
Modeling UNIX Access Control with a Role Graph

Lingling Hua
The University of Western Ontario

lhua@ca.ibm.com

Sylvia Osborn
�

The University of Western Ontario

sylvia@csd.uwo.ca

http://www.csd.uwo.ca/faculty/sylvia/

Abstract
In this paper, we show how to model UNIX file access using a role-
based approach. A role-based access control model is presented,
and its use in reflecting the existing permissions in a UNIX envi-
ronment is described.

1 Introduction
Role-based access control can be used as an aid to manag-
ing access control in a complex environment. Role graphs,
one manifestation or role-based access control, provide a way
of visualizing the permissions granted in a complex system.
For example, in [ORW96], it has been shown how an inter-
face between a role graph system and the relational database
system DB2 can be built. This paper describes the begin-
nings of an interface between role-based access control and
UNIX. Ultimately we would like to be able to go from a role-
based description of permissions to the UNIX version, and
vice versa. This paper describes an experiment in going in the
second direction, i.e. in modeling the existing permissions in
a UNIX system using roles.

We begin by describing role-based access control and a
role graph model in Section 2. In Section 3, we briefly review
access control in a UNIX system. The description of the
application of the role graph model to UNIX access control
and the description of the experiment are found in Section 4.
Section 5 contains conclusions.

2 The Role Graph Model
The role graph model is one manifestation of role-based
access control (RBAC). Roles in RBAC are used to group
together permissions to perform certain actions in a way that
makes sense to the enterprise or environment. Individual

�
This research was funded by a grant from the Natural Sciences and

Engineering Research Council of Canada.

users or groups of people can then be assigned to the roles
as required.

Roles provide a very natural and powerful way for an en-
terprise administrator or security officer to describe the privi-
leges of various job functions. In previous work, Nyanchama
and Osborn have introduced a role graph model, which pro-
vides a way of visualizing the interactions among roles and
their seniors and juniors [NO94]. They have also introduced
algorithms for manipulating these role graphs. It has also
been shown how roles can be used to model mandatory ac-
cess control [NO95, Osb97, San96].

Roles have been studied in a variety of contexts and envi-
ronments; we summarize some of them here. An early ref-
erence to roles is found in [LW88], where roles are defined
and arranged in a generalization hierarchy, and agents rep-
resenting people are assigned to roles as necessary. Early
work by T.C. Ting [Tin88] describes the use of roles to de-
velop application-dependent security controls. Ting’s work
was also incorporated into a software design system [TDH,
HDT94]. Thomsen’s work talks about roles, subroles and the
mandatory enforcement of policies in a role-based environ-
ment [Tho91]. The Named Protection Domains of Baldwin
[Bal90] are very similar to our roles. One feature of Bald-
win’s model is that only one Named Protection Domain can
be active at one time. Mohammed and Dilts [MD94] discuss
the design of a role-based model for a specific application in
an event-dependent, dynamic environment. von Solms and
van der Merwe give a 4-level model where roles form a layer
between users on the one hand and transactions and projects
on the other [vSvdM94].

The role graph model is based on a very general notion
of privilege. A privilege is a pair

�������
	
where

�
refers to

an object, and
�

is a non-empty set of access modes for
object

�
. The object referred to by

�
can be an object in an

object oriented environment, a database granule in a database
environment, or any system resource whose access needs
to be controlled. The access modes

�
, can be any valid

operations on
�

. In systems withsimple access modes such as
read, write, execute, etc.,

�
is a subset of these access modes.

Where
�

is an object in an object-oriented environment,
�

would be the execute mode of one or more methods. In
transactional systems,

�
would be a list of transactions that

1

facilitate access to
�

. The details of
�

and
�

depend on the
application environment and the associated security policy
[NO93].

A role is a named set of privileges. It can be represented by
a pair

������� ��� ����	�
���
 	
, where

����� ���
is the name of the role,

and
��	�
���

represents the set of privileges of the role. Given a
role

�
, we will use

��������� ���
and

������	�
���

to refer to the role’s

name and privilege set, respectively. Of interest in analyzing
roles are role-role relationships. We say that role

���
is-junior

to
���

, if
� � � ��	�
���
�������� ��	�
���

. We also say that
���

is senior
to
���

. By specifying that role
� �

is-junior to
���

, one makes
available all the privileges of

� �
to role

���
.

