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Abstract 

This paper presents a discretionary access control model in 
which authorizations contain temporal information. This 
information can be used to specify temporal intervals 
of validity for authorizations and temporal dependencies 
among authorizations. A formal definition of those concepts 
is presented in the paper, in terms of their interpretation 
in first order logic. We characterize sets of temporal 
dependencies that can lead to undesirable states of the 
authorization system and we sketch an algorithm for their 
detection. Finally, operations to add, remove, or modify 
authorizations and temporal dependencies are described. 

1 Introduction 

The area of database security has been recently a fast 
growing area. Indeed, there is today an increased aware- 
ness of the importance of data protection from unau- 
thorized accesses and from various types of intrusions, 
such as those through Trojan Horses or covert chan- 
nels [7]. Due to the recent advancements in the area of 
secure DBMS during the past years, several vendors of 
relational DBMS (RDBMS) now have secure versions of 
their products which are commercially available. There- 
fore, DBMS security is a research area which has a tan- 
gible impact on commercial product development. In 
particular, most, commercial DBMS provide at least, an 
authorization mechanism, by using which users of the 
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database may be granted authorizations to read and/or 
write data. 

Current research directions in DBMS security can 
be summarized as follows. A first direction concerns 
increasing the expressive power of authorization models 
and developing the appropriate tools and mechanisms 
to support those models. An example of this direction 
is the introduction of negative authorization [6], and 
of role-based and task-based authorization models [8, 
16, 201. The increased awareness of the need for 
data protection and the complexity of new applications 
have resulted in more articulated authorization policies. 
Those policies need models and systems directly able 
to support them. Therefore, it is crucial to develop 
powerful authorization mechanisms which provide, at 
the same time, concise languages and adequate tools 
for their use. 

A second direction concerns the development of au- 
thorization models for advanced DBMS, like object- 
oriented DBMS [15, 11, 191 or active DBMS. Those 
DBMS are characterized by richer data models, includ- 
ing notions such as inheritance hierarchies, composite 
objects, versions, and methods. Therefore, authoriza- 
tion models first developed for RDBMS [12] must be 
properly extended to include features related to those 
additional modeling concepts [5]. 

A third direction, generally known as mandatory 
access control, is to develop techniques to protect 
data against intrusion through sophisticated means, like 
Trojan Horses and covert channels. Several results 
have been so far reported for RDBMS [3, 9, 10, 171 
and applied to commercial products [14]. Research 
has also started dealing with advanced DBMS, like 
OODBMS [22, 4, 131 and active DBMS [18]. 

The work reported in this paper deals with the first 
of the above research directions. The goal of our work 
is to extend the expressive power of a conventional 
authorization model with temporal information. The 
need for extending authorizations to the consideration 
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of temporal semantics was also pointed out by Thomas 
and Sandhu in [21]. 

Our temporal extension to authorization models is 
based on two main concepts. The first concept is the 
temporal interval of validity of authorizations. In our 
model it is possible to specify that an authorization will 
expire after a specified point in time, or that an autho- 
rization is valid only in a specified temporal interval. 
Note that in many real-life situations authorizations are 
limited in time - consider for example a badge which is 
valid for only one day. Therefore, it is important to 
develop authorization models able to directly support 
those application requirements. The second concept is 
the temporal dependency among authorizations. A tem- 
poral dependency can be used, for example, to specify 
that a user has an authorization as long as another user 
has this authorization. This type of capabilities is very 
useful in many advanced applications, like for example 
CSCW applications. 

Besides proposing a basic set of operators to specify 
temporal dependencies, we introduce a formalism to 
concisely express many dependencies. For example, 
a single statement can specify that a user can read 
all the files that another user can read, relatively to 
an interval of time. A very general framework to 
specify authorization rules has been proposed by Woo 
and Lam in [24]. Their language to specify rules 
for the derivation of authorizations has almost the 
expressive power of first order logic. The tradeoff 
between expressiveness and efficiency seems to be 
strongly unbalanced in their approach. We think that 
it is important to investigate more restricted languages 
focusing on relevant properties. The temporal language 
we propose in this paper can be considered as a step 
in this direction. Another logic language for describing 
access control policies has been proposed by Abadi et Al. 
in [l]. However their logic is mainly used to represent 
concepts such as roles and delegation of authorities 
and their framework does not provide any mechanism 
to express temporal operators for the derivation of 
authorizations. 

In this paper, we only deal with discretionary access 
control and not with mandatory access control. Note, 
however, that the majority of DBMS only provide 
discretionary access control. Therefore, since the focus 
of our research is how to extend the authorization 
facilities provided by a conventional DBMS, we only 
address discretionary access control. Recent multilevel 
DBMS (like Trusted Oracle [14]) provide mandatory 
access control coupled with discretionary access control. 
Therefore, the new features provided by our model could 
be orthogonally incorporated into such systems as well. 

