Domain transition information is kept in two
types of structures, both linked from the domain
structure. Sinceautotransitions must be checked
for on every execve system call, the search
for a particular pathname must be very quick.
Therefore, each domain structure contains a hash
table of the pathnames whose execution lead to
auto domain transitions, along with the domain
to be switched to.

The domain structure also has a linked list of
structures representing allowedexectransitions.
Since a dte exec is a relatively rare, and
user-requested, event, efficiency is not so critical,
and we can elect for a more memory-efficient
representation. Therefore we do not keep a hash
table of every file which may cause anexec
transition, but simply point to the domains to
which a voluntary (exec) transition is allowed. To
check forexecaccess to a domain, we must first
check for anexecentry for the desired domain,
then check whether the file being executed is an
entry point for that domain.

3 Administration

Administering DTE consists of editing
the policy, which is defined in the file
/etc/dte.conf . The system must be
rebooted to effect the changes2.

The DTE policy file consists of several sec-
tions. We first enumerate the types and domains.
Next we specify the default type for the filesys-
tem root ("/") and its children, and the domain
in which to run the first process (init). Following
is the detailed definition of all domains. For each
domain we specify the entry points, permitted
type access, permitted domain transitions and
permitted signals to processes in other domains.
Finally we list the type assignment rules.

2Allowing the safe run-time changing of access control
rules is a topic of some ongoing research[Tidswell97]

A sample policy file is in Figure 2. First we
specify that there will be two types,root t and
log t, and two domains,commond and log d.
We set the default root rtype, hence the default
type for the entire filesystem, toroot t. Next we
set the type of the first process tocommond. We
specify that thelog d domain will have one entry
point, /sbin/syslogd , and should have read,
execute and directory descend access to files
of type root t and read, write, execute, create
and directory descend access to files of type
log t. For the domaincommond, we specify
read, write, execute, create and directory descend
access to files of typeroot t, but only read access
to files of typelog t. This domain also receives
auto transition access to domainlog t, meaning
that, on execution of/sbin/syslogd , a
process in domaincommond will automatically
be switched to domainlog d. Finally, the last
statement assigns the typelog t to the directory
/var/adm/log and all files thereunder.

4 The DTE API

Three additional system calls are provided
to allow software to interact with DTE. The
sys dte exec call was discussed earlier.
A user may invoke sys dte gettype to
learn the type associated with a file. Similarly,
sys dte getdomain may be called to learn
the domain associated with a process.

5 Performance

We measured the performance of both a
DTE-enabled and a DTE-free2.3.28 kernel
for the execve and lookup dentry system
calls, the overhead imposed by the DTE-specific
sys dte exec and dte auto switch
system calls, and a full kernel compile. The
following tests were run on a 400Mhz Pentium
II (397.31 bogomips) with 512K L2 cache
and 384M ram. Each test was run on a kernel
compiled without DTE and one with DTE using
the simple policy shown in Figure 3. We used the
Pentium cycle clock for timing. All confidence

this is a comment
types root_t log_t # enumerate the types
domains common_d log_d # enumerate the domains

default_rtype root_t # default type for /
default_domain common_d # domain for process 0

A domain is specified in n parts:
spec_domain <domain_name> (entry points) (type access) (domain access) \\
(signal access)
spec_domain log_d (/sbin/syslogd) (rdx->root_t rwxcd->log_t) () ()
ˆ ˆ ˆ ˆ
(name) (entry point) (type access) signal access
spec_domain common_d () (rwxcd->root_t r->log_t) (auto->log_d) ()
ˆ
domain access

assign -r /var/adm/log log_t # assign type log_t to /var/adm/log
and all files there-under

Figure 2: A sample DTE configuration file

intervals are 95%.

5.1 Permission

The fs/namei.c:permission kernel
function is used before any file operations to
check whether the user is authorized to perform
the requested action. The code to check for
domain to type access rights is located at the top
of this function, so that DTE permissions are
checked before standard UNIX permissions. As
mentioned above, each domain has a hash table,
keyed by type name, listing the domain’s access
rights to types. The DTE permission check is
therefore very quick and constant time with
respect to the number of types. Of course, it is
linear with respect to the length of the pathname,
as we need to first find the pathname and then
hash it.

