Security Analysis in Role-Based Access Control

Ninghui Li
ninghui@cs.purdue.edu

Mahesh V. Tripunitara
tripunit@cerias.purdue.edu

Center for Education and Research in Information Assurance and Security
and Department of Computer Sciences
Purdue University
656 Oval Drive, West Lafayette, IN 47907

ABSTRACT

Delegation is often used in administrative models for Role-Based
Access Control (RBAC) systems to decentralize administration
tasks. While the use of delegation greatly enhances flexibility and
scalahility, it may reduce the control that an organization has over
its resources, thereby diminishing a major advantage RBAC has
over Discretionary Access Control (DAC). We propose to use se-
curity analysis techniques to maintain desirable security properties
while delegating administrative privileges. We give a precise def-
inition of a family of security analysis problems in RBAC, which
ismore general than safety analysis that is studied in the literature.
We aso show that two classes of problems in the family can be re-
duced to similar analysis in the RT trust-management language,
thereby establishing an interesting relationship between RBAC and
the RT (Role-based Trust-management) framework. The reduc-
tion gives efficient algorithms for answering most kinds of queries
in these two classes and establishes the complexity bounds for the
intractable cases.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection; D.4.6 [Operating Systems]: Security and
Protection — Access Controls

General Terms
Security, Theory, Languages

Keywords

Role-based access control, role-based administration, delegation,
trust management

1. INTRODUCTION

The administration of large Role-Based Access Control (RBAC)
systems is a challenging problem. A case study carried out with
Dresdner Bank, amajor European bank, resulted in an RBAC sys-
tem that has around 40,000 users and 1300 roles[22]. In systems of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SACMAT’04 June 24, 2004, Yorktown Heights, New York, USA.
Copyright 2004 ACM 1-58113-872-5/04/0006 ...$5.00.

126

such size, it isimpossible for asingle system security officer (SSO)
to administer the entire system. Several administrative models for
RBAC have been proposed in recent years, e.g.,, ARBAC97 [18],
ARABCO02[17], and CLO3 (Crampton and Loizou) [4]. In all these
models, delegation is used to decentralize the administration tasks.

A major advantage that RBAC has over discretionary access con-
trol (DAC) isthat if an organization uses RBAC asits access control
model, then the organization (represented by the SSO in the sys-
tem) has central control over its resources. Thisis different from
DAC, in which the creator of aresource determines who can access
the resource. In most organizations, even when a resource is cre-
ated by an employee, theresourceis still owned by the organization
and the organization wants some level of control over how the re-
source is to be shared. In most administrative models for RBAC,
the SSO delegates to other users the authority to assign users to
certain roles (thereby granting those users certain access permis-
sions), to remove users from certain roles (thereby revoking certain
permissions those users have), etc. While the use of delegation in
the administration of an RBAC system greatly enhances flexibility
and scalability, it may reduce the control that the organization has
over its resources, thereby diminishing a major advantage RBAC
has over DAC. As delegation gives a certain degree of control to a
user that may be only partially trusted, a natural security concern
iswhether the organization nonethel ess has some guarantees about
who can access its resources. To the best of our knowledge, the ef-
fect of delegation on the persistence of security propertiesin RBAC
has not been considered in the literature as such.

In this paper, we propose to use security analysis techniques [13]
to maintain desirable security properties while delegating adminis-
trative privileges. In security analysis, one views an access con-
trol system as a state-transition system. In an RBAC system, state
changes occur viaadministrative operations. Security analysistech-
niques answer questions such as whether an undesirable state is
reachable, and whether every reachable state satisfies some safety
or availability properties. Examples of undesirable states are a state
in which an untrusted user gets access and a state in which a user
who is entitled to an access permission does not get it.

Our contributionsin this paper are as follows.

e We give a precise definition of afamily of security analysis
problems in RBAC. In this family, we consider queries that
are more genera than queries that are considered in safety
analysis[8, 10, 15, 19].

e \We show that two classes of the security analysis problemsin
RBAC can be reduced to similar ones in R1p, a role-based
trust-management language for which security analysis has
been studied [13]. The reduction gives efficient agorithms
for answering most kinds of queries in these two classes and
establishes the complexity bounds for the intractable cases.

The rest of this paper is organized as follows. In Section 2, we
define afamily of security analysis problemsin RBAC and summa-
rize our main results. Related work is discussed in Section 3. We
gave an overview of the resultsfor security analysisin R in Sec-
tion 4 and present the reduction from security analysisin RBAC to
that in RTp in Section 5. We conclude with Section 6. An appendix
contains proofs not included in the main body.

2. PROBLEM DEFINITION AND MAIN
RESULTS

In [13], an abstract version of security analysisis defined in the
context of trust management. In this section we restate the defini-
tion in the context of general access control schemes.

Definition 1. (Access Control Scheme®An access control
scheme is modelled as a state-transition system (I', @, F, ¥), in
which T isa set of states, Q isaset of queries, ¥ is a set of state-
changerules, and F: T' x @ — {true, false} iscalled the entail-
ment relation, determining whether aqueryistrue or not in agiven
state. A state v € T, contains all the information necessary for
making access control decisions at a given time. When a query,
q € Q, arises from an access request, v F ¢ means that the ac-
cess corresponding to the request ¢ is granted in the state -, and
~ ¥ ¢ means that the access corresponding to g is not granted. One
may also ask queries other than those corresponding to a specific
reguest, e.g., whether every principal that has access to a resource
is an employee of the organization. Such queries are useful for
understanding the properties of a complex access control system.

A state-change rule, 1) € ¥, determines how the access control
system changes state. Given two states v and +; and a state-change
rule ¢, we write y +—, ~1 if the change from ~ to ~; is alowed
by ¢, and v =, 71 if a sequence of zero or more alowed state
changes leads from v to 1. If 4 V>, 1, we say that v is -
reachablefrom ~, or simply ~, is reachable when v and ¢ are
clear from the context.

Definition 2. (Security Analysis in an Abstract SettjnGiven
an access control scheme (", Q, -, ¥), a security anadysis instance
takes the form (v, ¢,v,1I), wherey € T' isastate, ¢ € Q isa
query, v € W isastate-change rule, and II € {3,V} isaquanti-
fier. Aninstance (v, g, ¥, 3) asks whether there exists v1 such that
v 5y 1 and y1 = q. When the answer is affirmative, we say ¢ is
possible(given v and v). Aninstance (v, ¢, ¥, V) asks whether for
every 1 such that v +=, ~v1, 71 q. If S0, we say q is necessary
(given v and v).

2.1 A family of security analysis problemsin
Role-Based Access Control

We now define afamily of security analysis problemsin the con-
text of RBAC by specifying I, Q, and -, while leaving ¥ abstract.
By considering different possibilities for ¥, one obtains different
classes of RBAC security analysis problemsin thisfamily. We con-
sider two specific instances of W in sections 2.3 and 2.4.

We assume a basic level of familiarity with RBAC; readers are
referred to [6, 21] for an introduction to RBAC. We assume that
there are three countable sets: U (the set of all possible users), R
(the set of al possible roles), and P (the set of al possible permis-
sions).

Definition 3. (A Family of RBAC Security Analysis Probléms

This family is given by speciaizing the analysis problem defined
in definition 2 to consider access control schemes that have T, Q,
and F specified as follows.