The remainder of this paper is organized as follows. In 
Section 2 we present the temporal authorization model. 
We start by formalizing our notion of time and making 
some assumptions used in the proposed model. We then 
define a Temporal Authorization Base as composed of 
explicit authorizations and derivation rules (dependen- 
cies). A first order logic semantics is provided. This 
section ends defining when an access request is autho- 
rized. In Section 3 we show that we cannot have sets of 
rules leading to an inconsistent authorization base, but 

we formally characterize sets of rules that could have 
undesirable effects and we sketch an algorithm for their 
detection. The issue of administration, including formal 
syntax of primitives for adding, removing, and modify- 
ing temporal authorizations is dealt with in Section 4. 
A few remarks about possible extensions of this work 
conclude the paper. 

2 The authorization model 

In this section we introduce our authorization model. 

2.1 Model of time and basic assumptions 

We assume a discrete model of time. In the database 
community, a chronon usually identifies the smallest 
indivisible unit of time. We can take a chronon or a 
fixed multiple of a chronon as our time unit. In any 
case, our model of time is isomorphic to the natural 
numbers IN with a total order relation <. 

For the moment, we assume the transactions in 
the database to be instantaneous. Moreover, we 
ignore the time required by the system to check if 
a certain authorization is present or can be derived. 
These assumptions allow us to consider the time t 
at which an access is requested and to look for a 
temporal authorization allowing that access at time t. 
In practice, while the system is trying to derive the 
authorization, the instant t could become an instant 
in the past and the actual access will not be made at 
that instant. Several implementation techniques can be 
used to overcome these problems, but we do not address 
in this paper the issue of relaxing these assumptions. 

We do not make any assumptions on the underlying 
data model to which accesses must be controlled, and 
therefore on the access modes users can exercise in the 
systems. The choice of the data model and of the access 
modes executable on the objects of the model is to be 
made when a system is initialized. In this way our 
authorization model can be used for the protection of 
information in different data models. 

2.2 Temporal authorizations 

Authorizations specify which accesses by users to the 
objects of the system are allowed. Let S denote the set 
of subjects (users) in the system, 0 the set of objects, 
and M the set of access modes. Authorizations are 
formally defined as follows. 

Definition 2.1 (Authorization) An authorization is 
a triple (s ,o ,m) where 

s E S is the subject (user) to whom the authorization 
is granted 

o E 0 is the object on which the authorization is 
granted 

m E M is the access mode, or privilege, for which the 
authorization is granted. 
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Tuple (s ,o,m) states that user s is authorized to 
execute access mode m on object o. 

In our model we consider a temporal constraint to 
be associated with each authorization. We refer to an 
authorization together with a temporal constraint as 
a temporal authorization. Temporal authorizations are 
defined as follows. 

Definition 2.2 (Temporal authorization) A tempo- 
ral authorization is a pair (time,auth), where time is 
u time interval [ti,tjl, with ti E IN, tjE IN UOO, ti 

5 tj, and auth is an authorization. 

Temporal authorization ([ti ,tJ , (s,o,m)) states 
that subject s is allowed to exercise access mode m on 
object o in the interval [tr , tzl including time instants 
ti and t2. 

A simple authorization, i.e., an authorization without 
any temporal constraint, can be represented as a 
temporal authorization whose validity spans from the 
time to which the authorization is granted to infinity.’ 

2.3 Derivation rules 

In our model additional authorizations can be derived 
from the explicitly specified authorizations. The deriva- 
tion is based on temporal propositions used as rules. 
They allow new temporal authorizations to be derived 
on the basis of the presence or absence of other tempo- 
ral authorizations. The authorizations considered valid 
at a given time are, beside the authorizations explicitly 
stated, all the authorizations which can be derived from 
the rules. Derivation rules are defined as follows. 

Definition 2.3 (Derivation rule) A derivation rule 
is defined as (tz:Ar(temp-operator)Az), where tr is 
the tine at which the rule has been specified, Al and 
A2 are authorizations, and (temp-operator) is one 
of the following operators: WHENEVER, ASLONGAS, 
WHENEVERNOT, UNLESS. 

Unlike authorizations, derivation rules do not have 
associated time intervals. A rule is considered valid from 
the time tz of its insertion until the time it is deleted 
or infinity. 

The intuitive semantics of derivation rules is as 
follows: 

- (tr:Al WHENEVER AZ). 
Al can be considered valid for each time instant for 
which AL, is valid. 

- (tr:A1 ASLONGAS A2). 
If Az is valid at the time tr at which the rule is 
specified, then also A1 is valid and it will remain 
valid until A2 validity will expire. With respect to 
WHENEVER, using this operator, we do not ensure 
validity of Ai in future instants where A2 will be valid 
again. 

