
A Temporal Authorization Model *

Elisa Bertino Claudio Bettini Pierangela Samarati

Dipartimento di Scienze deII’Informazione
Universith di MiIano

via Comeko 39/41 MiIano 20135, Italy

Phone: (+39) 2-55006227

Fax: (+39) 2-55006253

{ebertino,bebbini,somaruti} &fsi.unimi.ib

Abstract

This paper presents a discretionary access control model in
which authorizations contain temporal information. This
information can be used to specify temporal intervals
of validity for authorizations and temporal dependencies
among authorizations. A formal definition of those concepts
is presented in the paper, in terms of their interpretation
in first order logic. We characterize sets of temporal
dependencies that can lead to undesirable states of the
authorization system and we sketch an algorithm for their
detection. Finally, operations to add, remove, or modify
authorizations and temporal dependencies are described.

1 Introduction

The area of database security has been recently a fast
growing area. Indeed, there is today an increased aware-
ness of the importance of data protection from unau-
thorized accesses and from various types of intrusions,
such as those through Trojan Horses or covert chan-
nels [7]. Due to the recent advancements in the area of
secure DBMS during the past years, several vendors of
relational DBMS (RDBMS) now have secure versions of
their products which are commercially available. There-
fore, DBMS security is a research area which has a tan-
gible impact on commercial product development. In
particular, most, commercial DBMS provide at least, an
authorization mechanism, by using which users of the

*The work reported in this paper was partially supported
by CNR under Grant no. 94.00450.CT12, by NATO under
Collaborative Research Grant no. 930888, and by the Italian
M.U.R.S.T.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear,. and notice is given
that copying is by permission of the Assocration of Comptiing
Machinery. To copy otherwise, or to republish, reqUireS a fee
and/or specific permission.
CCS ‘94 1 l/94 Fairfax Va., USA
0 1994 ACM O-89791 -732-4/94/0011..$3.50

database may be granted authorizations to read and/or
write data.

Current research directions in DBMS security can
be summarized as follows. A first direction concerns
increasing the expressive power of authorization models
and developing the appropriate tools and mechanisms
to support those models. An example of this direction
is the introduction of negative authorization [6], and
of role-based and task-based authorization models [8,
16, 201. The increased awareness of the need for
data protection and the complexity of new applications
have resulted in more articulated authorization policies.
Those policies need models and systems directly able
to support them. Therefore, it is crucial to develop
powerful authorization mechanisms which provide, at
the same time, concise languages and adequate tools
for their use.

A second direction concerns the development of au-
thorization models for advanced DBMS, like object-
oriented DBMS [15, 11, 191 or active DBMS. Those
DBMS are characterized by richer data models, includ-
ing notions such as inheritance hierarchies, composite
objects, versions, and methods. Therefore, authoriza-
tion models first developed for RDBMS [12] must be
properly extended to include features related to those
additional modeling concepts [5].

A third direction, generally known as mandatory
access control, is to develop techniques to protect
data against intrusion through sophisticated means, like
Trojan Horses and covert channels. Several results
have been so far reported for RDBMS [3, 9, 10, 171
and applied to commercial products [14]. Research
has also started dealing with advanced DBMS, like
OODBMS [22, 4, 131 and active DBMS [18].

The work reported in this paper deals with the first
of the above research directions. The goal of our work
is to extend the expressive power of a conventional
authorization model with temporal information. The
need for extending authorizations to the consideration

126

of temporal semantics was also pointed out by Thomas
and Sandhu in [21].

Our temporal extension to authorization models is
based on two main concepts. The first concept is the
temporal interval of validity of authorizations. In our
model it is possible to specify that an authorization will
expire after a specified point in time, or that an autho-
rization is valid only in a specified temporal interval.
Note that in many real-life situations authorizations are
limited in time - consider for example a badge which is
valid for only one day. Therefore, it is important to
develop authorization models able to directly support
those application requirements. The second concept is
the temporal dependency among authorizations. A tem-
poral dependency can be used, for example, to specify
that a user has an authorization as long as another user
has this authorization. This type of capabilities is very
useful in many advanced applications, like for example
CSCW applications.

Besides proposing a basic set of operators to specify
temporal dependencies, we introduce a formalism to
concisely express many dependencies. For example,
a single statement can specify that a user can read
all the files that another user can read, relatively to
an interval of time. A very general framework to
specify authorization rules has been proposed by Woo
and Lam in [24]. Their language to specify rules
for the derivation of authorizations has almost the
expressive power of first order logic. The tradeoff
between expressiveness and efficiency seems to be
strongly unbalanced in their approach. We think that
it is important to investigate more restricted languages
focusing on relevant properties. The temporal language
we propose in this paper can be considered as a step
in this direction. Another logic language for describing
access control policies has been proposed by Abadi et Al.
in [l]. However their logic is mainly used to represent
concepts such as roles and delegation of authorities
and their framework does not provide any mechanism
to express temporal operators for the derivation of
authorizations.

In this paper, we only deal with discretionary access
control and not with mandatory access control. Note,
however, that the majority of DBMS only provide
discretionary access control. Therefore, since the focus
of our research is how to extend the authorization
facilities provided by a conventional DBMS, we only
address discretionary access control. Recent multilevel
DBMS (like Trusted Oracle [14]) provide mandatory
access control coupled with discretionary access control.
Therefore, the new features provided by our model could
be orthogonally incorporated into such systems as well.