States(I'): AnRBAC statey isa3-tuple (UA, PA, RH),inwhich
the user assignment relation UA C U x R associates users with

roles, the permission assignment relation PA C P x R associates
permissions with roles, and therole hierarchy relation RH C R X
R isapartia order among rolesin R. We denote the partial order
by >=. r1 > ro meansthat every user who isamember of r; isalso
amember of r, and every permission that is associated with 3 is
also associated with r;.

Given a state -, every role has a set of users who are members
of that role and every permission is associated with a set of users
who have that permission. We formalize this by having every state
+ define a function users, : RU P — 2Y, asfollows. For any
r€ Randu € U, u € users,[r] if and only if either (u,r) € UA
or there exists 1 such that 1 = r and (u,r1) € UA. For any
p € Padu € U, u € users,[p] if and only if there exists
such that (p,r1) € PAand u € users,[r1]. Note that the effect of
permission propagation through the role hierarchy is aready taken
into consideration by the definition of users, [r1].

Queries (Q): A query g hastheform s; O s3, where s1,s2 € S,
and S isthe set of al user setsdefined to be the least set satis-
fying the following conditions: (1) RU P C S, i.e, every role r
and every permission p is a user set; (2) {u1,u2, - ,ux} € S,
where k > 0Oand u; € U forl < ¢ < k, i.e, afinite
set of users is a user set; and (3) s1 U s2,81 N s2,(s1) € S,
where s1,s2 € S, i.e, the set of al user sets is closed with re-
spect to union, intersection and paranthesization. We extend the
function users, in a straightforward way to give a valuation for
al user sets. The extended function users, : S — 2Y isde
fined as follows: users,[{u1,uz2, - ,ux}] = {w1,u2, - ,ur},
users, [(s)] = users,[s], users, [s1Usz] = users,[s1]Uusers,[sz],
and users,[s1 N s2] = usersy[s1] N users,[s2]. We say a query
s1 3 s2 issemi-statidf one of s, so can be evaluated independent
of the state, i.e., no role or permission appearsin it. We distinguish
semi-static queries because they are easier to answer.

Entailment (-): Givenastatey and aquery s; J s2, v - s1 J s2
if and only if users,[s1] D users,[sz2].

The state of an RBAC system changes when a modification ismade
to acomponent of (UA, PA, RH). For example, auser may be as-
signed to arole, or arole hierarchy relationship may be added. In
existing RBAC models, both constraints and administrative models
affect state changes in an RBAC system. For example, a constraint
may declare that roles 1 and ro are mutually exclusive, meaning
that no user can be amember of both roles. If auser u isamember
of r1 in a state, then the state is not allowed to change to a state
in which « is a member of ro as well. An administrative model
includes administrative relations that dictates who has the author-
ity to change the various components of an RBAC state and what
are the requirements these changes have to satisfy. Thus, in RBAC
security analysis, a state-change rule may include constraints, ad-
ministrative relations, and possibly other information.

In Definition 3, we leave the state-change rule abstract for the
following reasons. First, there are several competing proposals
for constraint languages [1, 9, 3] and for administrative models
in RBAC [18, 17, 4, 5]; a consensus has not been reached within
the community. Furthermore, RBAC is used in diverse applica-
tions. It is conceivable that different applications would use differ-
ent classes of constraints and/or administrative models; therefore
different classes of problemsin this family are of interest.

Given a state v and a state-change rule 1, one can ask the fol-
lowing questions using security analysis.

e Simple Safet¥.g.,isr1 J {u1 } possible? Thisaskswhether
there exists a reachable state in which the (presumably un-
trusted) user w1 becomes a member of 7. A ‘no’ answer
means that the system is safe.

e Simple AvailabilityE.g., isp1 O {u1} necessary? This asks
whether in every reachable state, the (presumably trusted)
user u; always hasthe permission p;. A ‘yes’ answer means
that the permission p; isaways available to the user v .

e Bounded Safet§.g., is{u1,uz,us} J (p1Np2) necessary?
This asks whether in every reachable state, only usersin the
set {u1,u2,us} have both the permissions p; and p.. A
‘yes answer means that the system is safe.

e LivenessE.g., is® J p; possible? This asks whether the
permission p; isalways accessibleto at least oneuser. A ‘no’
answer means that the liveness of the permission p; holdsin
the system.

e Mutual Exclusion E.g., is® 3 (r1 N rz) necessary? This
asks whether in every reachable state, no user isamember of
both r1 and 2. A ‘yes answer means that the two roles are
mutually exclusive.

e ContainmentE.g., isr1 J p; hecessary? This asks whether
in every reachable state, every user who has the permission
p1 (e.9., has access to an internal document) is a member of
therole r1 (e.g., isan employee). This example expresses a
safety property. A ‘yes answer means that the safety prop-
erty holds.

Containment can also express availability properties, e.g., “is
p1 J 71 necessary?’ asks whether the permission p; is al-
ways available to members of the role ;. A ‘yes answer
means that the availability property holds.

Observe that all the above examples (except for containment) use
semi-static queries. We distinguish semi-static queries from other
queries as they are easier to answer.

2.2 Usage of RBAC security analysis

In an RBAC security analysis instance (v, q, v, IT), the state
fully determines who can access which resources. In addition to
administrative policy information, the state-change rule) also con-
tains information about which users are trusted. In any access con-
trol system there are trusted usersthese are users who have the
authority to take the system to a state that violates security require-
ments but are trusted not to do so. An SSO is an example of a
trusted user.

Security analysis provides a means to ensure that security re-
quirements (such as safety and availability) are always met, aslong
as users identified as trusted behave according to the usage patterns
discussed in this section. In other words, security analysis helpsen-
sure that the security of the system does not depend on users other
than those that are trusted.

Each security requirement is formalized as a security analysis
instance, together with an answer that is acceptable for secure op-
eration. For example, a security requirement may be that only
employees may access a sensitive document. This can be formal-
ized as an instance (v, g, v, V), where ~ is the current state, ¢ is
Employees J p where p is the permission to access the sensitive
document, Employees is the role that contains all employees of
an organization, and v specifies administrative policy information.
The rule + should precisely capture the capabilities of users that
are not trusted. In other words, any change that could be made by
such users should be alowed by . The rule « could restrict the
changes that trusted users can make, because these are trusted not
to make a change without verifying that desirable security proper-
ties are maintained subseguent to the change. For the example dis-
cussed above, the acceptable answer is“yes’, aswe want to ensure
that everyone who has the permission p is an employee. The goal
isto ensure that such a security requirement is always satisfied.

128

Suppose that the system starts in a state v such that the answer
to (vy,q,v,V) is“yes’. Further, suppose a trusted user (such as
the SSO) attempts to make a change that is not alowed by 1,
e.g., the SSO decides to grant certain administrative privileges to
auser u. Before making the change, SSO performs security anal-
ysis (v, q,v’', V), where 4" and 1)’ are resulted from the prospec-
tive change. Only if the answer is “yes’, does the SSO actually
make the change. The fact that +) limits the SSO from making
changes does not mean that we require that the SSO never make
such changes. It reflects the requirement that the SSO perform se-
curity analysis and make only those changes that do not violate
security properties.