‘This corresponds to having an implicit ALLTIhiE operator, 
often used in temporal logics [23]. 

(tr:Al WHENEVERNOT A,). 
Al can be considered valid for each time instant for 
which A2 is not valid. 

(tr:Al UNLESS A2). 
If A2 is not valid at the time tr at which the rule is 
specified, then Al becomes valid and it will remain 
valid until the last instant before the one at which 
A2 becomes valid. With respect to WHENEVERNOT, 
using this operator, we do not ensure validity of A1 
the next time that A2 becomes not valid again. 

Example 2.1 Consider the authorizations and deriva- 
tion rules illustrated in Figure 1. 

The following temporal authorizations can be derived: 

(CS,Sl , (Bob,oi,read)) from rule Ri and autho- 
rization Al, where 5 is the instant at which Ri is 
inserted, and 9 is the instant preceding the first in- 
stant at which (Alice,01 ,read) becomes valid. 

(C6.91, (John,ol.read)), 
(C21.291, (John,ol,read)), and 
([41,ool, (John,ol,read)), from rule R2. 

([10,201, (Sam,ol,read)), and 
( [30,40] , (Sam,oi ,read) >, from rule Rs and au- 
thorizations Ai and Aa. 

( [IS, 201, (Hatt ,ol ,read) ) from rule R4 and au- 
thorization Al, where 15 is the instant at which R4 is 
inserted, and 20 is the instant preceding the first in- 
stant at which (Alice,01 ,read) becomes not valid. 

Our model allows derivation rules where up to two 
elements of the authorizations can be left unspecified, 
i.e., can be bound to different values. We refer to 
these rules as parametric derivation rules. Parametric 
derivation rules are formally defined as follows. 

Definition 2.4 (Parametric derivation rule) 
A parametric derivation rule is a derivation rule where 
symbol U-” appears for subjects, objects, or access 
modes in the authorizations. If symbol U-n appears in 
an authorization of the rule, it must appear, in the same 
position, also in the other authorization. 

Symbol “-” is a parameter which denotes any 
subject, object, or access mode depending on its 
position in the authorization. 

Example 2.2 Consider the following parametric rules: 

l (iO:(Bob,ol,-) WHENEVER (Alice,ol,-)) 
states that, starting at time 10, Bob can exercise, on 
object or, all privileges which Alice can exercise. 

l (iO:(Bob.-,read) WHENEVER (Alice,-,read)) 
states that, starting at time 10, Bob can read all ob- 
jects which Alice can read. 
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(Al) ([10,201, (Alice,or,read)) 

(Az) ([30,40], (Alice,or,read)) 

(RI) (5: (Bob,or,read) UNLESS (Alice,oi,read)) 

(Rz) (6: (John,oi,read) WHENEVERNOT (Alice.oi,read)) 

(Rs) (7: (Sam,or,read) WHENEVER (Alice,oi,read)) 

(I@ (iS:(Hatt,oi,read) ASLONGAS (Alice,oi,read)) 

Figure 1: An example of authorizations and derivation rules 

In the following, we use the term derivation rule to 
refer interchangeably to parametric and nonparametric 
derivation rules. We will explicitly refer to parametric 
or nonparametric derivation rules when a distinction is 
needed. 

Note that parametric derivation rules also allow the 
users to specify taxonomies of subjects, objects, and 
access modes [15]. These rules support the derivation of 
authorizations on the basis of these taxonomies without 
the need of introducing any further control in the model. 

For example, so far we have considered users as 
the only subjects of the authorizations. However, our 
model allows authorizations to be granted to groups of 
subjects, where subjects can be either users or groups. 
Authorizations specified for a group are valid for all the 
members of the group. To illustrate, suppose a user (or 
group) u is to be considered as a member of a group G. 

This can be expressed with a rule of the form: 

(tr:(U,--,-)WHENEVER(G,-,-)) 

where tr is the membership time of u in G. According 
to this rule all authorizations valid for subject G are 
valid also for subject u, which is exactly the semantics 
of group membership. 

One rule of the form above must be specified for each 
member of a group. Deletion of the rule is equivalent to 
the removal of the member from the group. 

Derivation of authorizations on the basis of relation- 
ships between access modes can be supported in an anal- 
ogous way. For example, we can state that the autho 
rization to write an object implies the authorization to 
read the same object as follows: 

(tr: (-,- ,read) WHENEVER (-,-,urite)). 

2.4 Formal semantics 

In this section we formalize the semantics of temporal 
authorizations and authorization rules. 

Definition 2.5 (Temporal Authorization Base) A 
Temporal Authorization Base (TAB) is a set of temporal 
authorizations and derivation rules. 