The first time it is called on a particular file
or directory, however, theetype may not yet
have been set. In this case, we must check for
a type assignment rule or, if such a rule does
not exist, set the type from the parent directory.
Furthermore, if the parent directory does not
exist then we must first do the same for it, and
so on until a directory is associated with a type

assignment rules or has its type set.3. The DTE
type assignment rules are kept in a tree format
analogous to the filesystem tree, as shown in
Figure 1. The children are currently not sorted,
so that a large number of assignment rules for
files under a single parent directory could impact
performance. However, for normal cases this
lookup should be reasonably quick.

We timed the upper part of the kernel function
fs/namei.c:permission , where the DTE
code is located. Over the course of a boot se-
quence, several repeats of the lookup test above,
some general milling around, and a shutdown,
the DTE code added 1578±400 clock cycles to
eachpermission call.

5.2 lookup dentry

The time required to look up a given
pathname greatly affects the subjective
performance of the system. The function
fs/namei.c:lookup dentry , which per-
forms this task in the Linux kernel, is affected by
DTE in two places. First, for each subdirectory
in a pathname,lookup dentry calls per-

3As must eventually be true since the filesystem root has a
defined type

types root_t login_t user_t test_t spool_t tripwire_t
domains root_d login_d user_d test_d tripwire_d
default_d root_d
default_et root_t
default_ut root_t
default_rt root_t
spec_domain root_d (/bin/bash /sbin/init /bin/su) (rwxcd->root_t rwxcd-
>spool_t \

rwcdx->user_t) (auto->login_d auto->tripwire_d)
spec_domain login_d (/bin/login /bin/login.dte) (rxd->root_t rwxcd-
>spool_t) \

(exec->root_d exec->user_d exec->test_d)
spec_domain user_d (/bin/bash /bin/tcsh) (rwxcd->user_t rwxd->root_t rwxcd-
>spool_t) \

(exec->root_d exec->test_d)
spec_domain test_d (/bin/bash) (rwxcd->test_t rdx->user_t rwdx-
>root_t rwxcd->spool_t) \

()
spec_domain tripwire_d (/bin/tripwire) (rwxcd->tripwire_t rxd->user_t rxd-
>spool_t \

rxd->root_t) ()

assign -r /etc/tripwire tripwire_t
assign -r /var/spool/tripwire tripwire_t
assign -u /home user_t
assign -u /tmp spool_t
assign -u /var spool_t
assign -u /dev spool_t
assign -u /scratch user_t
assign -r /dte_test_dir test_t
next one is a test - user_d should *not* see it since no ’d’ to /dte_test_dir
assign -e /dte_test_dir/aha user_t

Figure 3: DTE policy used for performance tests

mission to check for execute access. Second,
if the types for the deepest path element being
looked up have not been set, then we must set
them, using the same function we use above in
permission .

We timedlookup dentry on a set of path-
names ranging in depth from 1 to 9 components,
both for fully existing and fully nonexistent
pathnames. For the first execution, each com-
ponent of each pathname was uncached. On
subsequent executions, all path components and
their corresponding DTE type information were
(naturally) cached.

The results can be seen in figures 4, 5, 6 and 7.
For the case of a lookup for uncached filenames,
results appear to be rather unpredictable. If this
appears to be more true for existing file lookup
than for nonexistent files, this is a result we
should have predicted by our method of testing.
We tested the lookup for each set of pathnames,
then rebooted, and repeated the test, eleven times
in all. However, for the nonexistent filename
lookup, a part of the pathname was legitimate.
This piece was looked up uncached only for our
first test after reboot, which was for the first
table entry in figure 6. Since the DTE kernel
was faster than the plain kernel more often than
it was slower, it appears safe to say that disk i/o
completely overshadows any time spent setting
DTE types from map rules and parents.

