Modeling UNIX Access Control with a Role Graph

Lingling Hua
The University of Western Ontario
lhua@ca.ibm.com

Abstract

In this paper, we show how to model UNIX file accessusing arole-
based approach. A role-based access control model is presented,
and its use in reflecting the existing permissionsin a UNIX envi-
ronment is described.

1 Introduction

Role-based access control can be used as an aid to manag-
ing access control in a complex environment. Role graphs,
one manifestation or role-based access control, provideaway
of visualizing the permissions granted in a complex system.
For example, in [ORW96g], it has been shown how an inter-
face between arole graph system and the relational database
system DB2 can be built. This paper describes the begin-
nings of an interface between role-based access control and
UNIX. Ultimately wewould liketo beableto go fromarole-
based description of permissions to the UNIX version, and
viceversa. Thispaper describesan experimentingoinginthe
second direction, i.e. in modeling the existing permissionsin
aUNIX system using roles.

We begin by describing role-based access control and a
rolegraph moddl in Section 2. In Section 3, webriefly review
access control in a UNIX system. The description of the
application of the role graph model to UNIX access control
and the description of the experiment are found in Section 4.
Section 5 contains conclusions.

2 TheRole Graph Modd

The role graph model is one manifestation of role-based
access control (RBAC). Rolesin RBAC are used to group
together permissionsto perform certain actionsin away that
makes sense to the enterprise or environment. Individua

This research was funded by a grant from the Natural Sciences and
Engineering Research Council of Canada.

Sylvia Osbor n*
The University of Western Ontario
sylvia@csd.uwo.ca
http://ww.csd.uwo.calfaculty/sylvia/

users or groups of people can then be assigned to the roles
as required.

Roles provide avery natura and powerful way for an en-
terprise administrator or security officer to describe theprivi-
leges of variousjob functions. In previouswork, Nyanchama
and Osborn have introduced a role graph model, which pro-
vides a way of visualizing the interactions among roles and
their seniors and juniors[NO94]. They have a so introduced
algorithms for manipulating these role graphs. It has aso
been shown how roles can be used to model mandatory ac-
cess control [NO95, Osh97, San96].

Roles have been studied in a variety of contexts and envi-
ronments; we summarize some of them here. An early ref-
erence to rolesis found in [LW88], where roles are defined
and arranged in a generaization hierarchy, and agents rep-
resenting people are assigned to roles as necessary. Early
work by T.C. Ting [Tin88] describes the use of roles to de-
velop application-dependent security controls. Ting's work
was a so incorporated into a software design system [TDH,
HDT94]. Thomsen'swork talks about roles, subrolesand the
mandatory enforcement of policiesin a role-based environ-
ment [Tho91]. The Named Protection Domains of Baldwin
[Bal90] are very similar to our roles. One feature of Bad-
win'smodd isthat only one Named Protection Domain can
be active at one time. Mohammed and Dilts[MD94] discuss
the design of arole-based model for a specific applicationin
an event-dependent, dynamic environment. von Solms and
van der Merwe givea4-level model whererolesformalayer
between users on the one hand and transactions and projects
on the other [vSvdM94].

The role graph modd is based on a very general notion
of privilege. A privilegeisa pair (z, m) where z refers to
an object, and m is a hon-empty set of access modes for
object z. The object referred to by = can be an object in an
object oriented environment, adatabase granulein adatabase
environment, or any system resource whose access needs
to be controlled. The access modes m, can be any valid
operationson z. In systemswithsimpleaccess modes such as
read, write, execute, etc., m isasubset of these access modes.
Where z is an object in an object-oriented environment, m
would be the execute mode of one or more methods. In
transactional systems, m would be alist of transactions that

facilitate access to «. The details of z and m depend on the
application environment and the associated security policy
[NO93].

A roleisanamed set of privileges. It can berepresented by
apair (rname, rpset), wherername isthename of therole,
and rpset representsthe set of privilegesof therole. Givena
roler, wewill use r.rname and r.rpset torefer totherole's
name and privilegeset, respectively. Of interest in analyzing
roles arerole-rolerelationships. We say that roler; isjunior
to r;, if r;.rpset C rj.rpset. We aso say that r, is senior
to r1. By specifying thet role r; is-junior to r;, one makes
available dl the privileges of r; toroler;.