Definition 2.6 (Valid authorization) An authorita- 
tion (a ,o,m) is valid at time t if at time t, a temporal 
authorization (Ctl ,tJ , (s,o,m)), with tl < t 5 t2 is 
present in TAB or it can be derived from it through the 
derivation rules. 

We define a function f which, given an authorization, 
a TAB at a time t, and an authorization A = (s ,o,m), 
returns “true” if A is valid at time t, returns “false” 
otherwise. In the following, notation f (t , (s , o .m)) 
denotes that (s ,o,m) is valid at time t, whereas 

t 
ale i! 

s ,o,m)) indicates that (s ,o.m) is not valid at 

The semantics of temporal authorizations and deriva- 
tion rules is given in first order logic and is reported in 
Table 1. The semantics of a set X of temporal autho- 
rizations and/or derivation rules, denoted by S(X), is 
the conjunction of the first order formulas correspond- 
ing to each element in the set. 

Note that a temporal authorization and a derivation 
rule can be removed and therefore not be applicable 
anymore for the derivation of authorizations. In the 
formalization, we take this possibility into account 
by associating with each temporal authorization and 
derivation rule, the time td at which it is removed. 
Note that time td is not a constant and it is not known a 
priori. We use it as a shorthand for expressing the point 
up to which a temporal authorization, or a derivation 
rule, is applicable.2 A function removed0 can be defined 
which, given a temporal authorization, or a derivation 
rule, X, and a time t returns “false” if, at time t, X is 
still present in the TAB, and “true” otherwise. Time t 
is the smallest time t for which function removed(t,X ? 
returns “true”. 

The semantics illustrated in Table 1 considers only 
nonparametric derivation rules. In case of parametric 
rules, the semantics must be extended by adding a 
variable for each parameter (the same variable is used 
for corresponding parameters in the two authorizations 
of the rule) and quantifying over this variable. For 
example, the semantics of a parametric WHENEVER rule, 
respectively with one and two parameters is as follows. 

21f the considered temporal authorization, or derivation rule, 
is never removed, td is 00. 
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Auth/Rule Semantics 

Table 1: Semantics of temporal authorizations and rules 

s( tz:(si,ol,-) WHENEVER (82,01,-)) = 
vt,m (tr 5 t < td A f(t, (S2,ol,m))) 

4 f(t, (81 ,ol ,m)) 

S(tr:(sl,--,-) WHENEVER (S2,-,-)) = 
vt,o, m (tr 5 t < td h f(t, (s2,0,m))) 

+ f(t, (91 ,o, m)) 

Similarly, we can obtain the semantics of the para- 
metric temporal rules involving other temporal opera- 
tors and parameters in different positions. 

2.5 Access Control 

The access control determines which requests by users3 
to access the objects of the underlying data model can 
be allowed. 

Definition 2.7 (Access request) An access request 
is a pair (t ,A), where t E IN is the time at which the 
access is requested, and A is the triple (s ,o ,m) with 

s E 5’ the user who requires the access 

o E 0 the object to be accessed 

m E M the privilege to be exercised on object o. 

Every access request is checked against the current 
TAB to determine whether the access is authorized. 
An authorized access request is a request for which an 
authorization exists or it is derivable from the TAB. 
This is formalized by the following definition. 

Definition 2.8 (Authorized access request) An ac- 
cess request (t , A) is authorized if and only if A is valid 
at time t. 

Example 2.3 Consider the TAB illustrated in Fig- 
ure 2. 

Request (30, (John,oi,urite)) is authorized based 
on rules Rz and ~1 and on the fact that authorization 
(Bob,01 ,urite) is not valid at time 30. 

Request (30, (John, 02, write) ) is authorized based 
on rule R2 and authorization As. 

3Although authorizations can be specified for groups of users, 
access requests are always made by users. 

l Request (30, (Alice,oz,urite)) is authorized based 
on rule Rs and authorizations A1 and A3. Both Al 

and As are necessary for the validity of authorization 
(Ann,o2,urite) in the interval [11,30] as required 
for the application of rule Rs. 

l Request (30, (Alice, 02 ,read) ) is not authorized. 
In fact, the only rule from which this authorization 
could be derived is Rs, however this rule is applicable 
only if the authorization (Ann,oz,read) has been 
valid at each instant of the interval [ii ,301. This 
is not the case for the considered TAB. 

3 Critical sets of Rules 

Considering the above semantics and the fact that we 
do not have negative authorizations, an inconsistency, 
intended as an unsatisfiable formula obtained as the 
semantics of a set of derivation rules, cannot occur in our 
system. This will be formally stated by Proposition 3.1. 
However, we identify undesirable states of the system 
that we characterize by the presence of a critical set of 
rules. 