This way, as long as trusted users are cooperating, the security
of an access control system is preserved. One can delegate admin-
istrative privileges to partially trusted users with the assurance that
desirable security properties always hold. By using different v’s,
one can evaluate which sets of users are trusted for a given secu-
rity property. In general, it is impossible to completely eliminate
the need to trust people. However, security analysis enables one to
ensure that the extent of thistrust iswell understood.

2.3 Assignment and trusted users (AATU)

In this paper, we solve two classes of security analysis problems
in RBAC. Both classes use variants of the URA 97 component of the
ARBAC97 administrative model for RBAC [18]. URA97 specifies
how the UA relation may change.

Thefirst classis called Assignment And Trusted Users (AATU),
in which a state-change rule ¢ has the form (can-assign,T). The
relation can_assign C R x C x 2T determines who can assign
users to roles and the preconditions these users have to satisfy.
C' is the set of conditions, which are expressions formed using
roles, the two operators N and U, and parentheses. (rq, ¢, rset) €
can_assign means that members of the role r, can assign any
user whose role memberships satisfy the condition ¢ to any role
r € rset. Forexample, (ro, (r1Ur2)Nrs, {rs,rs}) € can_assign
means that a user that is a member of the role ry is allowed to as-
sign a user that is a member of at least one of r and r2, and is
also a member of rs, to be amember of ry orrs. T C U isa
set of trusted users;, these users are assumed not to initiate any role
assignment operation for the purpose of security analysis. The set
T isalowed to be empty.

Definition 4. (Assignment And Trusted Users — AATIWe class
AATU is given by parameterizing the family of RBAC analysis
problems in Definition 3 with the following set of state-change
rules. Each state-change rule ¢ has the form (can_assign,T’)
such that a state change from -~y (UA,PA,RH) t0o 1 =
(UA1, PA1, RH.) is adlowed by ¢» = (can_assign,T) if PA =
PA,, RH = RH., UA; = UAU {(u,r)}, where (u,r) ¢ UA
and there exists (74, ¢, rset) € can-assign such that r € rset, u
satisfies ¢, and users,[ro] € T (i.e., there exists at least one user
who is amember of therole r, and isnot in 7", so that such a user
can perform the assignment operation).

Main resultsfor AATU

e |f ¢ issemi-static (see Definition 3), then an AATU instance
(v, ¢, ¥, IT) can be answered efficiently, i.e., in time polyno-
mial in the size of the instance.

e Answering general AATU instances (v, ¢, %, V) isdecidable
but intractable (coNP-hard).
2.4 Assignment and revocation (AAR)

In this class, a dsatechange rule ¢ has the form
(can_assign, can_revoke), where can_assign is the same as

in AATU, and can_revoke C R x 2% determines who can remove
users from roles. That (r.,rset) € can_revoke means that the
members of role r, can remove a user from arole r € rset. No
explicit set of trusted users is specified in AAR, unlike AATU. In
AATU and AAR, the relations can_assign and can_revoke are
fixed in 4. This means that we are assuming that changes to these
two relations are made only by trusted users.

Definition 5. (Assignment And Revocation — AARhe class
AAR isgiven by parameterizing the family of RBAC analysis prob-
lems in Definition 3 with the following set of state-change rules.
Each state-change rule ¢ has the form {can_assign, can_revoke)
such that a state change from v = (UA,PA,RH) to 1 =
(UAy, PA1, RH,) isallowed by ¢ = (can_assign, can_revoke)
if PA = PA:, RH = RH,, and either (1) UA, = UAU {(u,r)}
where (u,r) ¢ UA and there exists (rq, c, rset) € can_assign
such that r € rset, u satisfies ¢, and users,[r.] # 0, i.e, the
user u being assigned to r is not aready a member of » and sat-
isfies the pre-condition ¢, and there is at least one user that is a
member of the role r,, that can perform the assignment operation;
or (2) UA1 U (u,r) = UA where (u,r) ¢ UA;, and there exists
(ra,c, rset) € can_revoke suchthat r € rset and users, [rq] # 0,
i.e., there exists at least one user in the role r, that can revoke the
user u’s membership in therole r.

We assume that an AAR instance satisfies the following three
properties. (1) The administrative roles are not affected by
can_assign and can_revoke. The administrative roles are given
by those that appear in the first component of any can_assign or
can_revoke tuple. These roles should not appear in the last com-
ponent of any can_assign or can_revoke tuple. This condition is
easily satisfied in URA97, as it assumes the existence of a set of
administrative rolesthat is digjoint from the set of normal roles. (2)
None of the administrative rolesisempty. (3) If a can_assign tuple
existsfor arole, then a can_revoke tuple also exists for that role.

Main resultsfor AAR

o If ¢ is semi-static (see Definition 3), then an AAR instance
(v, g, %, 1I) can be answered efficiently, i.e., in time polyno-
mial in the size of the instance.

e Answering general AAR instances (v, q,v,V) is coNP-
complete.

2.5 Discussion of the definitions

Our usage of can-assign and can_revoke isinspired by URA97,
which isone of the three components of ARBAC97 [18]. The state-
change rules considered in AAR are similar to those in URA97, but
they differ in the following two ways. One, URA97 allows nega-
tion of roles to be used in a precondition; AAR does not allow this.
Two, URA97 has separate administrative roles; AAR does not re-
quire the complete separation of administrative roles from ordinary
roles. AATU differs from URA97 in two additional ways. One,
AATU does not have revocation rules. Two, AATU has a set of
trusted users, which does not exist in URA97.

The other components of ARBAC97 are PRA97 and RRA97, for
administering permission-role assignment/revocation, and the role
hierarchy, respectively. In this paper, we study the effect of de-
centralizing user-role assignment and revocation, and assume that
changes to the permission-role assignment relation and the role hi-
erarchy are centralized, i.e, made only by trusted users. In other
words, whoever is allowed to make changes to permission-role as-
signment and the role hierarchy will run the security analysis and
only make changes that do not violate the security properties. It
has been observed that permission-role assignment and the role hi-
erarchy are changed less often than user-role assignment. As the

129

user-role relation is the component that changes most frequently,
we expect that user-role assignment is the most likely to be decen-
tralized.

AATU and AAR represent two basic cases of security analysis
in RBAC. Although we believe that they are useful cases, they are
only the starting point. Many other more sophisticated cases of
security analysis in RBAC remain open. For example, it is not
clear how to deal with negative preconditions in role assignment,
and how to deal with constraints such as mutually exclusive roles.

3. RELATED WORK

Simple safety analysis, i.e., determining whether an access con-
trol system can reach a state in which an unsafe accessis allowed,
wasfirst formalized by Harrison et a. [8] in the context of the well-
known access matrix model [11, 7], and was shown to be undecid-
ableinthe HRU model [8]. There are specia casesfor which safety
is decidable for the HRU model; safety is decidable if (1) no sub-
jects or objects are allowed to be created, (2) at most one condition
isused in acommand but subjects or objects cannot be destroyed,
or (3) only one operation is allowed in acommand.

Following that, there have been various efforts in designing ac-
cess control systemsin which simple safety analysisis decidable or
efficiently decidable, e.g., the take-grant model [15], the schematic
protection model [19], and the typed access matrix model [20].