Thetotal management of the authorization of privilegesto
users can be modeled on three planes (see Figure ??). On
the plane closest to the objects are the privileges themsel ves,
without any groupings. Relationships, or perhaps more pre-
cisely implications, can exist among privileges. One cause
of these implications results from knowledge of the seman-
tics or the procedural structure of the operation being autho-
rized. Such implications are found in the authorization type
lattice of [RBKW91]. For example, the privilege which a-
lowsauser to update an object might imply that any such user
should also be able to read the object. A complex method
can contain callsto other methods. Depending onthesecurity
policy, any authorization to such a complex method may or
may not imply separate or direct authorizationto these called
methods. An examplein Unix iswhen aprogram isexecuted
from afile which has the set-group-id or set-user-id bits set.
These bitsindicate that the program should be executed with
the permissions of the group or user who owns thefile; i.e.
the permission to execute such a program implies that these
extra permissionshold at least temporarily.

Another cause of implications on the privileges plane is
object containment. Authorizationto read awholeobject can
imply authorization to read any of itsindividual parts. Au-
thorization to read a set of objects can imply authorizationto
read the members of the set. These implicationsresult from
the kinds of information represented in the authorization ob-
ject lattice of [RBKW91], which deal swith thegranularity at
which aprivilegeis specified.

Implications on the privileges plane can also result from
inheritancein an object oriented system. For exampleif one
can raise the salaries of all Employees, and Professors is a
subclass of Employees, then one should also be abletoraise
the salaries of professors.

The middle plane is where roles are considered. In the
role plane, the nodes correspond to roles; i.e. they represent
named sets of privileges. Here, role-rolerelationshipscan be
declared and managed, and toolsto help manage role-based
security can be modeled. Thisisthe plane on which therole
graphs are described.

Thethird planeiswhere user and user group rel ationships
can be modeled. User groups would be created to help
manage the assignment of usersto roles. For example, al the
usersinagiven project might be putin onegroup. Thisgroup

can then be assigned to roles relevant to the project, whereas
individua users might be assigned to other roles one at a
time. Inthis plane, implications also exist, which are again
the result of different modeling activities. The information
about which groups a user is assigned to, and which groups
are or are not contained in other groups, and other user-user
relationships, is represented here.

If we are using the role model to prescribe access control,
there aretwo placeswhere assignmentstake placewhich ulti-
mately determinewho isauthorized to do what. Oneisin the
gnment of users/groupsto roles, whichiscalled the User-
RoleAuthorization, and theother isin the assignment of priv-
ilegestoroles, whichis called the Role-Privilege Authoriza-
tion (see Figure ??). Role-role relationships, which are de-
fined within the role plane, are another way that privileges
may be assigned to roles. Thus given a user-privilege pair,
the decision about whether the user is authorized to the priv-
ilegeistheresult of theimplicationsin the user/group plane,
the assignment of users/groupsto roles, therole-rolerelation-
ships, the assignment of privilegesto roles, and theimplica
tionsin the privileges plane.

In this paper we use a role graph to reflect what has been
assigned through UNIX authorization mechanisms. We an-
alyze what has been specified for a UNIX environment and
present it asarole graph. Therole graph modelstheroleson
the role plane with an acyclic, directed graph, in which the
nodes represent the roles in a system, and the edges repre-
sent the is — junior relationship. In addition to the user-
defined roles, every role graph has a MaxRole and a Min-
Role. MaxRole represents the union of al the privileges of
the rolesin the role graph. MaxRole does not need to have
any users authorized to it. It isin the role graph to have a
place to summarize al of the privilegesin the system, and
where appropriate, to represent therole of a superuser. Min-
Rol e representsthe minimum set of privilegesavailableto all
roles. MinRolerpset can be empty. Role graphs have the
following Role Graph Properties:

e Thereisasingle MaxRole.
e Thereisasingle MinRole.
e The Role Graphisacyclic.

o For any tworolesr; and r;, if r;.rpset C r;.rpset, then
there must be apath fromr; tor;. Thisimpliesthat there
is a path from MinRole to every r;, and there is a path
from every r; to MaxRole.