Intuitively, critical sets of rules are those that, start- 
ing from -f(t, A), can derive j(i, A) (the opposite cannot 
happen). A simple example is (tr :A1 WHENEVERNOT 
Al ) . This rule states that every time Al is not valid, it is 
valid. Indeed, if Al is not in TAB nor can be derived by 
other rules, then, through this rule, it can be derived. 
By the given semantics, this is equivalent to state that 
Al is always valid starting at tr. 

Critical sets can result from a combination of several 
rules. Even supposing that only the system administra- 
tor can insert the rules, it can happen that he inserts 
a rule that triggers a critical set formed by a long rule 
chain. This can happen without an explicit will of the 
administrator and it can have an unexpected effect. 

We do not allow critical sets of rules to be present 
in the system. The TAB is maintained free of critical 
sets. Each time a rule insertion is requested., it is 
accepted only if it does not form a critical set with the 
existing rules. In the rest of this section we formally 
define critical sets and we outline an algorithm for their 
detection. 

We start by introducing the notion of instance of a 
parametric rule. 

Definition 3.1 (Rule instance) A derivation rule is 
an instance of a parametric rule if each occurrence of 
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the symbol U-1’ has been substituted by an element of 
the domain S, 0, or M, depending on Ihe posilion of 
the symbol C” in the au2horiza2ion. The same element 

(AI) (C7,153, (Ann,oz,urite)) 

(AZ) (C20,30l,(Ann,o2,read)) 

(AS) (ClS,SOl, (Ann,oz,urite)) 

(RI) (S:(Ann,ol,urite) WHENEVERNOT (Bob,ol,urite)) 

(Rz) (lO:(John,--,urite) WHENEVER (Ann,--,urite)) 

(Rs) (11: (Alice.02, -) ASLONGAS (Ann.oz.-1) 

Figure 2: Example of Temporal Authorization Base with parametric rules 

must be used in the corresponding position of Ihe Iwo 
authoriza2ions. 

Example 3.1 Consider the following rule 

R = (tr:(81,-,-) WHENEVER (as,-,-)) 

(tr:(sl,ol,urite) WHENEVER (s2,ol,arite)) is 
an instance of R 

(tr:(sl,ol,read) WHENEVER (sz,ol,write)) is 
not an instance of R, since two different values have 
been substituted for symbol “-” in the access mode 
position. 

To formally characterize critical sets, we first consider 
how we can derive an authorization from another one 
through a chain of WHENEVER and ASLONGAS operators. 

Definition 3.2 (Positive derivability) An a&horita- 
2ion Am positively derives from an au2horira2ion An a2 
lime t (from now on we write Am +t An) if one of the 
following conditions holds a2 dime t: 

* m=n 

+ a rule (tr:Am WHENEVER An) is in TAB or i2 is 
an instance of a parametric rule in TAB 

* a rule (tr :Am ASLONGAS An) is in TAB or i2 is an 
instance of a parametric rule in TAB such that W 
tr < t’ < t implies f(t’,An) 

+ an a&horiza2ion Ak exists such lhal Am +t Ak tt 
All. 

We are now ready to identify critical sets of derivation 
rules. 

Definition 3.3 (Critical set) A TAB contains a cril- 
ical set of rules al time t if one of the following condi- 
tions holds a2 time t: 

* the rule (tr:An WHENEVERNOT Am) is in TAB or 
i2 is an instance of a parametric rule in TAB and 
Am +t An 

* the rule (tr :An UNLESS Am) is in TAB or il is an 
instance of a parametric rule in TAB such that Vt’ 
tr 5 t’ < t implies Tf(t’,Am); moreover Am +t An. 

In the following, we use the term negative operator 
(NEGOP) to refer to WHENEVERNOT or UNLESS, and 
negative rule to refer to a rule using one of these 
operators. 

Example 3.2 Consider the TAB reported in Figure 2 
and suppose that the following rule is added at time 40: 
(R4) (4o:(Bob,ol, -) ASLONGAS (John,ol,-1) 
This rule generates a critical set together with rule R2 
and with rule R1 playing the role of the negative rule of 
the set. It is easily checked that Definition 3.3 applies to 
this set of rules. Intuitively, rule R1 can be applied since, 
for example, ([40,401, (Bob.ol,urite)) is not in 
TAB and cannot be derived. However, the application 
of R1 gives ([40,40], (Ann,ol,urite)); then, Rz 
gives ([40,40], (John,ol,urite)) and finally, the 
application of R4 returns ([40,401, (Bob,01 ,arite) >, 
contradicting its non derivability. 

These sets of rules are considered critical essentially 
because they can have the effect of giving a permanent 
authorization when not intended by the administrator. 
This is considered a dangerous situation. However, 
the presence of a critical set does not lead to an 
inconsistency, as stated by the following proposition. 

Proposition 3.1 The semantics of a critical set of 
rules is always a satisfiable formula. 

