Modeling Users in Role-Based Access Control

Sylvia Osborn
Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A-5B7

sylvia@csd.uwo.ca

ABSTRACT

The essential properties of a simple model for users, groups
and group hierarchies for role-based access control, embod-
ied in a group graph, are presented. The interaction between
the group graph and the role graph model of Nyanchama and
Osborn is shown. More complex models of users and their
compatibility with the group graph model are discussed.

1. INTRODUCTION

In our previous work on role-based access control ([6]), we
have shown how to provide a rich model for a role hierar-
chy, which we call a role graph. Roles collect privileges or
permissions into a single entity which can help simplify the
granting of permissions to users. Our model also includes a
user/group plane, on which we model collections of users as
groups, and a privileges plane, on which implications among
privileges are modeled. To date, we have not explored the
user/group plane in any detail. It is possible to model users
simply as individuals with a unique ID and no other relevant
attributes. For the same reason that we gather permissions
into roles, it is useful to gather users into groups, that rea-
son being to simplify the work of assigning permissions to
users.

We will use the term group to refer to a set of users. Groups
have been used in operating systems for decades to create
sets of users for the convenience of the system managers.
Group hierarchies are typically not provided. Sandhu and
Ahn have shown how group hierarchies with decentralized
management can be provided in Unix ([7]) and in Windows
NT ([8]). Our purpose in this paper is to show how groups
and a group hierarchy can be used together with roles and
the role hierarchy to provide a very rich model for access con-
trol. In particular, we will show how a group graph model
can be used along side our role graph model.

In some systems, there is a requirement for users to have
other attributes, say age for digital library applications or
security attributes for a Corba implementation. In other

Yuxia Guo
Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A-5B7

words, there is a requirement for users to be modeled as
objects with some structure. We begin by showing how a
very simple model of users can be designed and integrated
with our role graph model. Then we go on to discuss more
complex user models. In the end, we show that these models
are not contradictory, and can in fact co-exist easily.

The group graph model is introduced in Section 2. Section
3 contains a discussion of using an object-oriented model for
users. A summary is given in Section 4.

2. THE GROUP GRAPH MODEL

2.1 GrOUpS

The role graph model of Nyanchama and Osborn [5, 6] sepa-
rates users, roles and privileges into three separate planes: a
user/group plane, a role plane and a privileges plane. Con-
siderable work has been reported on algorithms for manipu-
lating roles and role graphs [5, 6], to model role-role relation-
ships or role hierarchies[10]. The roles in a role graph are
denoted by a role name and set of privileges. Privileges, in
turn, consist of a object and some operation on the object.
The inclusion of a privilege in a role’s privilege set means
that any user assigned to that role is granted access to the
privilege, i.e. permission to perform the operation on the
object. The role graph is an acyclic, directed graph whose
edges, say r1 — r2, indicate that the privilege set of 11 is a
proper subset of the privilege set of ro. We also say that r;
is junior to r2 (equivalently rz is senior to r1).

In this section, we report on a simple model for the user
plane [4] and some associated operations and algorithms. In
the user/group plane, we represent all the individual users
in the system, as well as an arbitrary number of groups,
which can vary over time. A group is a set of users. For
the purpose of this simple model each user must have some
unique identifier, say a unique user name or an object ID.
No other structure or attributes are assumed for users at
this time.

In our group model, there is always one group which con-
tains all users. This group can be used to assign everyone to
the role which contains any default privileges (called Min-
Role in our model). We show group-group relationships as
an acyclic directed graph, called the group graph. An edge
in the graph between groups gi and gz, denoted g1 — g2
means that g1 C ggl. We call g1 a subgroup of g2. A group

!more precisely, the membership list of gg C membership
list of g2

graph, GG(G, S), consists of a set G of groups and subgroup
relationships S, the latter shown as the edges in the group
graph. G always contains one group for each user, of car-
dinality one. Each group has a unique name, which, in the
case of cardinality one groups can simply be the user name.
Each group also has a unique membership list; we insist on
this so that we do not have cycles in the group graph which
would then need to be collapsed. When we use the notation
g1 C g2, we are referring to the membership lists.