The remainder of this paper is organized as follows. In
Section 2 we present the temporal authorization model.
We start by formalizing our notion of time and making
some assumptions used in the proposed model. We then
define a Temporal Authorization Base as composed of
explicit authorizations and derivation rules (dependen-
cies). A first order logic semantics is provided. This
section ends defining when an access request is autho-
rized. In Section 3 we show that we cannot have sets of
rules leading to an inconsistent authorization base, but

we formally characterize sets of rules that could have
undesirable effects and we sketch an algorithm for their
detection. The issue of administration, including formal
syntax of primitives for adding, removing, and modify-
ing temporal authorizations is dealt with in Section 4.
A few remarks about possible extensions of this work
conclude the paper.

2 The authorization model

In this section we introduce our authorization model.

2.1 Model of time and basic assumptions

We assume a discrete model of time. In the database
community, a chronon usually identifies the smallest
indivisible unit of time. We can take a chronon or a
fixed multiple of a chronon as our time unit. In any
case, our model of time is isomorphic to the natural
numbers IN with a total order relation <.

For the moment, we assume the transactions in
the database to be instantaneous. Moreover, we
ignore the time required by the system to check if
a certain authorization is present or can be derived.
These assumptions allow us to consider the time t
at which an access is requested and to look for a
temporal authorization allowing that access at time t.
In practice, while the system is trying to derive the
authorization, the instant t could become an instant
in the past and the actual access will not be made at
that instant. Several implementation techniques can be
used to overcome these problems, but we do not address
in this paper the issue of relaxing these assumptions.

We do not make any assumptions on the underlying
data model to which accesses must be controlled, and
therefore on the access modes users can exercise in the
systems. The choice of the data model and of the access
modes executable on the objects of the model is to be
made when a system is initialized. In this way our
authorization model can be used for the protection of
information in different data models.

2.2 Temporal authorizations

Authorizations specify which accesses by users to the
objects of the system are allowed. Let S denote the set
of subjects (users) in the system, 0 the set of objects,
and M the set of access modes. Authorizations are
formally defined as follows.

Definition 2.1 (Authorization) An authorization is
a triple (s ,o ,m) where

s E S is the subject (user) to whom the authorization
is granted

o E 0 is the object on which the authorization is
granted

m E M is the access mode, or privilege, for which the
authorization is granted.

127

Tuple (s ,o,m) states that user s is authorized to
execute access mode m on object o.

In our model we consider a temporal constraint to
be associated with each authorization. We refer to an
authorization together with a temporal constraint as
a temporal authorization. Temporal authorizations are
defined as follows.

Definition 2.2 (Temporal authorization) A tempo-
ral authorization is a pair (time,auth), where time is
u time interval [ti,tjl, with ti E IN, tjE IN UOO, ti

5 tj, and auth is an authorization.

Temporal authorization ([ti ,tJ , (s,o,m)) states
that subject s is allowed to exercise access mode m on
object o in the interval [tr , tzl including time instants
ti and t2.

A simple authorization, i.e., an authorization without
any temporal constraint, can be represented as a
temporal authorization whose validity spans from the
time to which the authorization is granted to infinity.’

2.3 Derivation rules

In our model additional authorizations can be derived
from the explicitly specified authorizations. The deriva-
tion is based on temporal propositions used as rules.
They allow new temporal authorizations to be derived
on the basis of the presence or absence of other tempo-
ral authorizations. The authorizations considered valid
at a given time are, beside the authorizations explicitly
stated, all the authorizations which can be derived from
the rules. Derivation rules are defined as follows.

Definition 2.3 (Derivation rule) A derivation rule
is defined as (tz:Ar(temp-operator)Az), where tr is
the tine at which the rule has been specified, Al and
A2 are authorizations, and (temp-operator) is one
of the following operators: WHENEVER, ASLONGAS,
WHENEVERNOT, UNLESS.

Unlike authorizations, derivation rules do not have
associated time intervals. A rule is considered valid from
the time tz of its insertion until the time it is deleted
or infinity.

The intuitive semantics of derivation rules is as
follows:

- (tr:Al WHENEVER AZ).
Al can be considered valid for each time instant for
which AL, is valid.

- (tr:A1 ASLONGAS A2).
If Az is valid at the time tr at which the rule is
specified, then also A1 is valid and it will remain
valid until A2 validity will expire. With respect to
WHENEVER, using this operator, we do not ensure
validity of Ai in future instants where A2 will be valid
again.

‘This corresponds to having an implicit ALLTIhiE operator,
often used in temporal logics [23].

(tr:Al WHENEVERNOT A,).
Al can be considered valid for each time instant for
which A2 is not valid.

(tr:Al UNLESS A2).
If A2 is not valid at the time tr at which the rule is
specified, then Al becomes valid and it will remain
valid until the last instant before the one at which
A2 becomes valid. With respect to WHENEVERNOT,
using this operator, we do not ensure validity of A1
the next time that A2 becomes not valid again.

Example 2.1 Consider the authorizations and deriva-
tion rules illustrated in Figure 1.