Proof. The semantics of a critical set is a conjunction 
FI A . . . A Fk of logical formulas. If Fj represents the 
semantics of the only negative rule (t, : A,,, NEGOP A,,) 
in the critical set, Fj is an implication whose antecedent 
contains -f(t, A,,). We take a first order interpretation 
assigning the TRUE value to f(l, Ai) for each t E IN 
and for each Ai appearing in the critical set. This 
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interpretation satisfies each formula in the conjunction 
and hence the whole formula. Indeed, it satisfies Fj 
since -f(t, Ai) evaluates to FALSE and, hence, the 
antecedent of the implication evaluates to FALSE. It 
satisfies also the other formulas since the consequent of 
the implications always evaluates to TRUE under this 
interpretation. Cl 

A straightforward extension of Proposition 3.1 is 
obtained considering an arbitrary TAB (with or without 
critical sets) instead of a single critical set. This result 
actually implies that an inconsistent TAB cannot be 
generated in this model. 

To explain why a critical set can have the effect 
of giving a “permanent” authorization we make the 
following remark. 

R.emark 1 If Cl is a critical set of rules at time 
t wilh (tz:An WHENEVERNOT Am) as negative rule, 
then the semantics of Cl implies f(t’,Am) (validity of 
the authorization Am) for each time t’ starting at instant 
t until any of the rules in the critical set is deleted. 

The result stated by the above remark can be formally 
checked quite easily. Consider the case of a WHENEVER 
rule as the only positive rule: 

cl = {(tr:Az WHENEVERNOT Al), 
(t2:A1 WHENEVER AZ)} 

with tr 5 t2 5 td, where td is the minimum time 
between t 

R 
and t& that are respectively the instants 

at which t e first and the second rules are deleted. 

s(c1) = ‘it (tl 5 t < tdl A -f(t, AI) - f(t, A2)) 

A (t2 5 t < td2 A f(t, A2) --+ f (t, Al)) 
E Vt (tl 5 t < t2 A yf(t,Al) - f(t,A2)) 

A (t2 5 t < tdl A -f(t, Al) - f(t, A2)) 

A (t2 5 t < td2 A f(t,A2) + f(t,Al)) 
= tit (tl 5 t < t2 A -f(t,Al) + f(t,A2) 

A (t2 5 t < td A -f(t,Al) - f(t,Az) I 
; (tz 5 t < td A f(t,Az) + f(t,Al)) 

= tit it; 5 t < td + f(t, Al)) A . . . - 

From the last expression we can see that the semantics 
of Cl implies the validity of Al (f(t, Al)) from the time 
the critical set appears (t2) until any of the rules in the 
critical set is deleted (td). 

Example 3.3 With reference to Example 3.2 the intro- 
duction of rule ~4 would imply the validity of authoriza- 
tion (Bob,or ,urite) starting at time 40 until the time 
at which one of the rule in the critical set is deleted. 

A remark similar to Remark 1 can be stated when 
considering the negative operator UNLESS. 

Remark 2 If Cl is a critical set of rules at time t 
with (tr : An UNLESS Am) as negative rule, then the 
semantics of Cl implies f(t,Am), i.e., it implies the 
validity of the authorization Am only at time t. 

1. Consider the set of rules (tr:An WHENEVERNOT Am) 
and (tr :An UNLESS Am) and substitute each paramet- 
ric rule with its possible instances. 

2. Exclude UNLESS rules such that there exists 1’ with 
tr 5 2’ < t and f(t’,Am). 

3. FOR each rule in the computed set DO 

(a) Check if Am +t An. Instances of ASLONGAS rules 

must be checked for applicability as formally speci- 
fied in Definition 3.2. 

(b) IF the previous check succeeds THEN RETURN 
Yrue”. 

4. RETURN =false” 

Figure 3: Critical Set Detection 

Example 3.4 Consider the TAB reported in Figure 2 
and suppose that the following rule is added at time 60: 

(R4) (60: (Ann,os,urite) UNLESS (John,os.urite)) 
This rule generates a critical set together with rule ~2. 
The presence of these two rules in the TAB would imply 
the validity of authorization (John, 03, write) at time 
60. Note that after time 60 rule R4 would not be appli- 
cable anymore, i.e., (Ann,os,urite) cannot be derived 
from it. 

In Figure 3 we describe a general procedure for 
recognizing a critical set at time t. Essentially, it 
is necessary to instantiate all parametric rules and 
considering only rules that are applicable at time t. 
Note that in the implementation it is reasonable to 
maintain rules in their instantiated form. Moreover, the 
implementation could provide a mechanism to maintain 
the current set of applicable rules. This means ignoring 
UNLESS and ASLONGAS rule instances that cannot be 
applied any more. The main step consists in checking 
for each negative rule (tx:An NEGOP Am) if there 
exists a positive derivation from An to Am. Several 
techniques can be used to implement this step as, e.g., 
some form of backward chaining. Several heuristics can 
be used for optimization. For example, the number 
of instances of negative parametric rules that must be 
considered can be reduced using a look-ahead technique. 