One may be tempted to reduce the security analysis problem de-
fined in this paper to a problem in one of the other models such
as HRU and use existing results. However, this approach has sev-
eral difficulties. First, we consider different kinds of queries, while
only safety is considered in other models. It is not clear, for in-
stance, how one would reduce containment in RBAC to safety in
HRU. Second, even when we restrict our attention to simple safety,
the reduction of either AATU or AAR into HRU results in a set
of command schemas that does not fall into any known decidable
special case of HRU. (1) New usersareimplicitly created when be-
ing assigned to roles. (2) Because of pre-conditions in AATU and
AAR, an assignment operation requires checking both the com-
mand initiator’s privileges and the user’s role memberships. The
resulting HRU command schema would not be mono-conditional.
(3) Adding a user to arole results in the user attaining several per-
missions simultaneously. The resulting command in HRU is un-
likely to be mono-operational. Last but not least, even if some
further restricted subcases of RBAC security analysis can be re-
duced to decidable subcases of HRU, no efficient algorithm exists
for those cases. For example, even in the subcase where no sub-
jects or objects are alowed to be created, safety analysis in HRU
remains PSPA CE-complete (which impliesthat it is NP-hard).

Recently, Li et a. [13] proposed the notion of security analy-
sis, in which they study queries other than simple safety. They
study security analysis in the context of Trust Management (TM).
Although RTy, the TM language studied in [13], supports delega-
tion and is more expressive than the access matrix model in certain
ways, and the kinds of analysis include problems other than sim-
ple safety analysis, somewhat surprisingly, all the security analysis
problems considered there are decidable; furthermore, most prob-
lems are efficiently decidable.

Munawer and Sandhu [16] presented a simulation of the Aug-
mented Typed Access Matrix Model (ATAM) in an RBAC model.
In the simulation, they use an administrative model that is far more
powerful than ARBAC97 or any other administrative model con-
sidered in the literature. In particular, they assume the existence of
administrative permissions each of which can simulate the effect of
an ATAM command. An ATAM command is more general than an
HRU command. It checks the existence and nonexistence of rights

in the cells corresponding to subjects and objects specified by the
parameters, and if all conditions are satisfied, executes a sequence
of operations, such as entering anew right in acell.

Crampton and Loizou [4] claim that “if administrative (or con-
trol) permissions are assigned to subjects, then the safety problemis
undecidable. Indeed, Munawer and Sandhu [16] and Crampton [2]
have shown independently that the safety problem for RBAC96 is
undecidable.” Wedisagree with this claim, aswe show in this paper
that simple safety (and even more sophisticated analysis) can be de-
cidable when administrative permissions are given to subjects. The
simulation by Munawer and Sandhu [16] suggests only that when
an overly complicated administrative model is added to RBAC96,
safety analysis may be undecidable.

The work by Koch et a [10] considers safety in RBAC with
the RBAC state and state change rules posed as a graph formal-
ism. They show that safety in RBAC is decidable provided that
a state change rule does not both remove and add components to
the graph that represents the protection state. The administrative
model (set of state change rules) considered in that work is limited
inthat it isexpressed in terms of the types of nodes and edgesin the
graph. Consequently, it is not powerful enough to allow constructs
such as pre-conditions involving user-role memberships. Such pre-
conditions are part of ARBAC97 [18] and the administrative mod-
elswe consider in this paper. Also, our work differs from that work
in that we consider a more general class of queries than safety, and
we provide specific algorithms and complexity bounds.

Previous work on ensuring security properties in RBAC takes
the approach of using constraints [1, 3, 9]. In this approach, a set
of desirable properties are explicitly specified as constraints on the
relations in an RBAC state. Each time the state of an access con-
trol system is about to change, these constraints are checked. A
change is alowed only when these constraints are satisfied. We
believe that security analysis and constraints are complementary.
Constraints directly specify desirable properties on the state of an
RBAC system. Security analysis uses conditions specified on what
kinds of state changes are allowed and infer security properties on
all reachable states. An advantage of using constraints is that so-
phisticated conditions can be specified and enforced efficiently. In
the security analysis approach, fewer security properties can be an-
alyzed efficiently, because of the need to analyze potentialy in-
finitely many reachable states. On the other hand, the constraint
approach requires that the system controls all changesto the RBAC
state, because of the need to perform constraint checking. Secu-
rity analysis can handle decentralized control by allowing the parts
of a state that are not controlled by the system to change freely.
It can be used to help enforce security properties even when the
RBAC system itself is maintained in a decentralized manner and
one cannot ensure that constraints are checked when some part of
the RBAC state changes. Another advantage of security analysisis
that it can be performed less often than checking constraints. Anal-
ysis only needs to be performed when changes not allowed by the
state-transition rule are made, while constraints need to evaluated
each time a state changes.

4. OVERVIEW OF SECURITY ANALYSIS
IN RT[«,N]

In [13], Li et al. study security analysis in the context of the
RT family of Role-based Trust-management languages[12, 14]. In
particular, security analysis in RT[«,N] and its sub-languages is
studied. RT[«, N] isadlightly simplified (yet expressively equiv-
alent) version of the RTy language introduced in [14]. In this sec-

tion we summarize the results for security analysis in RT[«,N].
In Section 5 we reduce security analysisin AATU and AAR to that
inRT[«,N].
Syntax of RT[«,N] The most important concept in the RT" lan-
guages is also that of roles. A role in RT[«,N] is denoted by a
principal (corresponding to a user in RBAC) followed by a role
name, separated by adot. For example, when K isa principal and
r isarole name, K.r isarole. Each principa has its own name
space for roles. For example, the ‘employee’ role of one company
is different from the ‘employee’ role of another company. A role
has avalue which isaset of principals that are members of therole.
Each principal K has the authority to designate the members
of each role of the form K.r. Roles are defined by statements
Figure 1 shows the four types of statements in RT[«,N]; each
corresponds to a way of defining role membership. A simple-
member statement K.r «—— K; means that K; is a member of
K'srrole. Thisissimilar to a user assignment in RBAC. A sim-
ple inclusion statement K.r «— K;.r; meansthat K’sr rolein-
cludes (all members of) K1'sr; role. Thisissimilar to arole-role
dominance relationship K;.r1 = K.r. A linking inclusion state-
ment K.r «—— K.ri.ro meansthat K.r includes K;.r» for every
K, that isamember of K.r;. An intersection inclusion statement
K.r «— Ki.r1 N Ka.ro meansthat K.r includes every principal
who is a member of both K;.r; and Ka.72.

States AnRT[«,N] state 7 consists of aset of RT[«, N] state-
ments. The semantics of RT[«,N] is given by translating each
statement into a datalog clause. (Datalog is a restricted form of
logic programming (LP) with variables, predicates, and constants,
but without function symbols.) See Figure 1 for the datal og clauses
corresponding to RT[«, N] statements. We call the datalog pro-
gram resulting from translating each statement in 47" into a clause
that is the semantic progranof v, denoted by SP(y7T).

Given a datalog program, DP, its semantics can be defined
through several equivalent approaches. The model-theoretic ap-
proach views DP as a set of first-order sentences and uses the
minimal Herbrand mode! as the semantics. We write SP(y7) =
m(K,r, K") when m(K,r, K') isin the minimal Herbrand model
of SP(yT).