The following temporal authorizations can be derived:

(CS,Sl , (Bob,oi,read)) from rule Ri and autho-
rization Al, where 5 is the instant at which Ri is
inserted, and 9 is the instant preceding the first in-
stant at which (Alice,01 ,read) becomes valid.

(C6.91, (John,ol.read)),
(C21.291, (John,ol,read)), and
([41,ool, (John,ol,read)), from rule R2.

([10,201, (Sam,ol,read)), and
([30,40] , (Sam,oi ,read) >, from rule Rs and au-
thorizations Ai and Aa.

([IS, 201, (Hatt ,ol ,read)) from rule R4 and au-
thorization Al, where 15 is the instant at which R4 is
inserted, and 20 is the instant preceding the first in-
stant at which (Alice,01 ,read) becomes not valid.

Our model allows derivation rules where up to two
elements of the authorizations can be left unspecified,
i.e., can be bound to different values. We refer to
these rules as parametric derivation rules. Parametric
derivation rules are formally defined as follows.

Definition 2.4 (Parametric derivation rule)
A parametric derivation rule is a derivation rule where
symbol U-” appears for subjects, objects, or access
modes in the authorizations. If symbol U-n appears in
an authorization of the rule, it must appear, in the same
position, also in the other authorization.

Symbol “-” is a parameter which denotes any
subject, object, or access mode depending on its
position in the authorization.

Example 2.2 Consider the following parametric rules:

l (iO:(Bob,ol,-) WHENEVER (Alice,ol,-))
states that, starting at time 10, Bob can exercise, on
object or, all privileges which Alice can exercise.

l (iO:(Bob.-,read) WHENEVER (Alice,-,read))
states that, starting at time 10, Bob can read all ob-
jects which Alice can read.

128

(Al) ([10,201, (Alice,or,read))

(Az) ([30,40], (Alice,or,read))

(RI) (5: (Bob,or,read) UNLESS (Alice,oi,read))

(Rz) (6: (John,oi,read) WHENEVERNOT (Alice.oi,read))

(Rs) (7: (Sam,or,read) WHENEVER (Alice,oi,read))

(I@ (iS:(Hatt,oi,read) ASLONGAS (Alice,oi,read))

Figure 1: An example of authorizations and derivation rules

In the following, we use the term derivation rule to
refer interchangeably to parametric and nonparametric
derivation rules. We will explicitly refer to parametric
or nonparametric derivation rules when a distinction is
needed.

Note that parametric derivation rules also allow the
users to specify taxonomies of subjects, objects, and
access modes [15]. These rules support the derivation of
authorizations on the basis of these taxonomies without
the need of introducing any further control in the model.

For example, so far we have considered users as
the only subjects of the authorizations. However, our
model allows authorizations to be granted to groups of
subjects, where subjects can be either users or groups.
Authorizations specified for a group are valid for all the
members of the group. To illustrate, suppose a user (or
group) u is to be considered as a member of a group G.

This can be expressed with a rule of the form:

(tr:(U,--,-)WHENEVER(G,-,-))

where tr is the membership time of u in G. According
to this rule all authorizations valid for subject G are
valid also for subject u, which is exactly the semantics
of group membership.

One rule of the form above must be specified for each
member of a group. Deletion of the rule is equivalent to
the removal of the member from the group.

Derivation of authorizations on the basis of relation-
ships between access modes can be supported in an anal-
ogous way. For example, we can state that the autho
rization to write an object implies the authorization to
read the same object as follows:

(tr: (-,- ,read) WHENEVER (-,-,urite)).

2.4 Formal semantics

In this section we formalize the semantics of temporal
authorizations and authorization rules.

Definition 2.5 (Temporal Authorization Base) A
Temporal Authorization Base (TAB) is a set of temporal
authorizations and derivation rules.

Definition 2.6 (Valid authorization) An authorita-
tion (a ,o,m) is valid at time t if at time t, a temporal
authorization (Ctl ,tJ , (s,o,m)), with tl < t 5 t2 is
present in TAB or it can be derived from it through the
derivation rules.

We define a function f which, given an authorization,
a TAB at a time t, and an authorization A = (s ,o,m),
returns “true” if A is valid at time t, returns “false”
otherwise. In the following, notation f (t , (s , o .m))
denotes that (s ,o,m) is valid at time t, whereas

t
ale i!

s ,o,m)) indicates that (s ,o.m) is not valid at

The semantics of temporal authorizations and deriva-
tion rules is given in first order logic and is reported in
Table 1. The semantics of a set X of temporal autho-
rizations and/or derivation rules, denoted by S(X), is
the conjunction of the first order formulas correspond-
ing to each element in the set.

Note that a temporal authorization and a derivation
rule can be removed and therefore not be applicable
anymore for the derivation of authorizations. In the
formalization, we take this possibility into account
by associating with each temporal authorization and
derivation rule, the time td at which it is removed.
Note that time td is not a constant and it is not known a
priori. We use it as a shorthand for expressing the point
up to which a temporal authorization, or a derivation
rule, is applicable.2 A function removed0 can be defined
which, given a temporal authorization, or a derivation
rule, X, and a time t returns “false” if, at time t, X is
still present in the TAB, and “true” otherwise. Time t
is the smallest time t for which function removed(t,X ?
returns “true”.