The total management of the authorization of privileges to
users can be modeled on three planes (see Figure ??). On
the plane closest to the objects are the privileges themselves,
without any groupings. Relationships, or perhaps more pre-
cisely implications, can exist among privileges. One cause
of these implications results from knowledge of the seman-
tics or the procedural structure of the operation being autho-
rized. Such implications are found in the authorization type
lattice of [RBKW91]. For example, the privilege which al-
lows a user to update an object might imply that any such user
should also be able to read the object. A complex method
can contain calls to other methods. Depending on the security
policy, any authorization to such a complex method may or
may not imply separate or direct authorization to these called
methods. An example in Unix is when a program is executed
from a file which has the set-group-id or set-user-id bits set.
These bits indicate that the program should be executed with
the permissions of the group or user who owns the file; i.e.
the permission to execute such a program implies that these
extra permissions hold at least temporarily.

Another cause of implications on the privileges plane is
object containment. Authorization to read a whole object can
imply authorization to read any of its individual parts. Au-
thorization to read a set of objects can imply authorization to
read the members of the set. These implications result from
the kinds of information represented in the authorization ob-
ject lattice of [RBKW91], which deals with the granularity at
which a privilege is specified.

Implications on the privileges plane can also result from
inheritance in an object oriented system. For example if one
can raise the salaries of all Employees, and Professors is a
subclass of Employees, then one should also be able to raise
the salaries of professors.

The middle plane is where roles are considered. In the
role plane, the nodes correspond to roles; i.e. they represent
named sets of privileges. Here, role-role relationships can be
declared and managed, and tools to help manage role-based
security can be modeled. This is the plane on which the role
graphs are described.

The third plane is where user and user group relationships
can be modeled. User groups would be created to help
manage the assignment of users to roles. For example, all the
users in a given project might be put in one group. This group

can then be assigned to roles relevant to the project, whereas
individual users might be assigned to other roles one at a
time. In this plane, implications also exist, which are again
the result of different modeling activities. The information
about which groups a user is assigned to, and which groups
are or are not contained in other groups, and other user-user
relationships, is represented here.

If we are using the role model to prescribe access control,
there are two places where assignments take place which ulti-
mately determine who is authorized to do what. One is in the
assignment of users/groups to roles, which is called the User-
Role Authorization, and the other is in the assignment of priv-
ileges to roles, which is called the Role-Privilege Authoriza-
tion (see Figure ??). Role-role relationships, which are de-
fined within the role plane, are another way that privileges
may be assigned to roles. Thus given a user-privilege pair,
the decision about whether the user is authorized to the priv-
ilege is the result of the implications in the user/group plane,
the assignment of users/groups to roles, the role-role relation-
ships, the assignment of privileges to roles, and the implica-
tions in the privileges plane.

In this paper we use a role graph to reflect what has been
assigned through UNIX authorization mechanisms. We an-
alyze what has been specified for a UNIX environment and
present it as a role graph. The role graph models the roles on
the role plane with an acyclic, directed graph, in which the
nodes represent the roles in a system, and the edges repre-
sent the �
! #"%$�� �'& � relationship. In addition to the user-
defined roles, every role graph has a MaxRole and a Min-
Role. MaxRole represents the union of all the privileges of
the roles in the role graph. MaxRole does not need to have
any users authorized to it. It is in the role graph to have a
place to summarize all of the privileges in the system, and
where appropriate, to represent the role of a superuser. Min-
Role represents the minimum set of privileges available to all
roles. MinRole.

��	�
���

can be empty. Role graphs have the

following Role Graph Properties:

(There is a single MaxRole.

(There is a single MinRole.

(The Role Graph is acyclic.

(For any two roles
� �

and
���

, if
� � � ��	�
���
)�*��������	�
���

, then
there must be a path from

� �
to
�+�

. This implies that there
is a path from MinRole to every

� �
, and there is a path

from every
� �

to MaxRole.

The role graphs are drawn without redundant edges, i.e. the
graph is represented by its transitive reduction [AGU72].
The nodes are arranged on the page so that all �
, -"�$�� �'& �
edges go up the page. In addition, for every role, one can dis-
tinguish between its effective privileges, and its direct priv-
ileges. The direct privileges of role

�
are those which are

not contained in the
��	�
���

of any of
�
’s immediate juniors.