The role graphs are drawn without redundant edges, i.e. the
graph is represented by its transitive reduction [AGU72].
The nodes are arranged on the page so that al is — junior
edges go up thepage. In addition, for every role, onecan dis-
tinguish between its effective privileges, and its direct priv-
ileges. The direct privileges of role r are those which are
not contained in the rpset of any of r’simmediate juniors.
The effective privileges of role » are the union of its direct

Users/Groups

C

|

MinRole

Privileges

o
O

|

User-Group User-Role Role-Role Role-Privilege Privilege-Privilege
Membership Authorization Authorization Authorization Implication
Figure 1: Three Kinds of Authorization
privilegesand the effective privileges of all itsjuniors. Note i _ _ __
that ».rpset correspondsto the effective privilegesof . See- Role Name | Direct Privileges | Effective Privileges
ing the graph edges that result from privilege assignment and MaxRale | ¢ {123456,7.8910,11}
P O . VP1 {9,10} {1,2,34,5,6,7,8,9,10}
the specification of role-role relationships, as well as seeing VP2 (11} (1234567811}
direct and effective privileges, helps the person analyzing a L1 (34) {1:3:4,} 12,6,7,8,
situation to understand the implications of access control as- L2 (45) (12,45}
signments. L3 {5.,6} {1,256}
An example role graph is shown in Figure ??. The graph L4 {7.8} {2,7.8}

shown containsno redundant edges, and the privilegesshown S1 {1} {1}
are the direct privileges. Table ?? gives both the direct and S2 {2} {2}
effective privilegesfor each role. Note that theis — junior MinRole | ¢ ¢

information(i.e. theedges) can bededuced fromtheeffective
privileges, and vice versa

3 UNIX Permissions

The UNIX operating system should be familiar to most read-
ers, so we will summarize briefly the relevant aspects of its
access control properties. Everything executable or readable
in a UNIX system resides in a file. Thus controlling access
to files effectively control s access to software and dataon the
system.

In the terminology of the previous section, the objects
of importance in the UNIX system are files, and the access
modes are read, write and execute. There are three sets
of three bits labeling each file description in UNIX: three
bits describe the file owner’s privileges, three the group’s

Table 1: Rolesand their effective privileges

privileges, and three the privileges assigned to “world” or
others, which isall users of the system. Within each three bit
set, one bit says whether or not the read privilegeis granted,
one says whether or not write is granted, and the third says
whether or not execute is granted. In some displays of this
information, it is represented by the character string:

I WXT WXT WX

in which the first rwx refers to the owner’s privileges, the
second to the group’s and the third to the world's. If the

“won

privilegeis not granted, then a“-" appears, e.g.

MaxRole

T

VP1 {9,10} VP2 {11}

[T

L1 {3,4} L2 {4,5} L3 {5,6} L4 {7,8}

NN

S1 {1} S2 {2}

Ny

MinRole

Figure 2: A Sample Role Graph

These permissions can be maintained and changed by the
UNIX commands chgr p, chrmod, chown and urmask.

In addition, thereisafourth set of three bitswhich indicate
special features associated with a file. They are the set-
user-id, set-group-id and sticky bits. In a directory listing,
set-user-id is indicated by an s or S replacing the x in the
owner’'s permissions. Its setting or clearance is done by
issuing the command chmod u+s or chnod u-s. The
set-group-idbitisspecified by an sor Sinthex positionof the
group permissions. Its setting or clearance is done by using
chnod g+s orchnod g-s. Thesticky bitisindicated by
ator T replacing the x in the others permissions. Theletter t
isonly meaningful for the owner of thefile. The setting and
clearance of thesticky bit arecarried outby chnod u+t and
chnod u-t . For these three access permissions, if a small
letter is specified, it represents that both the x permission
and the permission this small letter indicates are turned on.
Otherwise, only the permission the (capital) letter specifies
is turned on. These access permission bits have different
meaning when applied to filesand directories. For files, their
meaning is summarized in Table ??; for directories, in Table
??[AL96, Cur92].

UNIX alwayschecks permissionsfor the smallest category
that applies. For instance, a user in the owner’sgroup (other
than the owner) is always given the group permissions even
if the permissions for “others’ are broader[AL96].

The home directory is the working directory when a user
first logs in to a UNIX system. The location of the home
directory is specified in the /etc/passwd file or in the NIS

database passwd. The pathname of thisdirectory isstoredin
the HOME shell variable.

All the user’sfiles are under the user’shome directory, in-
cluding the startup files and possibly other directories. The
user can grant other users access to hisor her files by modi-
fying the group permissions or the world permissions. Sup-
pose that such afile is directly under the user’s home direc-
tory. Asdiscussed above, other users can actually read, write
or execute it only if they are also granted execute permission
totheuser’shome directory. If thefileislocated under oneor
more sub-directories of the home directory, these users need
to have not only execute permissionfor thissub-directory, but
also execute permission for all directories on the path from
the home directory in order to be able to read, write or exe-
cute thisfile.