The semantics illustrated in Table 1 considers only
nonparametric derivation rules. In case of parametric
rules, the semantics must be extended by adding a
variable for each parameter (the same variable is used
for corresponding parameters in the two authorizations
of the rule) and quantifying over this variable. For
example, the semantics of a parametric WHENEVER rule,
respectively with one and two parameters is as follows.

21f the considered temporal authorization, or derivation rule,
is never removed, td is 00.

129

Auth/Rule Semantics

Table 1: Semantics of temporal authorizations and rules

s(tz:(si,ol,-) WHENEVER (82,01,-)) =
vt,m (tr 5 t < td A f(t, (S2,ol,m)))

4 f(t, (81 ,ol ,m))

S(tr:(sl,--,-) WHENEVER (S2,-,-)) =
vt,o, m (tr 5 t < td h f(t, (s2,0,m)))

+ f(t, (91 ,o, m))

Similarly, we can obtain the semantics of the para-
metric temporal rules involving other temporal opera-
tors and parameters in different positions.

2.5 Access Control

The access control determines which requests by users3
to access the objects of the underlying data model can
be allowed.

Definition 2.7 (Access request) An access request
is a pair (t ,A), where t E IN is the time at which the
access is requested, and A is the triple (s ,o ,m) with

s E 5’ the user who requires the access

o E 0 the object to be accessed

m E M the privilege to be exercised on object o.

Every access request is checked against the current
TAB to determine whether the access is authorized.
An authorized access request is a request for which an
authorization exists or it is derivable from the TAB.
This is formalized by the following definition.

Definition 2.8 (Authorized access request) An ac-
cess request (t , A) is authorized if and only if A is valid
at time t.

Example 2.3 Consider the TAB illustrated in Fig-
ure 2.

Request (30, (John,oi,urite)) is authorized based
on rules Rz and ~1 and on the fact that authorization
(Bob,01 ,urite) is not valid at time 30.

Request (30, (John, 02, write)) is authorized based
on rule R2 and authorization As.

3Although authorizations can be specified for groups of users,
access requests are always made by users.

l Request (30, (Alice,oz,urite)) is authorized based
on rule Rs and authorizations A1 and A3. Both Al

and As are necessary for the validity of authorization
(Ann,o2,urite) in the interval [11,30] as required
for the application of rule Rs.

l Request (30, (Alice, 02 ,read)) is not authorized.
In fact, the only rule from which this authorization
could be derived is Rs, however this rule is applicable
only if the authorization (Ann,oz,read) has been
valid at each instant of the interval [ii ,301. This
is not the case for the considered TAB.

3 Critical sets of Rules

Considering the above semantics and the fact that we
do not have negative authorizations, an inconsistency,
intended as an unsatisfiable formula obtained as the
semantics of a set of derivation rules, cannot occur in our
system. This will be formally stated by Proposition 3.1.
However, we identify undesirable states of the system
that we characterize by the presence of a critical set of
rules.

Intuitively, critical sets of rules are those that, start-
ing from -f(t, A), can derive j(i, A) (the opposite cannot
happen). A simple example is (tr :A1 WHENEVERNOT
Al) . This rule states that every time Al is not valid, it is
valid. Indeed, if Al is not in TAB nor can be derived by
other rules, then, through this rule, it can be derived.
By the given semantics, this is equivalent to state that
Al is always valid starting at tr.

Critical sets can result from a combination of several
rules. Even supposing that only the system administra-
tor can insert the rules, it can happen that he inserts
a rule that triggers a critical set formed by a long rule
chain. This can happen without an explicit will of the
administrator and it can have an unexpected effect.

We do not allow critical sets of rules to be present
in the system. The TAB is maintained free of critical
sets. Each time a rule insertion is requested., it is
accepted only if it does not form a critical set with the
existing rules. In the rest of this section we formally
define critical sets and we outline an algorithm for their
detection.

We start by introducing the notion of instance of a
parametric rule.

Definition 3.1 (Rule instance) A derivation rule is
an instance of a parametric rule if each occurrence of

130

the symbol U-1’ has been substituted by an element of
the domain S, 0, or M, depending on Ihe posilion of
the symbol C” in the au2horiza2ion. The same element

(AI) (C7,153, (Ann,oz,urite))

(AZ) (C20,30l,(Ann,o2,read))

(AS) (ClS,SOl, (Ann,oz,urite))

(RI) (S:(Ann,ol,urite) WHENEVERNOT (Bob,ol,urite))

(Rz) (lO:(John,--,urite) WHENEVER (Ann,--,urite))

(Rs) (11: (Alice.02, -) ASLONGAS (Ann.oz.-1)

Figure 2: Example of Temporal Authorization Base with parametric rules

must be used in the corresponding position of Ihe Iwo
authoriza2ions.

Example 3.1 Consider the following rule

R = (tr:(81,-,-) WHENEVER (as,-,-))

(tr:(sl,ol,urite) WHENEVER (s2,ol,arite)) is
an instance of R

(tr:(sl,ol,read) WHENEVER (sz,ol,write)) is
not an instance of R, since two different values have
been substituted for symbol “-” in the access mode
position.

To formally characterize critical sets, we first consider
how we can derive an authorization from another one
through a chain of WHENEVER and ASLONGAS operators.