4 TAB administration 

Authorizations can be changed upon execution of 
administrative operations. In the present paper, we 
consider a centralized policy for the administration of 
authorizations, where administrative operations can be 
executed only by the administrator. 

Administrative operations allow the administrator to 
add, remove, or modify temporal authorizations and 
derivation rules. Each temporal authorization, and 
each derivation rule, in the TAB is identified by a 

unique label assigned by the system at the time of its 
insertion. The label allows the administrator to refer 
to a specific temporal authorization or derivation rule 
upon execution of administrative operations. 

132 



Figure 4 reports the syntax, in BNF form, of the ad- 
ministrative operations considered by our model. Non 
terminal symbols (subject),(object),(access-mode), 
and (nat-number) represent elements of the domains 
S, 0, M, and lN respectively. Non terminal symbols 
(aid) and (rid) represent system labels. 

A description of the administrative operations fol- 
lows. 

GRANT To grant a privilege on an object to a subject. 
The grant operation allows the administrator to give 
a subject the authorization for a privilege on an 
object from a given time (start time) to an end 
time. The end time can be specified explicitly, i.e., 
is a given instant, or as the span from the start 
time. The grant operation results in the addition of 
a new temporal authorization. The start time of the 
authorization must be greater than or equal to the 
time at which the authorization is inserted (i.e:, it is 
not possible to specify retroactive authorizations). 
When a new authorization is inserted, a label 
(authorization identifier, aid) is assigned by the 
system. 

REVOKE To revoke a privilege on an object from a 
subject. The revoke operation results in the deletion 
of all the temporal authorizations of the subject for 
the privilege on the object. Revoke can also be used 
to remove a specific authorization if a label is given 
as the only argument. 

MODIFY To modify the temporal constraint of an 
authorization previously granted. The start time 
can be changed only if it is greater than the 
time at which the modification is requested, i.e., 
if the validity of the temporal authorization has 
not started yet. Analogously, the end time can be 
changed only if it is greater than the time at which 
the modification is requested, i.e, if the authorization 
has not expired yet. Moreover, the start time 
resulting after the operation must be greater than 
or equal to the time at which the modify operation 
is requested. 

ADDRULE To add a new derivation rule. When a 
new rule is inserted, a label (rule identifier, rid) is 
assigned by the system. 

DROPRULE To drop a derivation rule previously speci- 
fied. The operation requires, as argument, the label 
of the rule to be deleted. 

In our model, the validity of some authorizations 
(those derivable through rules) at a given time may 
depend on the validity of other authorizations at the 
same or at a different time. In particular, supporting 
temporal operators such as ASLONGAS and UNLESS 
requires evaluating the validity of other authorizations 
in a past time interval. 

For this reason, we consider that every time a RE- 
VOKE/DROPRULE operation is entered the correspond- 
ing authorization/rule is not removed, rather is tagged 

as unusable with the time td at which the administrator 
asked for its deletion. 

We classify temporal authorizations and derivation 
rules as follows: 

Withdrawn Temporal authorizations and derivation 
rules whose removal has been explicitly required 
(with a REVOKE/DROPRULE command) by the 
administrator. 

Expired Temporal authorizations and derivation rules 
which have not been withdrawn but which are 
not applicable anymore. They are authorizations 
whose end-time has passed and UNLESS/ASLONGAS 
rules from which no authorizations can be derived 
anymore.4 

Active Temporal authorizations and derivation rules 
not withdrawn nor expired. 

Expired or withdrawn authorizations and derivation 
rules cannot always be deleted from the TAB. The 
actual deletion of these authorizations or rules may 
imply the incorrect evaluation of other rules at a later 
time, as illustrated by the following example. 

Example 4.1 Consider the TAB reported in Figure 2. 
Authorization Al expires at time 16, however it cannot 
be deleted at that time. Otherwise rule Rs would not 
allow to derive authorization (Alice,oz,urite) after 
time 15. This would contradict the semantics of the 
considered set of rules. 

We consider that, periodically, the TAB is examined 
to determine the temporal authorizations and derivation 
rules which have expired and those, among the expired 
and withdrawn ones, which can be deleted. More 
precisely, at each time period 7 a cleaning process on 
the TAB is executed. Supposing the cleaning process is 
activated at time tc, we can schematically describe its 
operation as follows. 

Determine all authorizations whose end time is 
smaller than time tc and mark them as expired. 

Determine all UNLESS/ASLONGAS rules from which 
no authorization can be derived anymore and mark 
them as expired. 

Delete from the TAB all expired and withdrawn 
authorizations which cannot contribute to firing of 
active rules. 