For cached lookups, the DTE kernel appears
to do slightly better than twice as long as the
plain kernel.

5.3 autoDomain Transitions

Upon file execution, we must check whether
the requested execution should cause a manda-
tory domain switch. This is done using
kernel/dte.c:dte auto switch . As
previously mentioned, this function must be fast
as it is called with every file execution. There-
fore, it simply hashes the name of the executable
to check for an entry in a table of gateways, or
executables which cause an automatic domain

switch.

We compiled a kernel which timed the execu-
tion of dte auto switch . If a particular do-
main has no gateways, thendte auto switch
does not bother to hash the typename, so that
the dte auto switch call during execve
takes 308±6 clock cycles. If there are gateways,
then we must search the hash tables. While we
tested using domains with a variable number of
permitted auto switches,4 this number does not
affect the running time ofdte auto switch ,
which is 6655± 166 clock cycles. Since this
function does not exist in the plain Linux kernel,
its running time must be considered pure over-
head to file execution.

5.4 execDomain Transitions

The least efficient of all the code
added with DTE certainly sits inker-
nel/dte.c:sys dte exec . First, the
user provides the name of a domain to switch
to. Since domains are currently not kept hashed
or in any order, the lookup for the correspond-
ing domain structure isO(d×m), where d is
the number of defined domains andm is the
maximum length of any domain name. Next,
we search another unsorted list, containing
the domains to which the current domain may
voluntarily switch, to check whether the domain
switch is legal. Then we search a third list,
containing valid entry points for the destination
domain.

In order to measure the amount of time
required to check for anexecdomain switch, we
set up 12 domains, with entry points numbering
2,4,6,8,10,12,14,16,18,20 and 30, where two
domains had 30 entry points. Then we performed
an execdomain switch into each of these do-
mains, and measured the time between the start
of sys dte exec and its call tosys execve .
Since entry points are stored unsorted, the 12th
domain’s list of entry points contained the entry
point which we actually executed last, whereas
all others listed it first. The results for 10 trials
(excluding the first of eleven since the entry

4Mainly to test for a bad implementation of poor hash
function.

Path Elements plain DTE
1 14239± 115 3715106± 3764708
2 12982865± 740602 9443087± 3764708
3 12328686± 3305948 17481580± 18583745
4 16894558± 1323098 15491659± 3111030
5 11514025± 1124946 11145553± 2406925
6 14939328± 837802 13684836± 2800215
7 21312794± 17210467 12670629± 3303167
8 6362366± 2955509 4912447± 2608638
9 33647759± 20269841 19853653± 4192949

Figure 4: existing file lookup, first runs

Path Elements plain DTE % increase
1 4450± 56 8222± 71 85
2 5085± 67 8925± 81 76
3 5223± 75 10798± 105 107
4 6475± 102 12076± 151 87
5 7097± 101 13463± 124 90
6 7747± 126 14605± 171 89
7 8374± 155 15918± 167 90
8 9194± 99 17415± 144 89
9 9867± 254 18602± 186 89

Figure 5: existing file lookup, cached runs

Path Elements plain DTE
1 11437289± 911243 7667678± 3621479
2 10045± 1270 12319± 239
3 9421± 345 12260± 322
4 9343± 378 12482± 281
5 9911± 1171 35990± 43904
6 9934± 1298 12036± 371
7 9299± 287 12789± 1147
8 9956± 1151 12929± 1231
9 9236± 275 12336± 543

Figure 6: non-existent file lookup, first runs

Path Elements plain DTE % increase
1 4508± 90 8221± 57 82
2 4414± 136 8270± 120 87
3 4334± 120 8240± 103 90
4 4330± 90 8270± 133 91
5 4267± 177 8236± 123 93
6 4247± 184 8231± 133 94
7 4326± 63 8206± 137 90
8 4416± 79 8267± 99 87
9 4415± 106 8240± 154 87

Figure 7: non-existent file lookup, cached runs

point needed to be read from disk) are shown in
Figure 8.