The effective privileges of role
�

are the union of its direct

2

User-Role
Authorization

Roles Users/Groups Privileges

MaxRole

MinRole

o

o

Role-Role
Authorization

Role-Privilege
Authorization

User-Group
Membership

Privilege-Privilege
Implication

Figure 1: Three Kinds of Authorization

privileges and the effective privileges of all its juniors. Note
that

������	�
���

corresponds to the effective privileges of

�
. See-

ing the graph edges that result from privilege assignment and
the specification of role-role relationships, as well as seeing
direct and effective privileges, helps the person analyzing a
situation to understand the implications of access control as-
signments.

An example role graph is shown in Figure ??. The graph
shown contains no redundant edges, and the privileges shown
are the direct privileges. Table ?? gives both the direct and
effective privileges for each role. Note that the �
 "%$�� �'& �
information (i.e. the edges) can be deduced from the effective
privileges, and vice versa.

3 UNIX Permissions
The UNIX operating system should be familiar to most read-
ers, so we will summarize briefly the relevant aspects of its
access control properties. Everything executable or readable
in a UNIX system resides in a file. Thus controlling access
to files effectively controls access to software and data on the
system.

In the terminology of the previous section, the objects
of importance in the UNIX system are files, and the access
modes are read, write and execute. There are three sets
of three bits labeling each file description in UNIX: three
bits describe the file owner’s privileges, three the group’s

Role Name Direct Privileges Effective Privileges
MaxRole

� �
1,2,3,4,5,6,7,8,9,10,11 �

VP1
�
9,10 � �

1,2,3,4,5,6,7,8,9,10 �
VP2

�
11 � �

1,2,3,4,5,6,7,8,11 �
L1

�
3,4 � �

1,3,4 �
L2

�
4,5 � �

1,2,4,5 �
L3

�
5,6 � �

1,2,5,6 �
L4

�
7,8 � �

2,7,8 �
S1

�
1 � �

1 �
S2

�
2 � �

2 �
MinRole

� �

Table 1: Roles and their effective privileges

privileges, and three the privileges assigned to “world” or
others, which is all users of the system. Within each three bit
set, one bit says whether or not the read privilege is granted,
one says whether or not write is granted, and the third says
whether or not execute is granted. In some displays of this
information, it is represented by the character string:

rwxrwxrwx

in which the first rwx refers to the owner’s privileges, the
second to the group’s and the third to the world’s. If the
privilege is not granted, then a “-” appears, e.g.

3

VP1

L1 L2 L3 L4

S1
S2

{1}

{5,6} {7,8}

{9,10}

{2}

VP2 {11}

MinRole

MaxRole

{3,4} {4,5}

Figure 2: A Sample Role Graph

rw-------

These permissions can be maintained and changed by the
UNIX commands chgrp, chmod, chown and umask.

In addition, there is a fourth set of three bits which indicate
special features associated with a file. They are the set-
user-id, set-group-id and sticky bits. In a directory listing,
set-user-id is indicated by an s or S replacing the x in the
owner’s permissions. Its setting or clearance is done by
issuing the command chmod u+s or chmod u-s. The
set-group-idbit is specified by an s or S in the x positionof the
group permissions. Its setting or clearance is done by using
chmod g+s or chmod g-s. The sticky bit is indicated by
a t or T replacing the x in the others permissions. The letter t
is only meaningful for the owner of the file. The setting and
clearance of the sticky bit are carried out bychmod u+t and
chmod u-t. For these three access permissions, if a small
letter is specified, it represents that both the x permission
and the permission this small letter indicates are turned on.
Otherwise, only the permission the (capital) letter specifies
is turned on. These access permission bits have different
meaning when applied to files and directories. For files, their
meaning is summarized in Table ??; for directories, in Table
??[AL96, Cur92].

UNIX always checks permissions for the smallest category
that applies. For instance, a user in the owner’s group (other
than the owner) is always given the group permissions even
if the permissions for “others” are broader[AL96].

The home directory is the working directory when a user
first logs in to a UNIX system. The location of the home
directory is specified in the /etc/passwd file or in the NIS

database passwd. The pathname of this directory is stored in
the HOME shell variable.

All the user’s files are under the user’s home directory, in-
cluding the startup files and possibly other directories. The
user can grant other users access to his or her files by modi-
fying the group permissions or the world permissions. Sup-
pose that such a file is directly under the user’s home direc-
tory. As discussed above, other users can actually read, write
or execute it only if they are also granted execute permission
to the user’s home directory. If the file is located under one or
more sub-directories of the home directory, these users need
to have not onlyexecute permission for this sub-directory, but
also execute permission for all directories on the path from
the home directory in order to be able to read, write or exe-
cute this file.