State-change Rules A state-change rule has of the form 7 =
(G,S), where G and S arefinite sets of roles.

e Rolesin G are called growth-restricted(or g-restricted; no
statements defining these roles can be added. (A statement
defines aroleif it hasthe roleto the left of ‘<—'.) Roles not
in G are called growth-unrestrictedor g-unrestricted.

e Rolesin S arecalled shrink-restricted or s-restricted; state-
ments defining these roles cannot be removed. Roles not in
S are called shrink-unrestrictedor s-unrestrictedl

Queries Lietal.[13] consider thefollowing threeformsof queries:
. Membership Ar J{D1,...,Dn}

Intuitively, this means that all the principals D, ..., D,, are
members of A.r. Formally, v* = A.r 3 {D1,..., Dy} if
andonlyif {Z | SP(vT) Em(A,r,Z)} D {Dx,...,Dn}.

. Boundedness {Di,...,D,} J Ar
Intuitively, this means that the member set of A.r isbounded
by the given set of principals. Formaly, v7 + Ar 3
{D1,...,Dyn} if and only if {Di1,...,D,} 2O {Z |
SP(yT) Em(A,r, Z)}.

° Inclusion XudAr
Intuitively, this means that all the members of A.r are dso
members of X.u. Formaly, v7 + X.u J A.r if and only
if {Z | SP(v") £ m(X,u,2)} 2 {Z | SP(7) =
m(A,r, Z)}.

Simple Member syntax: Kr«— K

meaning: members(K.r) O {Ki}

LPclauses m(K,r, K1) (m1)
Simple Inclusion syntax: Kr«— Ki.m

meaning: members(K.r) O members(K;.r1)

LPclauses m(K,r,?7Z) :— m(K1,11,72) (m2)
Linking Inclusion syntax: Kor«— Krirs

meaning: members(K.r) 2 U, c k., members(K1.72)

LPclause: m(K,r,?7Z) :— m(K,r1,?Y), m(?Y,r2,7Z) (m3)
Intersection Inclusion syntax: Ko «—— Ki.r1 N Ka.r2

meaning: members(K.r) O members(K;.r1) N members(Ks.r2)

LPclauses m(K,r,?7Z) :— m(K1,r1,7Z), m(Kaz,r2,72) (m4)

Figurel: Statementsin RT[«,N]. Therearefour types of statements. For each type, we give the syntax, theintuitive meaning of the
statement, and the L P (L ogic-Programming) clause corresponding to the statement. The clause usesoneternary predicate m, where
m(K,r, K1) meansthat K; isamember of therole K.r Symbolsthat start with “?” represent logical variables:

Each form of query can be generalized to allow compound role
expressions that use linking and intersection. These generalized
queries can be reduced to the forms above by adding new roles and
statements to the state. For instance, {} 3 A.r N A;.r1.r2 can be
answered by adding B.u; «— A.rN B.ug, B.ug «— B.ug.rz2, and
B.ug «— Aj.r1 to 4T, inwhich B.ui, B.ug, and B.us are new
g/s-restricted roles, and by posing the query {} J B.ui.

Main resultsfor security analysisin RT[«, N]

Membership and boundedness queries (both whether a query is
possible and whether a query is necessary) can be answered in time
polynomial in the size of the input. The approach taken in [13] uses
logic programs to derive answers to those security analysis prob-
lems. This approach exploits the fact that RT[«—, N] is monotonic
in the sense that more statements will derive more role member-
ship facts. This follows from the fact that the semantic program is
apositive logic program.

Inclusion queries are more complicated than the other two kinds.
In [13], only the V case (i.e., whether an inclusion query is neces-
sary) is studied. It is not clear what the security intuition is of an
Jinclusion query (whether an inclusion query is possible); there-
fore, it is not studied in [13]. The problem of deciding whether an
inclusion query is necessary, i.e., whether the set of members of
onerole is always a superset of the set of members of another role
is called containment analysislt turns out that the computational
complexity of containment analysis depends on the language fea-
tures. In RT[], the language that allows only simple member and
simple inclusion statements, containment analysisisin P. It be-
comes more complex when additional policy language features are
used. Containment analysis is coNP-complete for RT[N] (RT[]
plus intersection inclusion statements), PSPA CE-complete for
RT[«] (RT[] plus linking inclusion statements), and decidable in
coNEXP for RT[«,N].

5. REDUCING AATU AND AAR TO SECU-
RITY ANALYSISIN RT[«,n]

In this section, we solve AATU (Definition 4) and AAR (Defini-
tion 5). Our approach isto reduce each of them to security analysis
inRT[«,N].

5.1 Reduction for AATU

The reduction algorithm AATU_Reduce is given in Figure 3; it
uses the subroutines defined in Figure 2. Given an AATU instance
(v = (UA, PA,RH), q = s1 O s2, ¥ = {can_assign,T), Il €

131

{3,V}), AATU Reduce takes (v, ¢,%) and outputs (v, ¢*', ™)
such that the RT[«, N] analysisinstance (y7, 7, ™, II) has the
same answer as the original AATU instance.

In the reduction, we use one principal for every user that appears
in ~, and the special principal Sys to represent the RBAC system.
The RT role names used in the reduction include the RBAC roles
and permissions in v and some additional temporary role names.
The RT role Sys.r represents the RBAC role » and the RT role
Sys.p represents the RBAC permission p. Each (u,r) € UA is
trandated into the RT statement Sys.r «—— w. Each ry > 7o is
trandated into the RT statement Sys.rs «— Sys.ry (asry issenior
to r2, any member of r; isaso amember of r2.) Each (p,r) € PA
is trandated into Sys.p «— Sys.r (each member of the role » has
the permission p.)

The trandation of the can_assign relation is less straightfor-
ward. Each (rq,7¢,7) € can_assign is trandated into the RT
statement Sys.r «— Sys.rq.r N Sys.r.. Theintuition is that a user
uq Who is a member of the role r, assigning the user u to be a
member of the r role is represented as adding the RT statement
Ug.7 < u. ASu, iSamember of the Sys.r, role, the user v is
added as amember to the Sys.r roleif and only if the user v isalso
amember of the r. role.

Inthe reduction, al the Sys roles (i.e., Sys.z) arefixed (i.e., both
g-restricted and s-restricted). In addition, for each trusted user w in
T, al the roles starting with « is also g-restricted; this is because
we assume that trusted users will not perform operations to change
the state (i.e., user-role assignment operations). We may also make
roles starting with trusted users s-restricted; however, this has no
effect as no statement defining these roles existsin theinitia state.

The following proposition shows that the reduction is sound,
meaning that one can use RT security analysis techniques to an-
swer RBAC security analysis problems.

PrRoPOSITION 1. Given an AATU instancéy, q,,II), let
(7", ¢", ") = AATU Reduce((v, ¢, 9)), then:

e Assertion 1: For every RBAC state’ such thaty +>, +/,
there exists an RT state’’ such thaty” +-,» 4" and
~' F qifand only ifyT" + ¢7.

e Assertion 2: For every RT statg”” such thaty” =, 4",

there exists an RBAC staté such thaty +=,, v andy’ + ¢
if and only ify™’ + ¢7.