The first 11 domains each executed the first
file in the respective domains’ linked list of entry
points. The difference in performance is due to
the analogous problem with the list of allowed
exectransitions.

For domains with what we believe to
be a realistic number of entry points (1-8),
sys dte exec takes about 4 times as long as
dte auto switch . Clearly, performance will
be greatly improved when we store entry points,
domains, and allowedexectransitions in a data
structure which allows quicker lookups. This
will be a simple but low priority improvement,
since a policy must be quite large for the effects
to become noticeable, and asys dte exec
call is a rare event.

5.5 execve

To time the kernel function
fs/exec.c:do execve , we wrappered
it and took a timestamp before and after the
real function call. In this way we measure
the full time for file execution including such
details as the time to load library files. For more
fine-grained measurements of specific parts of
this process, we later measure the time to check
for the auto domain switch, a user-requested
domain switch and filename lookup.

The command

/bin/echo -n .

was executed 500 times. Execution time for the
first run was an order of magnitude larger than
for subsequent runs, both with and without DTE.
This is to be expected since some library files
as well as executable/bin/echo may not yet
have been loaded from disk. The same thing
occurs for later performance tests. Since this is
independent of the DTE code and serves only to
hide the performance impact of DTE, we will,

in all subsequent tests, ignore the first execution
after boot.

The DTE code introduces a 10% overhead.
The table in Figure 9 shows the timing results.

5.6 make bzImage

Finally we turned off all micro-performance
measurements and used/usr/bin/time to
determine the performance on a kernel make
on both DTE and non-DTE enabled kernels.
The plain 2.3.28 kernel took 5 minutes and
55 seconds for the first compile, and 5:35±
0.384387 for 14 subsequent compiles, while
the DTE-enabled kernel required 5 minutes and
56 seconds for the first compile and 5:36±
0.205464 for subsequent compiles.

Clearly a new access control system cannot
be added without affecting performance. The
above sections, in testing specifically the areas
of the kernel where code was added, might
make the performance impact of DTE seem
more significant than it really is. This result
shows that, when amortized over the course of
a realistic activity, which includes heavy file
opening, creation and execution as well as heavy
computation and file i/o, the amount of overhead,
one second for every six minutes, is negligible.

6 Real Attacks

To show the effectiveness of our DTE
implementation, we picked a recent, high-
profile vulnerability, the buffer overflow in
wu-ftpd[CERT-ftpd], and showed how our im-
plementation of DTE can prevent an attacker
from obtaining a root shell. Our goal was to
show that we could protect the system from
the wu-ftpd vulnerability (the posted exploits
as well as future or hand-crafted ones) without
modifying the binary. In order for ftp to retain
its full functionality, it would need to be made
DTE-aware so that it could, like login, allow ftp

entry points Clock cycles forsys dte exec
2 22692± 184
4 22777± 133
6 23186± 269
8 23432± 256
10 24099± 336
12 23946± 123
14 24367± 238
16 24503± 120
18 24841± 125
20 24978± 133
30 25282± 142
30 (entry point last) 32427± 259

Figure 8: Dependence ofsys dte exec performance on number of entry points.

Non-DTE DTE
First Execution 4221290± 911041 4545504± 730168
Subsequent executions 195591± 3919 215549± 4624

Figure 9: Time in clock cycles to runecho.

to transition into the domain associated with a
user being authenticated5. We did not do this,
but set protections such that users can retrieve
files from, if not deposit files onto, the server.
Anonymous ftp is fully functional.

The policy shown in Figure 10 prevents do-
main ftpd d from executing any system binaries
other than/usr/sbin/in.ftpd and binaries
located under̃ftp/bin/ (lines 19-21). These
files are defined to be of the typeftpd xt
(lines 29 and 30), which the domainftpd d may
execute but not write (line 20). Onlyftpd d
may execute this type (lines 9-21), androot d
automatically switches toftpd d on execution of
/usr/sbin/in.ftpd (line 12), since that is
an entry point toftpd d (line 19). The exploits to
be found on the internet to take advantage of this
vulnerability will therefore fail, as they expect to
be allowed to run/bin/sh . Nor can a script be
written to upload and run a Trojan horse, since
the only types whichftpd d is allowed to write
may not be executed by anyone.