Therefore, the home directory is the ultimate outer defense
against any access to the files of a user. As pointed out
previously, the account could be easily broken into or taken
over when the security of the home directory is poor. On the
other hand, if the home directory is protected properly, even
if the files it contains seem to have permissions for others,
the access would not be granted. Without x permission on
your home directory, even if other users are allowed to write
to your startup files, they can not access them. In what
follows, then, we will concentrate on the access granted to
home directories, rather than modeling the access to all the
files under them.

4 Modeling a UNIX System with a Role
Graph

A UNIX system could have hundreds of users with hundreds
of files. In order to model what is essential about file access in
a given environment, we need to focus on those permissions
which can create security problems. In the previous section,
we have explained that one economy we will take, where
user’s files are concerned, is to only model access to home
directories. There are other directories in a UNIX system
which contain the code for system commands, compilers
and other utilities. We did not include these files in this
initial prototype. They usually have permission bits set as
r-xr-xr-x. These files are installed and maintained by
system administrators. Including these files in a role graph
will be the subject of future work. Therefore, a privilege for
the role-graph we will build is defined as a home directory
and a set of access permissions on it.

Users always have the right to read, write and execute their
own files, and to change the permissions on their own files.
Such permissions which allow a user to create and edit his
or her own files are not the permissions which are going to
create compromising situations. In the role graph model,
the concept of “user” on the user plane in Figure ?? is the
smallest grouping of subjects which can be assigned to a role.
For this study, we will use the UNIX group as the access unit
to the home directories, instead of a single user. The reasons
for this are:

4

read If set, the file may be read.
write If set, the file may be written (modified).

execute If set, the program contained in the file may be executed (run). Executing compiled programs requires only
execute permission on the file, while executing shell scripts requires both read and execute permission since
the shell must be able to read commands from the file.

set-user-id Set-user-id status means that when a program is executed, it executes with the permissions of the user who
owns the program, in addition to the permissions of the user executing it. The effective user id of the process
becomes the id of the owner of the executable file. The real user id of the process remains that of the user
who initiated the process. This bit is meaningless on non-executable files.

set-group-id It behaves in exactly the same way as the set-user-id bit, except that the program operates with the
permissions of the group associated with the file. When a process is executed with set-group-id bit turned
on, the effective group id of the process becomes the group id of the owner of the executable file and the
program thus executes with permissions of that group. The real group id of the process remains that of the
user who initiated the process. This bit is meaningless on non-executable files.

sticky If set on an executable binary file, the ’sticky’ bit tells the operating system to maintain the image of the
executing process in the swap area, even when execution is terminated.

Table 2: Access Permissions for Files

(every file, including a user’s home directory, belongs to a
group.

(UNIX always checks permissions for the smallest cate-
gory that applies, i.e. the group permissions are checked
before the world permissions. Since we will not worry
about owner permissions, the group permissions are the
smallest category we need to worry about.

(every user belongs to at least one group, and may belong
to many groups.

The process of extracting the relevant information pro-
ceeds as follows:

1. for each group of interest in the system
for each user which is a member of this group

extract the group and other permission bits from
this user’s home directory and represent each
permission as a privilege

create a role for this group and the resulting set of
privileges

2. for each pair of roles thus created
if the privilege sets are equal

then merge the roles
3. compute graph edges
4. for each role

compute direct privileges
5. create MaxRole and MinRole if necessary
6. display the graph

After Step 1, there may be roles with identical privilege
sets, which would make the resulting role graph have a cycle.
Step 2 merges such roles into a single role. At this point,
the privilege set represents all privileges granted to the users
who belong to the group(s) which have been used to create

these roles. In the terminology of role graphs, these are the
effective privileges. Step 3 uses the containment of one set of
effective privileges in another to create the edges in the role
graph. Step 4 calculates the direct privileges by computing
set differences between the effective privilege sets. After
these steps, there may be a single role which has no seniors, in
which case this role is renamed MaxRole. Similarly, if there
is a single role with no juniors, this role is renamed MinRole.
If either of these roles does not exist, then a MaxRole (or
MinRole) is created with no users, and all the roles with no
immediate seniors (juniors) are connected as its immediate
juniors (seniors). The role graph display is done by a tool
written in Tcl [Ous94].