To summarize then, the group graph GG(G, S), consists of a
set G of groups, each of which has a name and membership
list, and subgroup relationships S. The group graph has the
following Group Graph Properties:

e there exists one group containing all users
o there exists one group for each individual user
e group membership lists are unique

o if the members of gg C members of gz, there must be
a path from g; to g2 in S.

There is a many-to-many relationship between groups and
roles, called the group-role authorization or group-role as-
signment, which indicates which groups, and therefore which
users, are authorized to perform the operations embodied in
a role. Such assignments are made by a role authorization
function, which can be modeled as administrative roles [9].
Since groups with duplicate membership lists are not al-
lowed, if a group of users plays two roles in a company, we
model this by having just the one group in the group plane,
and having two roles to which this one group is assigned.

A simple group graph is shown in Figure 1. As we do with
our role graphs, we do not show an edge from a group g1 to
a distinct group g2 if there is also a path from g; to g2. In
other words, we do not show redundant edges in the group
graph. For reasons which will become apparent shortly, we
put the group representing all users at the bottom of the
page, and the groups of cardinality one at the top.

2.2 Operationson the Group Graph

There are a number of operations on the Group Graph which
allow groups to be formed and updated. These operations
have been implemented and tested in a prototype [4]. Un-
like the role graph operations in our previous work ([6]),
group-group relationships are determined solely by examin-
ing the subset relationships between the groups. (In the role
graph case, relationships can be explicitly added or deleted
through role administration by adding or deleting edges from
the role graph.) The group graph operations are briefly sum-
marized here:

Group Addition(GG, g): adds a new group g to the group
graph GG and establishes the appropriate edges in the
group graph.

Group Deletion(GG, g): deletes group g from the group
graph GG and adjusts the edges in the group graph.

User Addition without Propagation(GG, g, u): adds
user u to group g, but does not add this user to any of
the group’s supergroups.

User Addition with Propagation(GG, g, u):
adds user u to group g, and to all of g’s supergroups.

User Deletion without Propagation(GG, g, u):
deletes user u from group g, but not from any of g’s
supergroups.

User Deletion with Propagation(GG, g, u):
deletes user u from group g, and from all of g’s super-
groups.

Add User(GG, u): creates a new user in GG.

Delete User from System (GG, u): deletes u from the
group graph and from all groups of which it is a mem-

ber.

Algorithms exist for these operations [4], which perform the
indicated action and restore the group graph properties, or
report an error if they cannot be carried out. The algorithms
are all straightforward; they are not given here in detail.

2.3 Group-Role Assignment

The assignment of groups to roles is a many-to-many re-
lationship (remember that individual users are each repre-
sented by a group of cardinality one, so group-role assign-
ment also includes user-role assignment). A sample group-
role assignment is shown in Figure 2. This figure shows a
group graph on the left, a role graph on the right, and heavy
arcs going from the group graph to the role graph indicating
group-role assignments. Note that if a group is assigned to a
role, such as Engineers to the Engineer role in the example,
its members can also perform the permissions in all roles
junior to Engineer (i.e. whatever privileges are present in
Employee), by the construction of the role graph. Also, all
members of subgroups (Quality Engineers and the groups
of cardinality 1 representing individual users contained in
the Engineers group) can perform the Engineer role, by the
structure of the group graph.

There are a few conditions which need to be checked when a
new group-role assignment is given. For example, the figure
shows that the group Engineers is assigned to the Engineer
role. Assigning the Quality Engineers group to the Em-
ployee role would be redundant, since these users already
have the privileges of the Employee role. This attempt at
a group-role assignment is simply not performed. Figure 3
shows this situation with smaller role and group graphs and
fewer group-role assignments.

A slightly different case arises if, say, the Engineering De-
partment group is to be assigned to the Project 1 role. A
subset of the same users (Engineers) is assigned to a junior
role (Engineer). If this latter group-role assignment remains
it will be redundant. Therefore it is removed as part of the
operation of assigning the Engineering Department group
to the Project 1 role. This situation is shown in Figure 4.
Again some of the graph nodes and group-role assignment
arcs are removed to highlight the situation of concern.