Therefore, the home directory isthe ultimate outer defense
against any access to the files of a user. As pointed out
previoudly, the account could be easily broken into or taken
over when the security of the home directory is poor. On the
other hand, if the home directory is protected properly, even
if the files it contains seem to have permissions for others,
the access would not be granted. Without x permission on
your home directory, even if other users are alowed to write
to your startup files, they can not access them. In what
follows, then, we will concentrate on the access granted to
home directories, rather than modeling the access to all the
files under them.

4 Modelinga UNIX System with a Role
Graph

A UNIX system could have hundreds of userswith hundreds
of files. Inorder to model what isessential about fileaccessin
a given environment, we need to focus on those permissions
which can create security problems. In the previous section,
we have explained that one economy we will take, where
user’s files are concerned, is to only model access to home
directories. There are other directoriesin a UNIX system
which contain the code for system commands, compilers
and other utilities. We did not include these files in this
initial prototype. They usualy have permission bits set as
r-xr-xr-x. These files are installed and maintained by
system administrators. Including these files in arole graph
will be the subject of future work. Therefore, a privilegefor
the role-graph we will build is defined as a home directory
and a set of access permissionson it.

Usersawayshavetheright to read, writeand executetheir
own files, and to change the permissions on their own files.
Such permissions which allow a user to create and edit his
or her own files are not the permissions which are going to
create compromising situations. In the role graph modd,
the concept of “user” on the user plane in Figure ?? is the
smallest grouping of subjectswhich can beassignedtoarole.
For thisstudy, wewill use the UNIX group as the access unit
to the home directories, instead of asingle user. The reasons
for thisare:

read
write
execute

set-user-id

set-group-id

sticky

If set, the file may be read.

If set, the file may be written (modified).

If set, the program contained in the file may be executed (run). Executing compiled programs requiresonly
execute permission on thefile, while executing shell scriptsrequires both read and execute permission since

the shell must be able to read commands from thefile.) o
Set-user-id status means that when a program is executed, it executes with the permissions of the user who

ownsthe program, in addition to the permissionsof the user executing it. The effective user id of the process
becomes the id of the owner of the executable file. Therea user id of the process remains that of the user

who initiated the process. Thisbit is meaningless on non-executabl efiles.
It behaves in exactly the same way as the set-user-id bit, except that the program operates with the

permissions of the group associated with the file. When a process is executed with set-group-id bit turned
on, the effective group id of the process becomes the group id of the owner of the executable file and the
program thus executes with permissions of that group. The real group id of the process remains that of the

user who initiated the process. This bit is meaningless on non-executablefiles.
If set on an executable binary file, the 'sticky’ bit tells the operating system to maintain the image of the
executing process in the swap area, even when execution isterminated.

Table 2: Access Permissionsfor Files

o everyfile includingauser’shome directory, belongsto a
group.

o UNIX aways checks permissions for the smallest cate-
gory that applies, i.e. the group permissions are checked
before the world permissions. Since we will not worry
about owner permissions, the group permissions are the
smallest category we need to worry about.

e every user belongsto at least one group, and may belong
to many groups.

The process of extracting the relevant information pro-
ceeds asfollows:

1. for each group of interest in the system
for each user which isamember of this group
extract the group and other permission bitsfrom
thisuser’s home directory and represent each
permission as a privilege
create arole for this group and the resulting set of
privileges
2. for each pair of rolesthus created
if the privilege sets are equal
then merge theroles
3. compute graph edges
4. for each role
compute direct privileges
5. create MaxRole and MinRoleif necessary
6. display the graph

After Step 1, there may be roles with identical privilege
sets, which would make theresulting role graph have acycle.
Step 2 merges such roles into a single role. At this point,
the privilege set represents all privileges granted to the users
who belong to the group(s) which have been used to create

these roles. In the terminology of role graphs, these are the
effectiveprivileges. Step 3 usesthe containment of one set of
effective privilegesin another to create the edges in therole
graph. Step 4 calculates the direct privileges by computing
set differences between the effective privilege sets. After
these steps, theremay beasinglerolewhich hasnoseniors, in
which case thisroleisrenamed MaxRole. Similarly, if there
isasinglerolewith no juniors, thisroleisrenamed MinRole.
If either of these roles does not exist, then a MaxRole (or
MinRole) is created with no users, and all the roles with no
immediate seniors (juniors) are connected as its immediate
juniors (seniors). The role graph display is done by a tool
writtenin Tcl [Ous94].