The script which we tested was

5Of course, to do this on a system which we are attempting
to make secure, we would begin by using a version of ftp
which does not send plaintext passwords.

wuftpd2600 , which can be found at
http://www.securityfocus.com .
It connected to our test machine, and exploited
the buffer overflow. However, the DTE-enabled
kernel refused to allow theftpd d domain to
execute/bin/sh . The script therefore hung,
and the system was not compromised. The
error messages in Figure 11 were sent tosyslog.
In contrast, the plain2.3.28 kernel happily
provided a root shell.

7 Status and Future Work

Our implementation of DTE for Linux is
functional. It reads a policy file at boot time and
enforces domain to type access as well as domain
transitions. We have not implemented DTE for
networking.

7.1 Administration

First, we must extend our policy parser to
allow easier and abbreviated entry of more

01 # ftpd protection policy
02 types root_t login_t user_t spool_t binary_t lib_t passwd_t shadow_t dev_t \
03 config_t ftpd_t ftpd_xt w_t
04 domains root_d login_d user_d ftpd_d
05 default_d root_d
06 default_et root_t
07 default_ut root_t
08 default_rt root_t
09 spec_domain root_d (/bin/bash /sbin/init /bin/su) (rwxcd->root_t rwxcd-
>spool_t \
10 rwcdx->user_t rwdc->ftpd_t rxd->lib_t rxd->binary_t rwxcd-
>passwd_t \
11 rxwcd->shadow_t rwxcd->dev_t rwxcd->config_t rwxcd->w_t) (auto-
>login_d \
12 auto->ftpd_d) (0->0)
13 spec_domain login_d (/bin/login /bin/login.dte) (rxd->root_t rwxcd-
>spool_t \
14 rxd->lib_t rxd->binary_t rwxcd->passwd_t rxwcd->shadow_t rwxcd-
>dev_t \
15 rxwd->config_t rwxcd->w_t) (exec->root_d exec->user_d) (14->0 17-
>0)
16 spec_domain user_d (/bin/bash /bin/tcsh) (rwxcd->user_t rwxd->root_t \
17 rwxcd->spool_t rxd->lib_t rxd->binary_t rwxcd->passwd_t rxwcd-
>shadow_t \
18 rwxcd->dev_t rxd->config_t rwxcd->w_t) (exec->root_d) (14->0 17-
>0)
19 spec_domain ftpd_d (/usr/sbin/in.ftpd) (rwcd->ftpd_t rd->user_t rd-
>root_t \
20 rxd->lib_t r->passwd_t r->shadow_t rwcd->dev_t rd->config_t rdx-
>ftpd_xt \
21 rwcd->w_t d->spool_t) () (14->root_d 17->root_d)
22 assign -u /home user_t
23 assign -u /tmp spool_t
24 assign -u /var spool_t
25 assign -u /dev dev_t
26 assign -u /scratch user_t
27 assign -r /usr/src/linux user_t
28 assign -u /usr/sbin binary_t
29 assign -e /usr/sbin/in.ftpd ftpd_xt
30 assign -r /home/ftp/bin ftpd_xt
31 assign -e /var/run/ftp.pids-all ftpd_t
32 assign -r /home/ftp ftpd_t
33 assign -e /var/log/xferlog ftpd_t
34 assign -r /lib lib_t
35 assign -e /etc/passwd passwd_t
36 assign -e /etc/shadow shadow_t
37 assign -e /var/log/wtmp w_t
38 assign -e /var/run/utmp w_t
39 assign -u /etc config_t

Figure 10: A DTE policy to protect fromwu-ftpd, with line numbers added.