Example 4.2 Consider the TAB reported in Figure 2 
and suppose that the cleaning process is executed at 
time 40. No authorization nor rule has been withdrawn. 
Authorizations Al and A2 are marked as expired. No 
rule has expired. Hence, the only candidates to be 
deleted are Ai and AZ. For the same reasons illustrated 

'The semantics of WHENEVER and WHENE~ERNOT rules implies 
that they cannot expire. 
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(administrative-operation) ::= (grant) 1 (revoke) 1 (modify) 1 

kr-) 
(add-rule) 1 (drop-rule) 

::= GRANT (access-mode 
1 

ON (object) TO (subject) 
FROMTIME 

(revoke) ::= REVOKE (aid) ] 
start-time) TOTIME (end-time) 

(modify) 

(add-rule) 

(drop-rule) 
(temp-operator) 
(subj > 

EL-time) 
I end-t ime) 
(new-start-time) 
(new-end-time) 

REVOKE (access-mode) ON (object) FROM (subject) 
::= MODIFY (aid) STARTTIME (new-start-time) 

ENDTIME (new-end-time) 
..- ..- ADDRULE (subj) (obj) (mod) (temp-operator) 

(subj) (obj) (mod) 
..- ..- DROPRULE (rid) 
..- ..- WHENEVER 1 ASLONGAS 1 WHENEVERNOT 1 UNLESS 
::= (subject) I - 
::= (object) I - 
..- ..- (access-mode) ] - 
::= # ] (nat-number) 
..- ..- 00 ] (nat-number) I + (nat-number) 
..- ..- (start-time) I + (nat-number) I -(nat-number) 
::= (end-time) ) -(nat-number) 

Figure 4: Syntax of administrative operations 

in Example 4.1, Al cannot be deleted, in fact it can still 
be used by rule Rs. By contrast, A2 is deleted, since the 
only rule which could use it is Es, but its application 
at time 2, with t 2 40, would require authorization 
(Ann, 02 ,read) to be valid at each instant of interval 
111 ,tl , which is not the case for this TAB. 

5 Conclusions 

In this paper we have presented a formal definition of 
a temporal authorization model. Our model provides 
two new concepts with respect to previously proposed 
authorization models: temporal intervals of validity 
for authorizations and temporal dependencies among 
authorizations. Both those concepts are crucial to 
meet the articulate security requirements deriving from 
advanced applications, such as office automation, CAD, 
CSCW. To our knowledge, no previous model has dealt 
with temporal authorizations. However, given the 
increasing relevance of time in database systems, it is 
important to take into account time in all operational 
aspects of database systems. A qualifying aspect of 
our model is that it is independent from a specific 
data model. Indeed, it can be applied to relational 
database systems, object-oriented database systems, 
and deductive database systems. 

The work reported in this paper can be extended 
in several directions, some of which we are currently 
investigating. First, the proposed model can be 
extended to consider a decentralized administration of 
authorizations. Under decentralized administration, 
several users are responsible for granting and revoking 
authorizations. In most models, the creator of an object 
is the owner of the object and is entitled to administrate 
authorizations on the object as well as to grant other 
users administration rights on the object. This policy 

can be imported in our model and revisited taking time 
into account. 

A second direction concerns the extension of deriva- 
tion rules. A straightforward extension consists in as- 
sociating temporal intervals of validity with derivation 
rules. In this paper, we have made the assumption that 
a rule is valid from the time of its insertion until the time 
it is deleted or infinity. The model can be extended to 
admit rules with explicitly specified time intervals. Af- 
ter an interval elapses, the associated derivation rule is 
revoked. Another interesting extension can be obtained 
considering temporal operators on intervals as, for ex- 
ample, the ones used in [2]. 

A third direction deals with negative authorizations. 
Negative authorizations are given to explicitly forbid 
access to users on specific objects. Negative authoriza- 
tions are particularly useful for modeling exceptions and 
to limit, in some cases, user discretionality in decentral- 
ized authorization administration. The introduction of 
negative authorizations in our temporal authorization 
model will lead to several interesting questions concern- 
ing both theory and implementation. 

Finally, a fourth direction concerns implementation 
issues and authorization administration tools. The main 
complexity of our authorization model derives from the 
need to use an inference mechanism to derive autho 
rizations from the authorizations stored into the autho- 
rization base. Therefore, this inference process must 
be enhanced by using techniques similar to those pro- 
posed for view materialization in relational databases 
and deductive databases. Administration tools are par- 
ticularly crucial when dealing with sophisticated autho- 
rization models. In our model, for example, it is im- 
portant to develop a tool providing information about 
derivation rules involved in critical sets. The area of ad- 
ministration tools has not, however, been so far widely 
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investigated. We plan to invest a major effort in this 
direction. 
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