One problemwith creating rolesin thisway isthat thereis
not any way for theprogram to figure out asuitablerole name.
When we go in the other direction, using the role graph tool
to create rolesand then map these onto the underlying system
of interest, then some semantics of the situation can be built
into the role name chosen. Here, we just arbitrarily number
theroles starting with 1.

A prototype of these ideas to examine the protection of
home directories in the research network in our department
was built. The environment consists of a number of UNIX
machines running several versions of Sun OS. Altogether
there are over 200 users on the system. Users home direc-
tories are organized into six sub-directories on this system,
one each for faculty, staff, graduates, undergraduates, project
and people. The project group is used for some specid re-
search projects. The peopledirectory isfor visitors. The pro-
totype lets the user chose some subset of the six directories
mentioned above, and then constructs the role graph. When
all of thedirectoriesare asked for, the role graph generated is
showninFigure??. A display generated fromtheView menu
intherolegraphtool for role4 isshownin Figure ??. We can
see that someone called mur phy in the groupunder gr ad

read

write

execute

Read permission alowsauser to see the contents (filenames) of thedirectory, but isinsufficient for ng
the files whose names appear in it. For instance, you can not read the contents of afilein adirectory if you
only have r access to the directory.

Write permission to adirectory impliesthe ability to create, delete, and rename filesin thisdirectory. Thew
permission for adirectory isrequired in order to add filesto it or deletefilesfromit. However, w permission
for adirectory is not required in order to modify afile listed in the directory or delete its contents.

In the case of a directory, execute permission implies access the files contained therein. It alows you to
operate on the names in that directory if you know them, but does not let you find out what they are if you
do not. Normally r is granted whenever x is; you can get some strange effects if a directory has x but not r.
For instance, if adirectory has x turned on but not r, you cannot list its contents-but if you already know its

Set-user-id
set-group-id

Thisbit is meaningless on directories.

sticky

contents, you might be able to read itsfiles if you had that permission.

On some systems this bit has a specia meaning when set on directories. For example, in SUnOS 4.x, the
group id of afileisset to thegroupid of the directory in which it is created if the set-group-idis set on the

directory. Otherwise, the group id of afileis set to the primary group id that the owner belongsto.
If adirectory hasits sticky bit set, users may not delete or rename files in this directory that are owned by
other users. The sticky bit isusualy set on world-writabledirectories.

Table 3: Access Permissionsfor Directories

has write permission to their home directory turned on.

5 Conclusions

The modeling of permissions granted on home directories
in a UNIX system as a role graph was successfully carried
out. From the example shown, it can be seen that such a
model, even with just numbers for role names, can be useful
in spotting anomalies in the permissions granted, or just for
finding out who the users are and what permissionsare set on
their home directories, without searching through numerous
directories.

There are two essentia extensions required to completely
model existing permissions in a UNIX environment. The
system file permissions must be modeled, and links between
files must be modeled. We will consider each of these sepa-
rately.

Files and directories containing system commands and
utilitiesare installed in our department by very knowledge-
able systems staff. This might not always be the case in ev-
ery UNIX installation. Therefore, it would be useful to model
these permissions also. Thiswould involve actualy travers-
ing the directories and extracting the non-owner permissions
for individua files. In the terminology of the role graph,
the privileges would now record access modes on individ-
ual files. The role graph would have a lot more privilegesto
record, but not necessarily alot moreroles unlessthere were
alot of different patterns of permissions granted.

Another way users gain access to their own or other’s
files is through links in the UNIX file system. Again, we
are not interested in what a user does to files he or she
owns, or how these might be linked within a single user’s
directories. However, if there is a file below one user’'s
home directory, say user A, which has a link to it from

a second user, user B’s directory, then user B can access
thisfile even if user A's home directory is not readable. In
order for user B to actually be able to do anything with this
file, the file's group or other permissions must be turned
on. To anayze these situations, all user files would have to
be traversed looking for files which are links, and checking
the owner of the file accessed. If this owner is different
from the owner of the directory from which it is accessable
via a link, then the permissions of this file must aso be
extracted as privileges to be dedlt with in the role-based
analysis. In this case the privilege is only available to users
who have such links in their directory, so the set of users
modeled in the role graph (which is currently just groups)
will have to be extended to include such individua users as
well. Other members of user B’s group would aso have
these privileges if al of user B’s directories on the path
from B’s home directory to the directory containing the link
have the appropriate permissions granted to “group”. These
two extensions are feasible, but both involve a much more
complex traversal of the file system in an UNIX system than
was carried out for the prototype presented here.

Acknowledgementswewouldliketo thank David Wise-
man for helping us to understand the UNIX environment in
our department.