See Appendix A.1 for the proof.

1 Subroutine Trans(s,) {

2 /* Trans(s,y7) returns an RT role corresponding to the user set s*/

3 if sis an RBAC role then return Sys.s;

4 else if s is an RBAC perm ssion then return Sys.s;

5 elseif sis a set of users then {

6 name=newName(); foreach ucs {y7+= Sys.name+—u;} return Sys.name; }
7

8

else if (s = s1 U s2) then {
name=newName(); ~y7+=Sys.name«— Trans(s1,77); ~T+= Sys.name«— Trans(s2,77);
9 return Sys.name; }
10 elseif (s = s1 N s2) then {
11 name=newName(); ~T+=Sys.name«— Trans(s1,7") N Trans(s2,77); return Sys.name; }
12 } /* End Trans */
13

14 Subroutine QTrans(s, 77) {

15 [* Translation for users sets that are used at top level in a query */
16 if sis a set of users then return s;

17 else return Trans(s, v7);

18 } /* End QTrans */

19

20 Subroutine HTrans(s, %) {

21 if sis an RBAC role then return HSys.s;

22 elseif (s = s1 U s2) then {

23 name=newName(); ~7+= Sys.name«—HTrans(s1,~v7);

24 yT+= Sys.name ——HTrans(s2,77); return Sys.name; }

25 elseif (s = s1 N s2) then {

26 name=newName() ; ~T+=Sys.name «— HTrans(s1,77) N HTrans(s2,77); return Sys.name; }

27 } /* End HTrans */

Figure 2: Subroutines Trans, QTrans, and HTrans: They are used by the two reduction algorithms. We assume call-by-reference for
the parameter 7.

31 AATU_Reduce ((y=(UA,PA,RH), q=s1 Js2, 9 = {can-assign,T)))

32 {
33 /* Reduction algorithmfor the first class of analysis problens */
34 AT = 0; ¢¥ = QTrans(s1,77) JQTrans(s2, v7);

35 foreach (ui,r;) € UA { v7+= Sysorje—u;; }
36 foreach (r;,r;) € RH { 4T+= Sys.rj«—Sys.ri; }
37 foreach (p;,7;) € PA { ~T+= Sys.p;«<—Sys.rj; }
38 foreach (as,s,rset) € can_assign {

39 tmpRole=Trans(s, vT) ;

40 foreach r € rset {

41 name=newName(); ~7+= Sys.name«—Sys.a;.r; y7+= Sys.r<—Sys.name N tmpRole; } }
42 foreach RT role name z appearing in 47 {

43 G+=Sys.z; S+=Sys.z; foreach user ve T { G+=u.z; } }

44 return (v, 4%, (G,9));
45 } /* End AATU_Reduce */

Figure 3: Reduction Algorithm for AATU

132

THEOREM 2. An AATU instancé~, q, ¢, IT) can be solved ef-
ficiently, i.e., in time polynomial in the size of the instance, i§
semi-static. The general AATU problencisNP-hard.

PROOF. Sketch: Followsdirectly from Proposition 1 and the re-
sultson security analysisin RT[«, N]. Observethat AATU_Reduce
runs in time polynomia in the size of the input. The coNP-
hardness of the problem can be shown by reducing the monotone
3SAT problem to the AAR problem. The proof is similar to the
proof for coNP-hardness of security analysis in RT[N] (Section
A.3 of [13]). In summary, the monotone 3SAT problem can be re-
duced to determining whether a propositional formula having the
form ¢1 = ¢- isnotvalid, where ¢1 and ¢ are propositional for-
mulas constructed using conjunction and disunction. Such a for-
mula can be encoded using a query in a containment analysis. In
fact, the AAR problem remains coNP-hard even when no precon-
dition occursin can_assign; the expressive power of the queriesis
sufficient for reducing the monotone 3SAT problem. [

5.2 Reduction for AAR

The reduction algorithm for AAR is given in Figure 4. The re-
duction algorithm includes in the set of principals a principal for
every user in U and five special principals: Sys, RSys, HSys, ASys,
and BSys. Again, the Sys roles simulate RBAC roles and permis-
sions. In this reduction, we do not distinguish whether a role as-
signment operation is effected by one user or another, and use only
one principal, ASys, to represent every user that exercises the user-
role assignment operation. The roles of the principal RSys contain
al the initia role memberships in UA; these may be revoked in
state changes. HSys.r maintains the history of the RBAC role r;
its necessity is argued using the following scenario. A user is a
member of r;, which is the precondition for being added to an-
other role r. After one assigns the user to r» and revokes the
user from ;. The user's membership in r2 should maintain, even
though the precondition is no longer satisfied (a similar justifica-
tion for this approach is provided in the context of ARBAC97 [18]
as well). BSys is similar to ASys, but it is used to construct the
HSys roles. An administrative operation to try to add a user u; to
the role r; is represented by adding the statement ASys.r; «— u;
and BSys.r; < u; toy”. An administrative operation to revoke a
user u; from therole r; is represented by removing the statements
RSys.r; «—u; and ASys.r; < u; if either existsin 'yT.

The following proposition shows that the reduction is sound.

PROPOSITION 3. Given an AAR instancd~y, ¢, ¥,1I), let
(v",q",9") = AAR Reduce((v,q,¢)), then:

e Assertion 1: For every RBAC statg’ such thaty +>, ',
there exists an RT statg’’ such thaty” +=,» 4" and
~' F qifand only ifyT" F ¢7.

e Assertion 2: For every RT statg”” such thaty” += - 4",

there exists an RBAC staté such thaty +=,, v andy’ + ¢
if and only ify7’ + ¢7.

THEOREM 4. An AAR instancéy, g, v, IT) can be solved effi-
ciently, i.e., in time polynomial in the size of the instance i$
semi-static. The general AAR problencisNP-complete.

ProoF. Sketch: Follows directly from Proposition 3 and the
results on security analysis in RT[N]. Observe that AAR_Reduce
runsin time polynomial in the size of the input, and the result isan
instance of security analysis in RT[N], which is coNP-complete.
This shows that the general AAR problem isin coNP. That AAR
is coNP-hard can be proved using arguments similar to those for
AATU. O

133

6. CONCLUSION AND FUTURE WORK

We have proposed the use of security analysistechniques to main-
tain desirable security properties while delegating administrative
privileges. More specifically, we have defined a family of secu-
rity analysis problems in RBAC and two classes of problems in
this family, namely AATU and AAR, based on the URA97 com-
ponent of the ARBAC97 administrative model for RBAC. We have
also shown that AATU and AAR can be reduced to similar analy-
sis problems in the RTj trust-management language, establishing
an interesting relationship between RBAC and the RT" (Role-based
Trust-management) framework. The reduction gives efficient algo-
rithms for answering most kinds of queriesin these two classes and
hel ps establish the complexity bounds for the intractable cases.

Much work remains to be done for understanding security anal-
ysis in RBAC. The family of RBAC security analysis defined in
this paper can be parameterized with more sophisticated adminis-
trative models, e.g., those that allow negative preconditions, those
that allow changes to the role hierarchy or role-permission assign-
ments, and those that allow the specification of constraints such as
mutually exclusive roles.