El E2 E3 E4 E5 E6 E7

) tj”zng)

Engineers

Engineering
Department

01 02 03

E8
Staff

AllEmployees

Figure 1: Example Group Graph

The way we have drawn our graphs, with the most senior role
at the top in the role graph, and the most all-inclusive group
at the bottom in the group graph, means that more exclu-
sive (smaller) groups are near the top of the group graph,
opposite the more senior roles in the role graph. Both of the
previous cases involve a path in the group graph, a path in
the role graph, and an operation which would create a group-
role assignment which “crosses over” an existing group-role
assignment edge joining another group and role on these
paths. When the operation is finished, there should not be
a “crossing over” of the group-role assignments in these di-
agrams. Such redundant assignments are avoided by our
algorithm, in keeping with our general policy of avoiding
redundant edges in the role graphs and group graphs.

Conflict of interest and separation of duties issues may re-
quire that, if a user is assigned to one role, the same user
should not also be assigned to a conflicting role. Such con-
flicts could represent static or dynamic separation of duties
— in either case they should be checked when user-role as-
signment is taking place. These conflicts can be detected
and group-role assignments rejected.

An algorithm which summarizes these ideas is given in Fig-
ure 5. The algorithm takes a group graph, a role graph,
a set of group-role pairs representing the current group-role
assignments, and a group-role assignment, (g, r), which is to
be added. It begins, in step 1, by making sure such a group-
role assignment has not already been made. Then, in step
2, 1t checks that there is no conflict of interest with existing
role assignments for this group. It then checks the two cases
discussed above to avoid redundant group-role assignments.
Its run time is discussed in Appendix A. Steps 3 and 4 in-
volve traversals up or down from the given g and r in their
respective graphs. This cannot be avoided, since the redun-
dant cases being sought can occur anywhere in the graph.
A way to cut off the search when one situation is found is
discussed briefly in the Appendix.

3. OTHER REQUIREMENTSFOR USERS

There are scenarios in which users need attributes or prop-
erties for some other purpose, i.e. in which users need to be
modeled with more structure than was assumed in the pre-
vious section. In other words, the users need to be modeled
as objects. One example is a digital library where the age
of the user might be used to decide if he or she should be
allowed to view certain materials. Another example occurs
when the users might in fact be represented by principals in
a Corba system with security attributes [1].

In a class-based object system, objects are created as in-
stances of a class. These, in turn, may be collected into sets
according to their class structure, but they do not have to
be. There was an extensive debate in the object-oriented
database community concerning the modeling of sets of ob-
jects. The issue arises because in a database, there are mul-
tiple instances of a given class, which need to be collected
into sets suitable for querying. In some cases, these sets
might correspond to all the instances of a given class. In
other cases it might be only some, (e.g. it might be nec-
essary to have a set of all final-year students, rather than
just a set of all students). There might even be a need
for non-homogeneous sets, such as a student, several faculty
and several staff members forming a committee. The result
of this debate in the database community is that one can
build whatever sets suit the application’s needs [2], i.e. sets
corresponding to classes, subsets of all the instances of a
class, non-homogeneous sets, or a mixture of all these types.
Bringing this discussion back to the group plane, if the users
are modeled as objects, then the groups are sets of objects.
All of the above cases might be appropriate in different ap-
plications, so the model should allow one to build whatever
groups are appropriate.

Suppose that the class hierarchy for the users shown in Fig-
ures 1 and 2 is that given in Figure 6 (with inheritance
going down the page). Note that in the group graph shown

El E2 E3 E4_E5 E6 E E8 01 02 O3 \
Project Project
Leader 1 Leader 2
Quality Engineers ' \
Production Quality Production Quality
 Engineer1 Engineer 1 Engineer 2 Engineer 2
o by ¢
Engineers Staff .
- Project 1 Project 2
2l
Engineering
Department
\ ——— Engineer
P

AllEmployees

—

Group Graph

— Employee

Role Graph

Figure 2: Group graph on left, role graph on right, showing group-role assignments

above (in Figures 1 and 2), there is a group, Engineering
Department, which has some members who are Engineers,
and some who are not (just Employees). We are assuming
that Quality Engineers is a subclass of Engineers, because
their instances have some extra qualifications represented by
extra object properties.