One problem with creating roles in this way is that there is
not any way for the program to figure out a suitable role name.
When we go in the other direction, using the role graph tool
to create roles and then map these onto the underlying system
of interest, then some semantics of the situation can be built
into the role name chosen. Here, we just arbitrarily number
the roles starting with 1.

A prototype of these ideas to examine the protection of
home directories in the research network in our department
was built. The environment consists of a number of UNIX
machines running several versions of Sun OS. Altogether
there are over 200 users on the system. Users’ home direc-
tories are organized into six sub-directories on this system,
one each for faculty, staff, graduates, undergraduates, project
and people. The project group is used for some special re-
search projects. The people directory is for visitors. The pro-
totype lets the user chose some subset of the six directories
mentioned above, and then constructs the role graph. When
all of the directories are asked for, the role graph generated is
shown in Figure ??. A display generated from the View menu
in the role graph tool for role 4 is shown in Figure ??. We can
see that someone called murphy in the group undergrad

5

read Read permission allows a user to see the contents (file names) of the directory, but is insufficient for accessing
the files whose names appear in it. For instance, you can not read the contents of a file in a directory if you
only have r access to the directory.

write Write permission to a directory implies the ability to create, delete, and rename files in this directory. The w
permission for a directory is required in order to add files to it or delete files from it. However, w permission
for a directory is not required in order to modify a file listed in the directory or delete its contents.

execute In the case of a directory, execute permission implies access the files contained therein. It allows you to
operate on the names in that directory if you know them, but does not let you find out what they are if you
do not. Normally r is granted whenever x is; you can get some strange effects if a directory has x but not r.
For instance, if a directory has x turned on but not r, you cannot list its contents-but if you already know its
contents, you might be able to read its files if you had that permission.

set-user-id This bit is meaningless on directories.
set-group-id On some systems this bit has a special meaning when set on directories. For example, in SunOS 4.x, the

group id of a file is set to the group id of the directory in which it is created if the set-group-id is set on the
directory. Otherwise, the group id of a file is set to the primary group id that the owner belongs to.

sticky If a directory has its sticky bit set, users may not delete or rename files in this directory that are owned by
other users. The sticky bit is usually set on world-writable directories.

Table 3: Access Permissions for Directories

has write permission to their home directory turned on.

5 Conclusions

The modeling of permissions granted on home directories
in a UNIX system as a role graph was successfully carried
out. From the example shown, it can be seen that such a
model, even with just numbers for role names, can be useful
in spotting anomalies in the permissions granted, or just for
finding out who the users are and what permissions are set on
their home directories, without searching through numerous
directories.

There are two essential extensions required to completely
model existing permissions in a UNIX environment. The
system file permissions must be modeled, and links between
files must be modeled. We will consider each of these sepa-
rately.

Files and directories containing system commands and
utilities are installed in our department by very knowledge-
able systems staff. This might not always be the case in ev-
ery UNIX installation. Therefore, it would be useful to model
these permissions also. This would involve actually travers-
ing the directories and extracting the non-owner permissions
for individual files. In the terminology of the role graph,
the privileges would now record access modes on individ-
ual files. The role graph would have a lot more privileges to
record, but not necessarily a lot more roles unless there were
a lot of different patterns of permissions granted.

Another way users gain access to their own or other’s
files is through links in the UNIX file system. Again, we
are not interested in what a user does to files he or she
owns, or how these might be linked within a single user’s
directories. However, if there is a file below one user’s
home directory, say user A, which has a link to it from

a second user, user B’s directory, then user B can access
this file even if user A’s home directory is not readable. In
order for user B to actually be able to do anything with this
file, the file’s group or other permissions must be turned
on. To analyze these situations, all user files would have to
be traversed looking for files which are links, and checking
the owner of the file accessed. If this owner is different
from the owner of the directory from which it is accessable
via a link, then the permissions of this file must also be
extracted as privileges to be dealt with in the role-based
analysis. In this case the privilege is only available to users
who have such links in their directory, so the set of users
modeled in the role graph (which is currently just groups)
will have to be extended to include such individual users as
well. Other members of user B’s group would also have
these privileges if all of user B’s directories on the path
from B’s home directory to the directory containing the link
have the appropriate permissions granted to “group”. These
two extensions are feasible, but both involve a much more
complex traversal of the file system in an UNIX system than
was carried out for the prototype presented here.