References

[AGU72] A. V. Aho, M. R. Garey, and J. D. Ullman.
The transitive reduction of a directed graph.
SIAM Journal of Computing, 1(2):131-137,
June 1972.

[AL96] P. W. Abrahams and B. R. Larson. Unix for

the Impatient, second edition. Addison-Wesley

[*] ROLE GRAPH GEMERATOR

[Bal90]

[Cur9?]

[HDT94]

[LW8S]

a

Figure 3: Role graph generated for all users

Publishing Company, 1996.

R.W. Badwin. Naming and grouping privi-
leges to simplify security management in large
databases. In Proc. 1990 |EEE Symposium on
Research in Security and Privacy, pages 116—
132. IEEE Computer Society Press, 1990.

D.A. Curry. UNIX System Security: a Guide
for Users and System Administrators. Addison-
Wesley Publishing Company, 1992.

M.-Y. Hu, S. A. Demurjian, and T. C. Ting.
Unifying structural and security modeling and
analyses in the ADAM abject-oriented design
environment. In J. Biskup, M. Morgenstern,
and C. E. Landwehr, editors, Database Secu-
rity, VIl1, Satus and Prospects WG11.3 Work-
ing Conference on Database Security. North-
Holland, 1994.

FH. Lochovsky and C.C. Woo. Role-based
security in database management systems. In

[MD94]

[NO93]

[NO94]

[NO95]

C. Landwehr, editor, Database Security: Status
and Prospects. North-Holland, 1988.

I. Mohammed and D.M. Dilts. Design for dy-
namic user-role-based security. Computersand
Security, 13:661-671, 1994.

M. Nyanchama and S. L. Osborn. Role-based
security, object-oriented databases and separa-
tion of duty. S GMOD Record, 22(4), Dec.
1993.

M. Nyanchama and S. L. Oshorn. Access
rightsadministrationin role-based security sys-
tems. In J. Biskup, M. Morgenstern, and C. E.
Landwehr, editors, Database Security, V11, Sa-
tus and Prospects WG11.3 Working Conference
on Database Security. North-Holland, 1994.

M. Nyanchama and S. L. Osborn. Modeling
mandatory access control in role-based security
systems. InD.L. Spooner, SA. Demurjian, and
J.E. Dobson, editors, Proceedings of the IFIP

[ORW96]

[0sh97]

[Ous94]

[RBKWO1]

[San96]

[¢] Role Display §

Role Display

Aol vame: [~ 7]

Effective Privileges:

execute long
ad aija
ad andrews
ar areski
ad ashall

Figure 4: Display of role 4

WG 11.3 Ninth Annual Working Conference on
Database Security. Chapman & Hall, 1995.

S.L. Osborn, L.K. Reid, and G.J. Wesson. On
the interaction between role based access con-
trol and relational databases. In P Sama
rati and R. Sandhu, editors, Proceedings of the
Tenth Annual IFIP WG 11.3 Working Confer-
ence on Database Security. Chapman & Hall,
Aug. 1996.

SL. Osborn. Mandatory access control and
role-based access control revisited. In Pro-
ceedings of the Second ACM Workshop on Role-
Based Access Control, pages 31-40, Nov. 1997.

J. K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

F. Rahitti, E. Bertino, W. Kim, and D. Woelk.
A modd of authorization for next-generation
database systems. ACM Trans Database Syt,
16(1):88-131, 1991.

R.S. Sandhu. Role hierarchies and constraints
for lattice-based access controls. In Computer

Security - ESORICS 96, pages 65—79. Springer
Verlag, 1996. Lecture Notes 1146.

[TDH] T.C. Ting, SA. Demurjian, and M.-Y. Hu. Re-
quirements, capabilities and functionalities of
user-role based security for an object-oriented
design moddl. In C.E. Landwehr and S. Ja
jodia, editors, Database Security V, Status and
Prospects. North-Holland.

[Tho91] D.J. Thomsen. Role-based application de-
sign and enforcement. In S. Jgjodia and C.E.
Landwehr, editors, Database Security IV, Satus
and Prospects, pages 151-168. North-Holland,
1991.

[Ting8] T.C. Ting. A user-role based data security ap-
proach. In C.E. Landwehr, editor, Database Se-
curity: Statusand Prospects, pages 187 — 208.
North-Holland, 1988.

[vSvdM94] S.H.von Solmsand|. vander Merwe. The man-
agement of computer security profiles using a
role-oriented approach. Computers & Security,
13:673-680, 1994.