Acknowledgements

Portions of thiswork were supported by NSF ITR and by sponsors
of CERIAS. We thank the anonymous reviewers for their helpful
comments. We also thank Ji-Won Byun, Ziad El Bizri, Jiantao Li
and Klorida Mirgj for their reviews and suggestions on presenta-
tion.

7. REFERENCES

[1] G.-J. Ahnand R. Sandhu. Role-based authorization
constraints specification. ACM Transactions on Information
and System Security (TISSEG(¥):207-226, Nov. 2000.
J. Crampton. Authorizations and Antichain®hD thesis,
Birbeck College, University of London, UK, 2002.
J. Crampton. Specifying and enforcing constraintsin
role-based access control. In Proceedings of the Eighth ACM
Symposium on Access Control Models and Technologies
(SACMAT 2003)pages 43-50. June 2003.
J. Crampton and G. Loizou. Administrative scope: A
foundation for role-based administrative models. ACM
Transactions on Information and System Security (TISSEC)
6(2):201-231, May 2003.
D. Ferraiolo, G.-J. Ahn, and S. Gavrila. The role control
center: Features and case studies. In Proceedings of the 8th
ACM Symposium on Access Control Models and
TechnologiesJune 2003.
D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Transactions on Information and
Systems Security (TISSE@(3):224-274, Aug. 2001.
G. S. Graham and P. J. Denning. Protection — principles and
practice. In Proceedings of the AFIPS Spring Joint Computer
Conferencevolume 40, pages 417-429. May 16-18 1972.
M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in
operating systems. Communications of the ACM
19(8):461-471, Aug. 1976.
T. Jaeger and J. E. Tidswell. Practical safety in flexible
access control models. ACM Transactions on Information
and System Security (TISSE@()R):158-190, May 2001.

M. Koch, L. V. Mancini, and F. Parisi-Presicce. Decidability
of safety in graph-based models for access control. In
Proceedings of the Seventh European Symposium on

(]

(3]

(4]

(5]

(6]

(8]

(9]

[10]

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

AAR_Reduce ((v = (UA, PA, RH),
{ /* Reduction for AAR */
AT =0; ¢¥ = QTrans(s1,v%) JQTrans(s2, v7) ;
foreach (u;,r;) € UA { 47+= HSys.rje—u;; ~5+=
vT+= Sys.r;«——RSys.rj; }
foreach (r,r;) € RH { ~T+=
foreach (pi,r;) € PA { ~vT+= Sys.p;«—Sys.r;; }
foreach (ai,s,rset) € can_assign {
if (s==true) {

g = s1 J s2,

foreach r € rset { vT+= HSys.r«—BSys.r; ~7

1 el se { tmpRole = HTrans(s, v7);
foreach r € rset

{ yT+= HSys.r «— BSys.r N tmpRole; ~7+=

b}

foreach RT role name z appearing in 47 {
G+=Sys.z; S+=Sys.z; G+=HSys.z; S+=HSys.z;
S+=RSys.z; S+=ASys.z;

} /* when a can_revoke rule exists for r,

foreach (as;,rset) € can_revoke { foreach r in rset { S-=RSys.r;

return (v, ¢, (G,9));
} /* End AAR_Reduce */

G+=RSys.z;

v = {can-assign, can_revoke)))

RSys.7j «— u;

Sys.r; «—Sys.r;; T += HSys.rj «—HSys.r;; }

+= Sys.r«—ASys.r; } }

/* precondition */

Sys.r —— ASys.r N tmpRole; }

S+=BSys.z;

ASys. r and RSys. r can shrink */

S-=ASys.1; } }

Figure4: AAR_Reduce: thereduction algorithm for AAR

Research in Computer Security (ESORICS 20p&)es
229-243. Springer, Oct. 2002.

B. W. Lampson. Protection. In Proceedings of the 5th
Princeton Conference on Information Sciences and Systems
1971. Reprinted in ACM Operating Systems Review,
8(1):18-24, Jan 1974.

N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. In Proceedings of
the 2002 IEEE Symposium on Security and Privpeges
114-130. May 2002.

N. Li, W. H. Winsborough, and J. C. Mitchell. Beyond
proof-of-compliance: Safety and availability analysisin trust
management. In Proceedings of IEEE Symposium on
Security and Privacypages 123-139. May 2003.

N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed
credential chain discovery in trust management. Journal of
Computer Securityl1(1):35-86, Feb. 2003.

R. J. Lipton and L. Snyder. A linear time algorithm for

deciding subject security. Journal of the ACM

24(3):455-464, 1977.

Q. Munawer and R. Sandhu. Simulation of the augmented
typed access matrix model (ATAM) using roles. In
Proceedings of INFOSECU99 International Conference on
Information and Security1999.

S. Oh and R. Sandhu. A model for role admininstration using
organization structure. In Proceedings of the Sixth ACM
Symposium on Access Control Models and Technologies
(SACMAT’02) June 2002.

R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97
model for role-based aministration of roles. ACM
Transactions on Information and Systems Security (TISSEC)
2(1):105-135, Feb. 1999.

R. S. Sandhu. The schematic protection model: Its definition
and analysis for acyclic attenuating systems. Journal of the
ACM, 35(2):404-432, 1988.

R. S. Sandhu. The typed access matrix model. In

Proceedings of the 1992 IEEE Symposium on Security and

134

Privacy, pages 122-136. May 1992.

[21] R.S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Computer
29(2):38-47, February 1996.

[22] A. Schaad, J. Moffett, and J. Jacob. The role-based access
control system of a european bank: A case study and
discussion. In Proceedings of the Sixth ACM Symposium on
Access Control Models and Technologipages 3-9. 2001.

APPENDI X
A.1 Proof for Proposition 1

PROOF. For Assertion 1:A state change in AATU occurs when
a user assignment operation is successfully performed. For every
RBAC dtate v’ such that v >, +/, let 70,71, - - , ¥m be RBAC
states such that v = o =y 71 =y o0 =g Ym = 7. We
construct a sequence of RT states v¢,~%,--- ,~L as follows:
¢ =~7; foreach i = [0..m — 1], consider the assignment opera-
tion that changes ; to ~y;+1, let it be the operation in which a user
uy adds (u,r) to the user-role assignment relation; the state 77,
is obtained by adding u;.r «—u to~y7. Letv7’ be~Z.

Step oneProvethat if v/ - g theny™' F ¢T. Itissufficient to
prove thefollowing: for each i € [0..m], if v; impliesthat acertain
user v is amember of arole r (or has the permission p), then 4
implies that « is a member of the RT role Sys.r (or Sys.p). We
use induction on ¢ to prove this. The base case (i=0) follows di-
rectly from the AATU_Reduce algorithm; lines 35-37 reproduces
UA, RH, PAinthe RT state v{ . For the step, assumes that the
induction hypothesis holds for ~, - - - , s, consider ~y; 1. Let the
operation leading to ~;+1 be one in which w; assigns u to arole
r. Since both sequences of states are increasing, we only need to
consider role memberships implied by ~;41 but not ~;; these are
caused (directly or indirectly) by this assignment. There must ex-
istsa(ra,c,r) € can_assign to enable this assignment; thusin -;,
uy isamember of theroler, and u satisfies the condition c. By in-
duction hypothesis, in~;, u1 isamember of Sys.r, and u satisfies
the condition c¢. From the translation and the construction of %-TH,
v 1 hasthe following statements: ;.7 «— wu, Sys.r +— Sys.r.T,

and Sys.r «— Sys.name N tmpRole (where tmpRole corresponds
to the precondition c). Furthermore, in+, 1, u; isamember of the
role r, and u satisfies the condition c. Therefore, v isamember of
the Sys.r rolein v7 ;.