Definition 3.2 (Positive derivability) An a&horita-
2ion Am positively derives from an au2horira2ion An a2
lime t (from now on we write Am +t An) if one of the
following conditions holds a2 dime t:

* m=n

+ a rule (tr:Am WHENEVER An) is in TAB or i2 is
an instance of a parametric rule in TAB

* a rule (tr :Am ASLONGAS An) is in TAB or i2 is an
instance of a parametric rule in TAB such that W
tr < t’ < t implies f(t’,An)

+ an a&horiza2ion Ak exists such lhal Am +t Ak tt
All.

We are now ready to identify critical sets of derivation
rules.

Definition 3.3 (Critical set) A TAB contains a cril-
ical set of rules al time t if one of the following condi-
tions holds a2 time t:

* the rule (tr:An WHENEVERNOT Am) is in TAB or
i2 is an instance of a parametric rule in TAB and
Am +t An

* the rule (tr :An UNLESS Am) is in TAB or il is an
instance of a parametric rule in TAB such that Vt’
tr 5 t’ < t implies Tf(t’,Am); moreover Am +t An.

In the following, we use the term negative operator
(NEGOP) to refer to WHENEVERNOT or UNLESS, and
negative rule to refer to a rule using one of these
operators.

Example 3.2 Consider the TAB reported in Figure 2
and suppose that the following rule is added at time 40:
(R4) (4o:(Bob,ol, -) ASLONGAS (John,ol,-1)
This rule generates a critical set together with rule R2
and with rule R1 playing the role of the negative rule of
the set. It is easily checked that Definition 3.3 applies to
this set of rules. Intuitively, rule R1 can be applied since,
for example, ([40,401, (Bob.ol,urite)) is not in
TAB and cannot be derived. However, the application
of R1 gives ([40,40], (Ann,ol,urite)); then, Rz
gives ([40,40], (John,ol,urite)) and finally, the
application of R4 returns ([40,401, (Bob,01 ,arite) >,
contradicting its non derivability.

These sets of rules are considered critical essentially
because they can have the effect of giving a permanent
authorization when not intended by the administrator.
This is considered a dangerous situation. However,
the presence of a critical set does not lead to an
inconsistency, as stated by the following proposition.

Proposition 3.1 The semantics of a critical set of
rules is always a satisfiable formula.

Proof. The semantics of a critical set is a conjunction
FI A . . . A Fk of logical formulas. If Fj represents the
semantics of the only negative rule (t, : A,,, NEGOP A,,)
in the critical set, Fj is an implication whose antecedent
contains -f(t, A,,). We take a first order interpretation
assigning the TRUE value to f(l, Ai) for each t E IN
and for each Ai appearing in the critical set. This

131

interpretation satisfies each formula in the conjunction
and hence the whole formula. Indeed, it satisfies Fj
since -f(t, Ai) evaluates to FALSE and, hence, the
antecedent of the implication evaluates to FALSE. It
satisfies also the other formulas since the consequent of
the implications always evaluates to TRUE under this
interpretation. Cl

A straightforward extension of Proposition 3.1 is
obtained considering an arbitrary TAB (with or without
critical sets) instead of a single critical set. This result
actually implies that an inconsistent TAB cannot be
generated in this model.

To explain why a critical set can have the effect
of giving a “permanent” authorization we make the
following remark.

R.emark 1 If Cl is a critical set of rules at time
t wilh (tz:An WHENEVERNOT Am) as negative rule,
then the semantics of Cl implies f(t’,Am) (validity of
the authorization Am) for each time t’ starting at instant
t until any of the rules in the critical set is deleted.

The result stated by the above remark can be formally
checked quite easily. Consider the case of a WHENEVER
rule as the only positive rule:

cl = {(tr:Az WHENEVERNOT Al),
(t2:A1 WHENEVER AZ)}

with tr 5 t2 5 td, where td is the minimum time
between t

R
and t& that are respectively the instants

at which t e first and the second rules are deleted.

s(c1) = ‘it (tl 5 t < tdl A -f(t, AI) - f(t, A2))

A (t2 5 t < td2 A f(t, A2) --+ f (t, Al))
E Vt (tl 5 t < t2 A yf(t,Al) - f(t,A2))

A (t2 5 t < tdl A -f(t, Al) - f(t, A2))

A (t2 5 t < td2 A f(t,A2) + f(t,Al))
= tit (tl 5 t < t2 A -f(t,Al) + f(t,A2)

A (t2 5 t < td A -f(t,Al) - f(t,Az) I
; (tz 5 t < td A f(t,Az) + f(t,Al))

= tit it; 5 t < td + f(t, Al)) A . . . -

From the last expression we can see that the semantics
of Cl implies the validity of Al (f(t, Al)) from the time
the critical set appears (t2) until any of the rules in the
critical set is deleted (td).

Example 3.3 With reference to Example 3.2 the intro-
duction of rule ~4 would imply the validity of authoriza-
tion (Bob,or ,urite) starting at time 40 until the time
at which one of the rule in the critical set is deleted.

A remark similar to Remark 1 can be stated when
considering the negative operator UNLESS.