Aug 4 13:12:03 wicked kernel: do_exec: d_t_check_x re-
turned 1(exec denied).
Aug 4 13:12:03 wicked kernel: do_exec: domain ftpd_d type root_t.

Figure 11: Error messages resulting from attemptedwu-ftpdexploit.

complicated policies. Next, we plan to create
tools to help a system administrator graphically
create and view DTE policies and detect possible
security risks. Examples of such risks might
include a domain which is permitted to enter
another domain as well as write one of the other
domain’s entry points, or a domain which has
autoaccess to two domains which share an entry
point.

7.2 Rename

Badger et al.[DTE95] suggest dynami-
cally changing the DTE policy as certain
events occur. For example, a particular file
(/var/adm/topsecretlog) might be
tightly protected by a particular type. If this
file is then moved to/tmp , then Badger et al.
suggest that a rule should be added to keep the
file under its original type. Alternatively, they
suggest that renames across type boundaries
could be forbidden.

We currently go the lazy route. If a domain has
permission to two types, and a process running
in that domain chooses to move a file from a
directory belonging to one type to that belonging
to another, then the file’s type simply changes.
Since the person (or process) moving the file had
the permission to do so, we trust it to understand
the implications.

The more dangerous problem lies with hard
links. Since hard links provide no notion of one
name being superior to another, the type of an
inode with multiple corresponding filenames is
currently determined based upon the name first
looked up.6 We can prevent creation of hard
links across type boundaries, however a change
in policy can thwart this defense quite easily.
We will, in future versions, allow the system to
add its own type assignment rules (which will be
necessary for several other desirable features),
and plan to use this capability to implement a
better resolution of the problem with hard links.

6Note there is no analogous problem with soft links, since
these do provide a notion of a single correct pathname.

7.3 Filesystem-Defined Policies

When a partition is mounted into the filesys-
tem tree, it fits into the tree defined by type
rules depending on where it is mounted. For
example, mounting a partition under/tmp
instead of/mnt might completely change access
permissions to the partition. It seems helpful
to allow the filesystem on a partition to specify
certain type assignment rules which apply only
to the partition. Badger et al[DTE96] also added
a DTE configuration section allowing a DTE
administrator to limit mount points for partitions,
which should be trivial for us to add as well.

8 Availability

DTE for Linux is freely avail-
able as a patch to 2.3.28 at
http://www.cs.wm.edu/˜hallyn/dte .

References

[AC-sum] R. Sandhu,Access Control: The Ne-
glected Frontier, First Australasian Confer-
ence on Information Security and Privacy,
1996.

[Caps-faq] Alexander Kjeldaas,Linux Capabil-
ity FAQ v0.1,
http://www.uwsg.indiana.edu/
hypermail/linux/kernel/9808.1/
0178.html , (1998).

[CERT-ftpd] Cert Advisory CA-2000-13:
Two Input Validation Problems in FTPD,
http://www.cert.org/advisories/
CA-2000-13.html .

[Dennis66] Jack B. Dennis and Earl C. Van
Horn,
Programming Semantics for Multipro-
grammed Computations, Communications
of the ACM, March 1966, pp. 143-155.

[DTE95] Lee Badger, Daniel F. Sterne, David
L. Sherman, Kenneth M. Walker and Sheila

A. Haghighat, A Domain and Type En-
forcement UNIX Prototype, Fifth USENIX
UNIX Security Symposium Proceedings,
Salt Lake City, Utah, June 1995.

[DTE96] Kenneth M. Walker, Daniel F. Sterne,
M. Lee Badger, Michael J. Petkac, David L
Shermann, Karen A. Oostendorp,Confining
Root Programs with Domain and Type En-
forcement(DTE), Sixth USENIX UNIX Se-
curity Symposium, 1996.

[SAIC-DTE] Domain and Type Enforcement,
http://research-
cistw.saic.com/
cace/dte.html/ .

[Tidswell97] Jonathon Tidswell and John Potter,
An Approach to Dynamic Domain and Type
Enforcement, 2nd Australasian Conference
on Information Security and Privacy, 1997.