Step two:Prove that if 47/ F ¢ then ' + ¢. It is sufficient
to show that if an RT role membership isimplied by 7, then the
corresponding RBAC role membership (or permission possession)
isasoimplied. A detailed proof uses induction on the number of
rounds in which a bottom-up datalog evaluation algorithm outputs
aground fact. Here, we only point out the key observations. (For
details of similar proofs, see the Appendix in [13].) A RT role
membership is proved by statements generated on lines 35-37 or
40-41. Thefirst three cases correspond to the UA, RH, PA. For
the last case, there must exist a statement w, .7 «—u in~y7’, and it
impliesthat u isamember of therole Sys.r. By the construction of
~T’, the user u has been assigned to the role r during the changes
leading to .

For Assertion 2.Given an RT statey”” suchthat v + - 4",
we can assume without loss of generality that 47/ addsto v7 only
simple member statements. Also, we only need to consider state-
ments defining w;.r;, where u; is auser in v and r; is arole
in v. Consider the set of all statements in 47’ having the form
u;.rj «— uy. For each such statement, we perform the following
operation on the RBAC state, starting from ~y, have u; assign u to
the role ;. Such an operation may not succeed either because u;
is not in the right administrative role or because w; does not sat-
isfy the required precondition. We repeat to perform all operations
that could be performed. That is, we loop through al such state-
ments and repeat the loop whenever the last loop results in a new
successful assignment. Let v be the resulting RBAC state. It is not
difficult to see that o’ implies the same role memberships as v7;
using arguments similar to those used above. [

A.2 Proof for Proposition 3

PrROOF. For Assertion 1:A state change in AAR occurs when
a user assignment or a revocation operation is successfully per-
formed. Given any RBAC state 4/ such that v =, 4/, let
Yo,71, -+ ,Ym De RBAC states such that v = v —y 71 —w

- =y ym = 7. We construct a sequence of RT states
VAL, v asfollows: 4 = ~7; for each i = [0..m — 1],
consider the operation that changes ~; to v;+1. If it isan assign-
ment operation in which a user u; adds (u,r) to the user-role as-
signment relation; the state v, ; is obtained by adding Sys.r «—u
and BSys.r — u to ~. For each revocation that revokes a user
u from arole r, we remove (if they exist) from the RT state the
statements ASys.r «—— v and RSys.r «——u. Letv7’ be~Z.

Step 1: Prove that if 4/ + ¢ then 47" + ¢T. Step 1la: We
prove that in 47’, HSys.r captures all users that are ever a mem-
ber of the role r at some time, i.e, for each ¢ € [0..m], if
u € users, [r], then u is a member of the RT role HSys.r in v,
(SP(v,) = m(HSys, 7, u)). Weprovethisby induction oni. The
basis (i = 0) istrue, sinceiny” we reproduce UA and RH in the
definition of the HSys roles (see lines 54 and 56 in Figure 4); fur-
thermore, the HSys roles never shrink. For the step, we show that if
(u,r) € UAit1, thenu isamember of the RT role HSys.r in ..
This is sufficient for proving the induction hypothesis because the
effect of propagation through role hierarchy is captured by the def-
inition of HSys roles. If (u,r) € UA;+1, then either (u,r) € UA
(in which case HSys.r «—— u € ~*'), or there is an assignment
operation that assigns « to r (in which case BSys.r «—— u € 41").
Let (rq,c,7) € can_assign be an administrative rule used for this
assignment, thenin +;, the user v satisfies c. By induction hypothe-
sisu’srole membershipsin ; is captured in u’s role memberships

135

in HSys.r; therefore w would satisfy the translated precondition
tmpRole. Therefore u is amember of the role HSys.r in ~Z, (be-
cause of the statement HSys.u «— BSys.r N tmpRole).

Step 1b: We prove that in 7’ the Sys roles capture al the
role memberships in /. It is sufficient to prove the following:
let UA’ be the user assignment relation in +/, if (u,r) € UA’,
then u is a member of the role Sys.r in v7'. If (u,r) € UA,
then either (u,7) € UA and thisis never revoked (in which case
RSys.r «— u € 47 and this statement is never removed, there-
fore RSys.r «— u € ~T"); or there is an assignment operation
in C, and this assignment is not revoked after it (in which case
ASys.r—u € yT').

Step two:Prove that if 47/ F ¢T then o' + q. It is sufficient
to show that if an RT role membership isimplied by 7, then the
corresponding RBAC role membership (or permission possession)
isalso implied. A detailed proof uses induction on the number of
rounds in which a bottom-up datalog evaluation algorithm outputs
aground fact. Here, we only point out the key observation. A RT
role membership is proved by statements generated on lines 55, 56,
57, or 63. Thefirst three cases correspond to the UA, RH, PA. For
the last case, there must exist a statement ASys.r «—— v in~y7’, and
itimpliesthat v isamember of the role Sys.r. By the construction
of v, the user u has been assigned to the role r during the changes
leading to +' and the assignment is not revoked after that.

Also, we only need to consider statements defining w;.r;, where
u; isauserin~yand r; isarolein~.

Consider the set of all statements in 47’ having the form
u;.rj «— uy. For each such statement, we perform the follow-
ing operation on the RBAC state, starting from ~, have u; assign
uy, to the role r;. Such an operation may not succeed either be-
cause u; is not in the right administrative role or because w;, does
not satisfy the required precondition. We repeat to perform al op-
erations that could be performed. That is, we loop through all such
statements and repeat the loop whenever the last loop resultsin a
new successful assignment. Let +' be the resulting RBAC state. It
is not difficult to see that + implies the same role memberships as
~T’: using arguments similar to those used above.

For Assertion 2:Among the RT roles, Sys roles and HSys roles
are fixed; ASys roles can grow or shrink; RSys roles can shrink
but not grow; and BSys roles can grow but not shrink. Given an
RT state v"" such that 4" +,r ~"’, we can assume without
loss of generality that 47/ adds to v~ only simple member state-
ments. Consider the set of all statements in v defining ASys,
BSys, and RSys roles. We construct the RBAC state +' as follows.
(1) For every statement BSys.r «— u in~T’, assign the user u to
therole r. Repeat through all such statements until no new assign-
ment succeeds. Using arguments similar to those used for proving
assertion 1, it can be shown that now the RBAC roles have the same
memberships as the HSys roles. (2) Do the same thing for all the
ASys.r «—— u statements. At this point, all the role memberships
for the Sys rolesin v’ are replicated in the RBAC roles, because
all the HSys memberships have been added. (3) Remove the extra
role membership in the RBAC state, i.e., those not in the Sys roles.
The ability to carry out this step depends upon the requirement (in
Definition 5) that if thereisa can_assign rulefor arole, then there
isalso revokerulefor therole. [