Remark 2 If Cl is a critical set of rules at time t
with (tr : An UNLESS Am) as negative rule, then the
semantics of Cl implies f(t,Am), i.e., it implies the
validity of the authorization Am only at time t.

1. Consider the set of rules (tr:An WHENEVERNOT Am)
and (tr :An UNLESS Am) and substitute each paramet-
ric rule with its possible instances.

2. Exclude UNLESS rules such that there exists 1’ with
tr 5 2’ < t and f(t’,Am).

3. FOR each rule in the computed set DO

(a) Check if Am +t An. Instances of ASLONGAS rules

must be checked for applicability as formally speci-
fied in Definition 3.2.

(b) IF the previous check succeeds THEN RETURN
Yrue”.

4. RETURN =false”

Figure 3: Critical Set Detection

Example 3.4 Consider the TAB reported in Figure 2
and suppose that the following rule is added at time 60:

(R4) (60: (Ann,os,urite) UNLESS (John,os.urite))
This rule generates a critical set together with rule ~2.
The presence of these two rules in the TAB would imply
the validity of authorization (John, 03, write) at time
60. Note that after time 60 rule R4 would not be appli-
cable anymore, i.e., (Ann,os,urite) cannot be derived
from it.

In Figure 3 we describe a general procedure for
recognizing a critical set at time t. Essentially, it
is necessary to instantiate all parametric rules and
considering only rules that are applicable at time t.
Note that in the implementation it is reasonable to
maintain rules in their instantiated form. Moreover, the
implementation could provide a mechanism to maintain
the current set of applicable rules. This means ignoring
UNLESS and ASLONGAS rule instances that cannot be
applied any more. The main step consists in checking
for each negative rule (tx:An NEGOP Am) if there
exists a positive derivation from An to Am. Several
techniques can be used to implement this step as, e.g.,
some form of backward chaining. Several heuristics can
be used for optimization. For example, the number
of instances of negative parametric rules that must be
considered can be reduced using a look-ahead technique.

4 TAB administration

Authorizations can be changed upon execution of
administrative operations. In the present paper, we
consider a centralized policy for the administration of
authorizations, where administrative operations can be
executed only by the administrator.

Administrative operations allow the administrator to
add, remove, or modify temporal authorizations and
derivation rules. Each temporal authorization, and
each derivation rule, in the TAB is identified by a

unique label assigned by the system at the time of its
insertion. The label allows the administrator to refer
to a specific temporal authorization or derivation rule
upon execution of administrative operations.

132

Figure 4 reports the syntax, in BNF form, of the ad-
ministrative operations considered by our model. Non
terminal symbols (subject),(object),(access-mode),
and (nat-number) represent elements of the domains
S, 0, M, and lN respectively. Non terminal symbols
(aid) and (rid) represent system labels.

A description of the administrative operations fol-
lows.

GRANT To grant a privilege on an object to a subject.
The grant operation allows the administrator to give
a subject the authorization for a privilege on an
object from a given time (start time) to an end
time. The end time can be specified explicitly, i.e.,
is a given instant, or as the span from the start
time. The grant operation results in the addition of
a new temporal authorization. The start time of the
authorization must be greater than or equal to the
time at which the authorization is inserted (i.e:, it is
not possible to specify retroactive authorizations).
When a new authorization is inserted, a label
(authorization identifier, aid) is assigned by the
system.

REVOKE To revoke a privilege on an object from a
subject. The revoke operation results in the deletion
of all the temporal authorizations of the subject for
the privilege on the object. Revoke can also be used
to remove a specific authorization if a label is given
as the only argument.

MODIFY To modify the temporal constraint of an
authorization previously granted. The start time
can be changed only if it is greater than the
time at which the modification is requested, i.e.,
if the validity of the temporal authorization has
not started yet. Analogously, the end time can be
changed only if it is greater than the time at which
the modification is requested, i.e, if the authorization
has not expired yet. Moreover, the start time
resulting after the operation must be greater than
or equal to the time at which the modify operation
is requested.

ADDRULE To add a new derivation rule. When a
new rule is inserted, a label (rule identifier, rid) is
assigned by the system.

DROPRULE To drop a derivation rule previously speci-
fied. The operation requires, as argument, the label
of the rule to be deleted.

In our model, the validity of some authorizations
(those derivable through rules) at a given time may
depend on the validity of other authorizations at the
same or at a different time. In particular, supporting
temporal operators such as ASLONGAS and UNLESS
requires evaluating the validity of other authorizations
in a past time interval.

For this reason, we consider that every time a RE-
VOKE/DROPRULE operation is entered the correspond-
ing authorization/rule is not removed, rather is tagged

as unusable with the time td at which the administrator
asked for its deletion.

We classify temporal authorizations and derivation
rules as follows:

Withdrawn Temporal authorizations and derivation
rules whose removal has been explicitly required
(with a REVOKE/DROPRULE command) by the
administrator.

Expired Temporal authorizations and derivation rules
which have not been withdrawn but which are
not applicable anymore. They are authorizations
whose end-time has passed and UNLESS/ASLONGAS
rules from which no authorizations can be derived
anymore.4

Active Temporal authorizations and derivation rules
not withdrawn nor expired.

Expired or withdrawn authorizations and derivation
rules cannot always be deleted from the TAB. The
actual deletion of these authorizations or rules may
imply the incorrect evaluation of other rules at a later
time, as illustrated by the following example.