It is a function of class-based object-oriented systems that all
instances of a subclass (say Quality Engineers) are also in-
stances of any superclass(es) of their class (Engineers in this
case). Thus, any operations on an object of type Engineers
can also be performed on an instance of Quality Engineers
because the subclass inherits whatever attributes or proper-
ties are required in the carrying out of such operations. In
our example, some of the groups correspond to classes, some
(the cardinality 1 groups) to instances, and some to a useful
grouping of objects (Engineering Department).

When do we perform operations on these objects — the users
in our system? Mostly, operations in an RBAC system will
be performed on users when checking constraints. (Users, in
turn, through their role assignments and the permission-role
assignments are ultimately authorized to perform operations
on other objects.) It then becomes an issue of design of the
user/group model for a system. Different scenarios can arise.
It may be that no constraints will be checked, in which case
the simple model of the previous section is adequate.

At the other extreme, class-supplied properties can be used
in a sophisticated way to check constraints. There might
be requirements for constraint checking at various levels of
detail. Suppose that when a group is assigned to the Quality

Engineer 1 role, all members of the group must have some
attributes checked (those attributes which are unique to the
Quality Engineer class). This operation would fail, possibly
in an ungraceful way, if the user is not an instance of class
Quality Engineer. It might still fail if the user is a Quality
Engineer but does not have the required property value to
satisfy the constraint.

To summarize this section, if the designer of the system sees
a need to use an object-oriented model for users, and exploit
object-oriented properties in some way, our model can ac-
commodate that. In the end, we will build our group graph
using the subset relationship among the defined groups, and
carry on with the operations and algorithms presented in
Section 2.

4. SUMMARY

We have shown how a simple model of groups can be de-
signed and integrated with our role-graph model. An al-
gorithm for group-role assignment which avoids redundant
group-role assignments is given. It was also shown that when
the group graph is drawn with the most inclusive group at
the bottom, and the role graph is drawn with the most senior
role at the top, a fundamental characterization of redundant
group-role assignments is that they cause arcs which cross
over existing arcs.

We also discussed how a more complex model for the user
plane, involving an object-oriented model of the users, can
be used. The system designer may or may not wish to base
user groups on the sets of instances of objects belonging to a
single class. If this is the case, the algorithm for group-role

=3 E4 E5
<
(5}
=)
>
w

Quality Engineers

~
AN
AN
N
~
AN
AN
N
Engineers S

Engineering

Department
o
8 AllEmpl
5 mployees
@
o
=]
w

Group Graph

Director

Project
Leader 1

7N\

Production Quality
Engineer 1 Engineer 1

N/

Project 1

Senior Role

Engineer

Junior Role

Employee

Role Graph

Figure 3: Redundant group-role Assignment

assignment is still valid, as is the observation about avoiding
redundant user-role assignments.

5. ACKNOWLEDGMENTS

Sylvia Osborn’s research was funded by the Natural Sci-
ences and Engineering Research Council of Canada. Yuxia
Guo’s research was funded by a University of Western On-
tario President’s Scholarship for Graduate Studies.

6. REFERENCES
[1] K. Beznosov and Y. Deng. A framework for
implementing role-based access control using CORBA
security service. In Proceedings RBAC/ Workshop,
pages 19-30, 1999.

[2] R. G. G. Cattell. Object Data Management,
Object-oriented and Extended Relational Systems,
revised edition. Addison-Wesley, 1994.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. McGraw-Hill, 1990.

[4] Y. Guo. User/group administration for rbac. Master’s
thesis, Dept. of Computer Science, The University of
Western Ontario, 1999.

[5] M. Nyanchama and S. L. Osborn. Access rights
administration in role-based security systems. In

[10]

J. Biskup, M. Morgenstern, and C. E. Landwehr,
editors, Database Security, VIII, Status and Prospects
WG11.3 Working Conference on Database Security,
pages 37-56. North-Holland, 1994.

M. Nyanchama and S. L. Osborn. The role graph
model and conflict of interest. ACM TISSEC,
2(1):3-33, 1999.

R. Sandhu and G.-J. Ahn. Decentralized group
hierarchies in unix: An experiment and lessions
learned. In National Information Systems Security
Conference, 1998.