Acknowledgements We would like to thank David Wise-
man for helping us to understand the UNIX environment in
our department.

References
[AGU72] A. V. Aho, M. R. Garey, and J. D. Ullman.

The transitive reduction of a directed graph.
SIAM Journal of Computing, 1(2):131–137,
June 1972.

[AL96] P. W. Abrahams and B. R. Larson. Unix for
the Impatient, second edition. Addison-Wesley

6

Figure 3: Role graph generated for all users

Publishing Company, 1996.

[Bal90] R.W. Baldwin. Naming and grouping privi-
leges to simplify security management in large
databases. In Proc. 1990 IEEE Symposium on
Research in Security and Privacy, pages 116–
132. IEEE Computer Society Press, 1990.

[Cur92] D.A. Curry. UNIX System Security: a Guide
for Users and System Administrators. Addison-
Wesley Publishing Company, 1992.

[HDT94] M.-Y. Hu, S. A. Demurjian, and T. C. Ting.
Unifying structural and security modeling and
analyses in the ADAM object-oriented design
environment. In J. Biskup, M. Morgenstern,
and C. E. Landwehr, editors, Database Secu-
rity, VIII, Status and Prospects WG11.3 Work-
ing Conference on Database Security. North-
Holland, 1994.

[LW88] F.H. Lochovsky and C.C. Woo. Role-based
security in database management systems. In

C. Landwehr, editor, Database Security: Status
and Prospects. North-Holland, 1988.

[MD94] I. Mohammed and D.M. Dilts. Design for dy-
namic user-role-based security. Computers and
Security, 13:661–671, 1994.

[NO93] M. Nyanchama and S. L. Osborn. Role-based
security, object-oriented databases and separa-
tion of duty. SIGMOD Record, 22(4), Dec.
1993.

[NO94] M. Nyanchama and S. L. Osborn. Access
rights administration in role-based security sys-
tems. In J. Biskup, M. Morgenstern, and C. E.
Landwehr, editors, Database Security, VIII, Sta-
tus and Prospects WG11.3 Working Conference
on Database Security. North-Holland, 1994.

[NO95] M. Nyanchama and S. L. Osborn. Modeling
mandatory access control in role-based security
systems. In D.L. Spooner, S.A. Demurjian, and
J.E. Dobson, editors, Proceedings of the IFIP

7

Figure 4: Display of role 4

WG 11.3 Ninth Annual Working Conference on
Database Security. Chapman & Hall, 1995.

[ORW96] S.L. Osborn, L.K. Reid, and G.J. Wesson. On
the interaction between role based access con-
trol and relational databases. In P. Sama-
rati and R. Sandhu, editors, Proceedings of the
Tenth Annual IFIP WG 11.3 Working Confer-
ence on Database Security. Chapman & Hall,
Aug. 1996.

[Osb97] S.L. Osborn. Mandatory access control and
role-based access control revisited. In Pro-
ceedings of the Second ACM Workshop on Role-
Based Access Control, pages 31–40, Nov. 1997.

[Ous94] J. K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[RBKW91] F. Rabitti, E. Bertino, W. Kim, and D. Woelk.
A model of authorization for next-generation
database systems. ACM Trans Database Syst,
16(1):88–131, 1991.

[San96] R.S. Sandhu. Role hierarchies and constraints
for lattice-based access controls. In Computer

Security - ESORICS 96, pages 65–79. Springer
Verlag, 1996. Lecture Notes 1146.

[TDH] T.C. Ting, S.A. Demurjian, and M.-Y. Hu. Re-
quirements, capabilities and functionalities of
user-role based security for an object-oriented
design model. In C.E. Landwehr and S. Ja-
jodia, editors, Database Security V, Status and
Prospects. North-Holland.

[Tho91] D.J. Thomsen. Role-based application de-
sign and enforcement. In S. Jajodia and C.E.
Landwehr, editors, Database Security IV, Status
and Prospects, pages 151–168. North-Holland,
1991.

[Tin88] T.C. Ting. A user-role based data security ap-
proach. In C.E. Landwehr, editor, Database Se-
curity: Status and Prospects, pages 187 – 208.
North-Holland, 1988.

[vSvdM94] S.H. von Solms and I. van der Merwe. The man-
agement of computer security profiles using a
role-oriented approach. Computers & Security,
13:673–680, 1994.

8