Example 4.1 Consider the TAB reported in Figure 2.
Authorization Al expires at time 16, however it cannot
be deleted at that time. Otherwise rule Rs would not
allow to derive authorization (Alice,oz,urite) after
time 15. This would contradict the semantics of the
considered set of rules.

We consider that, periodically, the TAB is examined
to determine the temporal authorizations and derivation
rules which have expired and those, among the expired
and withdrawn ones, which can be deleted. More
precisely, at each time period 7 a cleaning process on
the TAB is executed. Supposing the cleaning process is
activated at time tc, we can schematically describe its
operation as follows.

Determine all authorizations whose end time is
smaller than time tc and mark them as expired.

Determine all UNLESS/ASLONGAS rules from which
no authorization can be derived anymore and mark
them as expired.

Delete from the TAB all expired and withdrawn
authorizations which cannot contribute to firing of
active rules.

Example 4.2 Consider the TAB reported in Figure 2
and suppose that the cleaning process is executed at
time 40. No authorization nor rule has been withdrawn.
Authorizations Al and A2 are marked as expired. No
rule has expired. Hence, the only candidates to be
deleted are Ai and AZ. For the same reasons illustrated

'The semantics of WHENEVER and WHENE~ERNOT rules implies
that they cannot expire.

133

(administrative-operation) ::= (grant) 1 (revoke) 1 (modify) 1

kr-)
(add-rule) 1 (drop-rule)

::= GRANT (access-mode
1

ON (object) TO (subject)
FROMTIME

(revoke) ::= REVOKE (aid)]
start-time) TOTIME (end-time)

(modify)

(add-rule)

(drop-rule)
(temp-operator)
(subj >

EL-time)
I end-t ime)
(new-start-time)
(new-end-time)

REVOKE (access-mode) ON (object) FROM (subject)
::= MODIFY (aid) STARTTIME (new-start-time)

ENDTIME (new-end-time)
..- ..- ADDRULE (subj) (obj) (mod) (temp-operator)

(subj) (obj) (mod)
..- ..- DROPRULE (rid)
..- ..- WHENEVER 1 ASLONGAS 1 WHENEVERNOT 1 UNLESS
::= (subject) I -
::= (object) I -
..- ..- (access-mode)] -
::= #] (nat-number)
..- ..- 00] (nat-number) I + (nat-number)
..- ..- (start-time) I + (nat-number) I -(nat-number)
::= (end-time)) -(nat-number)

Figure 4: Syntax of administrative operations

in Example 4.1, Al cannot be deleted, in fact it can still
be used by rule Rs. By contrast, A2 is deleted, since the
only rule which could use it is Es, but its application
at time 2, with t 2 40, would require authorization
(Ann, 02 ,read) to be valid at each instant of interval
111 ,tl , which is not the case for this TAB.

5 Conclusions

In this paper we have presented a formal definition of
a temporal authorization model. Our model provides
two new concepts with respect to previously proposed
authorization models: temporal intervals of validity
for authorizations and temporal dependencies among
authorizations. Both those concepts are crucial to
meet the articulate security requirements deriving from
advanced applications, such as office automation, CAD,
CSCW. To our knowledge, no previous model has dealt
with temporal authorizations. However, given the
increasing relevance of time in database systems, it is
important to take into account time in all operational
aspects of database systems. A qualifying aspect of
our model is that it is independent from a specific
data model. Indeed, it can be applied to relational
database systems, object-oriented database systems,
and deductive database systems.

The work reported in this paper can be extended
in several directions, some of which we are currently
investigating. First, the proposed model can be
extended to consider a decentralized administration of
authorizations. Under decentralized administration,
several users are responsible for granting and revoking
authorizations. In most models, the creator of an object
is the owner of the object and is entitled to administrate
authorizations on the object as well as to grant other
users administration rights on the object. This policy

can be imported in our model and revisited taking time
into account.

A second direction concerns the extension of deriva-
tion rules. A straightforward extension consists in as-
sociating temporal intervals of validity with derivation
rules. In this paper, we have made the assumption that
a rule is valid from the time of its insertion until the time
it is deleted or infinity. The model can be extended to
admit rules with explicitly specified time intervals. Af-
ter an interval elapses, the associated derivation rule is
revoked. Another interesting extension can be obtained
considering temporal operators on intervals as, for ex-
ample, the ones used in [2].

A third direction deals with negative authorizations.
Negative authorizations are given to explicitly forbid
access to users on specific objects. Negative authoriza-
tions are particularly useful for modeling exceptions and
to limit, in some cases, user discretionality in decentral-
ized authorization administration. The introduction of
negative authorizations in our temporal authorization
model will lead to several interesting questions concern-
ing both theory and implementation.

Finally, a fourth direction concerns implementation
issues and authorization administration tools. The main
complexity of our authorization model derives from the
need to use an inference mechanism to derive autho
rizations from the authorizations stored into the autho-
rization base. Therefore, this inference process must
be enhanced by using techniques similar to those pro-
posed for view materialization in relational databases
and deductive databases. Administration tools are par-
ticularly crucial when dealing with sophisticated autho-
rization models. In our model, for example, it is im-
portant to develop a tool providing information about
derivation rules involved in critical sets. The area of ad-
ministration tools has not, however, been so far widely

134

investigated. We plan to invest a major effort in this
direction.