R. Sandhu and G.-J. Ahn. Group hierarchies with
decentralized user assignment in windows nt. In
Proceedings of IASTED Conference on Software
Engineering, 1998.

R. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBACY97 model for role-based administration of
roles. ACM Trans. on Information and Systems
Security, 2(1):105-135, Feb. 1999.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. Computer,
29:38-47, Feb. 1996.

Director

a E4 E5 o
< ! 2
s Project o«
o
a Leader 1 §
Quality Engineers / \
Production Quality
Engineer 1 Engineer 1
Engineers \ /
_ = = Project1
Engineering _
Department
Engineer
o
= &
g AllEmployees 5
g 5
S ™]
7] Employee

Group Graph

Role Graph

Figure 4: Redundant group-role Assignments should be Deleted

APPENDIX
A. RUNTIME ANALYSIS

We present here a discussion of some more detail and a run
time analysis of the algorithm in Figure 5.

Let g denote |G|, the number of groups in the group graph,
and r denote |R|, the number of roles in the role graph.
Assume that current assignments are stored as a list of pairs
(g, r), and that there are a of them. The upper bound on a
is ¢ X r. Also, assume that there may be role-role conflicts,
which are stored as a list of pairs (r1, 1‘2). Assume there are

¢ such conflicts. The upper bound on ¢ is r2.

Step 1 of the algorithm takes O(a) comparisons with the
current group-role assignments.

Step 2 has a loop which is executed r times, and which
involves a comparisons with the group-role assignments list,
and a traversal of the conflicts list; i.e., this step takes O(r x
(a + c)) steps.

Steps 3 and 4 refer to subgroups/supergroups in the group
graph, and to seniors/juniors in the role graph. The sub-
groups of a group can be found by a depth first traversal
of the group graph, starting at the group in question, going
up. Similarly, supergroups can be found by a depth first
traversal going down. In the role graph, one goes up to get
all seniors, and down to get all juniors. In the worst case,
any of these traversals could visit all of the nodes of the
respective graph. The problem being sought could happen
near the starting node, or not until one reaches the top or
bottom of the graph. So, a more efficient algorithm, on av-
erage, would involve traversing up/down until the problem
is found or we reach the top/bottom. However, the worst
case for all 4 of these traversals is that we must visit ev-
ery node in the appropriate graph. Depth-first traversal can
be done in O(n + €), where n is the number of nodes in
a graph and e is the number of edges [3]. Let eg be the
number of edges in the group graph, and er be the num-
ber of edges in the role graph. Then, both steps 3 and 4
take O((g + eg) X ('r + eR) X a) operations. In other words,
the algorithm takes time polynomial in the sizes of the two
graphs, the list of current assignments, and the list of role
conflicts.

Algorithm Group-Role Assignment
Inputs: GG /* the group graph */
RG /* the role graph */
Assignments(G,R) /* a set of group-role pairs */
g /* the group to be assigned */
r /* the role to which g should be assigned */
Outputs: Assignments’(G,R) /* a possibly modified group-role assignment */

Method:
if (g,r) € Assignments(G,R)
then abort with message “this group-role assignment already exists”

else /* check for conflict of interest */
for all roles ' in R do
if (g, 1') € Assignments(G,R) and r and r’ have a conflict
then abort with message “role conflict”

else /* check if a supergroup of g has been assigned to a senior role of r */
for all groups g” which are supergroups of g do
for all roles "’ which are senior to r do
if (g”, r"") € Assignments(G, R)
then abort with message “a supergroup has been assigned to a senior role”
else /* check if a subgroup of g is assigned to r or a junior of r */
for all groups g” which are subgroups of g do
for all roles r’" which are junior to r, U r do
if (g”, 1) € Assignments(G, R)
then Assignments(G,R) := Assignments(G,R) - {(g", ')}
/* Assign g tor */
Assignments’(G,R) := Assignments(G,R) U {(g,r)}

Figure 5: Algorithm for group-role assignment

Employees

Staff Engineers

Quality Engineers

Figure 6: Possible Class Hierarchy for Users

(1)

(2)

3)