References

PI

PI

[31

PI

[51

[61

I71

PI

PI

PO1

Pll

M. Abadi, M. Burrows, B.W. Lampson, and
G. Plotkin. A calculus for access control in dis-
tributed systems. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):706-734,
September 1993.

J. F. Allen. Towards a general theory of action and
time. Artificial Intelligence, 23:123-154, 1984.

V. Atluri, E. Bertino, and S. Jajodia. Achieving
stricter correctness requirements in multilevel se-
cure databases. In Proc. IEEE Symposium on Se-
curity and Privacy, pages 135-147, Oakland, Cali-
fornia, May 1993.

E. Bertino, L. Mancini, and S. Jajodia. Collecting
garbage in multilevel secure object stores. In
Proc. IEEE Symposium on Security and Privacy,
Oakland, California, May 1994.

E. Bertino and P. Samarati. Research issues in
discretionary authorization for object bases. In
B. Thuraisingham, R. Sandhu, and T.Y. Lin, edi-
tors, Security for object-oriented systems. Springer-
Verlag, London, 1994.

E. Bertino, P. Samarati, and S. Jajodia. Autho-
rizations in relational database management sys-
tems. In Proc. First ACM Conference on Com-
puter and Communications Security, Fairfax, Vir-
ginia, November 1993.

S. Chokhani. Dod: trusted computer system
evaluation criteria. Communications of the ACM,
35(7):66-76, July 1992.

D. D. Clark and D. R. Wilson. A comparison
of commercial and military computer security
policies. In Proc. IEEE Symposium on Security
and Privacy, pages 184-194, Oakland, California,
April 1987.

0. Costich. Transaction processing using an
untrusted scheduler in a multilevel secure database
with replicated architecture. In C.E. Landwehr,
editor, Database Security, V: Status and Prospects,
pages 173-189. North-Holland, Amsterdam, 1992.

V. Doshi and S. Jajodia. Referential integrity in
multilevel secure database management systems. In
G.G. Gable and W.J.Caelli, editors, IT Security:
The Need for International Cooperation, pages
359-371. North-Holland, 1992.

E. B. Fernandez, E. Gudes, and H. Song. Asecurity
model for object-oriented databases. In Proc. IEEE
Symposium on Security and Privacy, pages llO-
115, Oakland, California, May 1989.

P21

1131

[I41

1151

P’31

P71

PI

WI

PO1

VI

P21

P31

P41

P. P. Griffiths and B. W. Wade. An authoriza-
tion mechanism for a relational database system.
ACM Trans. on Database Systems, 1(3):242-255,
September 1976.

S. Jajodia and B. Kogan. Integrating an object-
oriented data model with multilevel security. Proc.
IEEE Symposium on Security and Privacy, Oak-
land, California, pages 76-85, May 1990.

W. T. Maimone and I. B. Greenberg. Single-level
multiversion schedulers for multilevel secure data-
base systems. In Proc. 6th Annual Computer Se-
curity Applications Conf., pages 137-147, Tucson,
Arizona, December 1990.

F. Rabitti, E. Bertino, W. Kim, and D. Woelk.
A model of authorization for next-generation data-
base systems. ACM Trans. on Database Systems,
16(1):88-131, March 1991.

R.S. Sandhu. Separation of duties in computer-
ized information systems. In S. Jajodia and C.E.
Landwehr, editors, Database Security, IV: Status
and Prospects, pages 179-189. North-Holland, Am-
sterdam, 1991.

W.R. Shockley, M. Heckman, R.R. Schell, D.E.
Denning, and T.F. Lunt. The SeaView security
model. IEEE Transactions on Software Engineer-
ing, Vol. 16, No. 6, pages 593-607, June 1990.

K.P. Smith. Managing rules in active databases.
PhD Thesis, December 1992.

D. L. Spooner. The impact of inheritance on secu-
rity in object-oriented database systems. In C.E.
Landwehr, editor, Database Security, II: Status and
Prospects, pages 141-160. North-Holland, Amster-
dam, 1989.

G. Steinke and M. Jarke. Support for security
modeling in information systems. In B.M. Thu-
raisingham and C.E. Landwehr, editors, Database
Security, VI: Status and Prospects, pages 125-141.
North-Holland, Amsterdam, 1993.

R.K. Thomas and R.S. Sandhu. Discretionary ac-
cess control in object-oriented databases: Issues
and research directions. In Proc. 16th National
Computer Security Conference, pages 63-74, Bal-
timore, MD, Sept. 1993.

M. B. Thuraisingham. Mandatory security in
object-oriented database system. In Proc. Conf.
on Object-Oriented Programming: Systems, Lan-
guages,and Applications, pages 203-210, October
1989.

Johan van Benthem. Temporal logic. In D. Gab-
bay, C. Hogger, and J. Robinson, editors, Handbook
of logic in artificial intelligence and logic program-
ming, volume 3. Oxford University Press, 1991.

T.Y.C. Woo and S.S. Lam. Authorizations in
distributed systems: A new approach. Journal of
Computer Security, 2(2 & 3):107-136, 1993.

135

