Rule Support for Role-Based Access Control

Axel Kern — Claudia Walhorn
Beta Systems Software AG
Josef-Lammerting-Allee 14

50933 Kéln, Germany

{axel.kern | claudia.walhorn}@betasystems.com

ABSTRACT

The administration of users and access rights in large en-
terprises is a complex and challenging task. Role-based
access control (RBAC) is a powerful concept for simplify-
ing access control. In particular, Enterprise Roles spanning
across different I'T systems are increasingly used as a basis
for company-wide security management. However, the ad-
ministration of roles in large organisations can become quite
cumbersome and needs to be automated.

During the past years, rules have been used to support
automation of user and access rights administration. We
discuss different rule-based approaches and propose a new
method called rule-based provisioning of roles which com-
bines the advantages of rules and roles.

Experiences made during implementation of this approach
are presented in two case studies. The results are evaluated
and show that role-based access control in combination with
rule-based provisioning can be successfully used in practice.
A high level of automation can be achieved.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms

Management, Security

Keywords

Automated identity management, security provisioning, se-
curity administration, role-based access control (RBAC),
Enterprise Role-Based Access Control (ERBAC), rules, ac-
cess rights, SAM Jupiter, Provisioning Engine, Rule Engine,
directories, case studies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’05, June 1-3, 2005, Stockholm, Sweden.

Copyright 2005 ACM 1-59593-045-0/05/0006 ...$5.00.

130

1. INTRODUCTION

Role-based access control (RBAC) has established itself
as a solid basis for today’s security administration needs, as
documented in the RBAC96 model [16] and the subsequent
NIST standard [7]. In particular, Enterprise Roles spanning
across different I'T systems are increasingly used in medium
and large organisations as a basis for company-wide secu-
rity management. An Enterprise RBAC model (ERBAC)
has been described in previous papers [11, 13] and was im-
plemented as a core functionality of the commercial identity
management product SAM Jupiter [15].

Roles as the sole basis for security administration have
some significant drawbacks, however.

e If roles only contain explicit authorisations, large or-
ganisations need quite a large number of different roles.
What is needed is a more generic definition of roles (see

e.g. [11]).

e Although the usage of roles reduces the administration
effort considerably, quite a lot of work is still necessary
to assign roles to users (so-called security provision-
ing). Efforts are made to automate the provisioning
process (see e.g. [13]).

Rules are a well-known technique used for automation
purposes. In this paper we show that in combination with
roles, the use of rules enhances the current ERBAC model
significantly. The resulting system fits well into current IT
environments and reduces the efforts for identity manage-
ment and access control administration considerably. Prac-
tical experience was gained when introducing this concept
during the implementation of the identity management soft-
ware SAM Jupiter in several large companies.

Having given an initial introduction and motivation for
our work, the rest of this paper is structured as follows.
We discuss several administration approaches using roles
and/or rules including our concept of rule-based provisioning
of RBAC in section 2. This is followed by a brief summary
of related work in section 3. We present two case studies
in section 4 showing the experiences made with introducing
RBAC and rule-based provisioning in large organisations.
An evaluation of these experiences concludes our paper.

2. ROLES AND RULES

2.1 Role-Based Administration

In the past years, role-based access control (RBAC) has
established itself as a solid basis for today’s security admin-
istration needs. Based on the RBAC96 model [16, 6], a

Role Hierarchy

P

User Permission
User Role Permission
Assignment Assignment
Figure 1: Role-Based Access Control (RBAC)
User Permission
U.ser LHS RHS
Attributes Conditions Actions
Rules

Figure 2: Rule-Based Access Control

NIST standard proposal [7] was accepted by the American
National Standards Institute, International Committee for
Information Technology Standards as ANSI INCITS 359-
2004.

In the RBAC model, permissions are not directly assigned
to users but are instead collected in roles (see figure 1). Ev-
ery role represents a special scope of permissions. A user is
assigned to one or more roles, thereby acquiring permissions
defined for the roles.

To facilitate the administration of permissions, roles can
be organised in role hierarchies in which permissions are
inherited. Permissions can easily be taken away or added to
a role if necessary. This is then reflected in the permissions
granted to all users that are assigned directly or indirectly
to the role.

The standard RBAC model also contains sessions. During
a session, a user can activate one or more of the assigned
roles. Each session is associated with one user, whereas a
user can have several sessions at the same time. As we are
concentrating on the administration of RBAC in this paper,
and sessions are not relevant in this context, we do not deal
with them further here.

The RBAC approach has the following strong advantages:

e RBAC is a simple and proven administration concept.

e Roles allow business-oriented, non-technical adminis-
tration.

e Roles provide a solid basis for security audits.

However, the RBAC approach also has some disadvan-
tages:

e A potentially high administration effort, as roles are
principally static.

131

e Organisational and functional changes that often occur
in large enterprises always require the reassignment of
a considerable amount of roles. The resulting admin-
istration work is normally quite expensive.

2.2 Rule-Based Approaches

We will discuss some alternative strategies for dealing with
these disadvantages. As already pointed out in [1] and [11],
the decision that determines which roles a user receives is
based on the user’s attributes. As these attributes are nor-
mally already stored in a human resources (HR) database, a
directory or a security administration system, the attributes
can be used to automate the process of assigning roles. This
can be done by utilising rules. In the following, we discuss
different approaches to applying rules.

2.2.1 Rule-Based Access Control

The grouping of access rights can be achieved by using
rules instead of roles. Rules consist of a condition in the so-
called left-hand side (LHS) and one or more actions on the
right-hand side (RHS) [9]: When the expression on the LHS
is true, the action on the RHS is executed. In our context,
the LHS expressions are based on user attributes (see figure
2). A rule such as

IF

User-Function "Developer" AND
User-Company "Beta Systems"
THEN Execute Java Compiler

gives all users of company “Beta Systems” with the function
“Developer” Ezecute access to the Java compiler. Thus, a
rule makes it possible to give one or more access rights to
a whole group of users making rules quite a powerful and
dynamic administration tool. Changes in user attributes
automatically change the user’s access rights. As the at-
tributes are often provided automatically — e.g. from an

dynamic user-role
User
User LHS
Attributes Conditions

assignment
€ y Role
RHS o
. Permission
Actions

Rules

Figure 3: Rule-Based RBAC (RB-RBAC)

HR database — administration work is considerably reduced.
Furthermore, the correctness of the access rights is high, as
long as user attributes and rules are correct.

Compared to roles, however, rules have some drawbacks:

e When using rules, the assignment of access permis-
sions to users is highly dynamic. Thus, it is difficult
to obtain an overview concerning who is allowed to do
what. In particular, this makes it difficult to provide
a sound audit function (see also [10]).

As as result, it is not easy to maintain rules in the long
run because it is difficult to foresee the impact of rule
changes.

Rules completely lack the capacity of roles to build
“business roles” which contain all permissions for a
specific business function and can be assigned by non-
technical administrators.

For these reasons, the use of rules alone for administering
access rights does not seem feasible. Nevertheless, rules are
used as a method for grouping permissions in access control
systems. An example is the mainframe security system CA-
ACF2, which features authorisations through rules based on
a very restricted set of user attributes.

Another example is introduced for application security
systems in [12]: Rules are used to build sets of processes
and objects, which in turn are used to define authorisations.
These authorisations can then be grouped to form roles and
used in an RBAC system. The main reason for using roles
in this context is the reduction of complexity.

2.2.2 Rule-Based RBAC

As the use of rules alone does not seem to be feasible
for enterprise-wide user administration, we now look at ap-
proaches which combine rules and roles. In [1] the so-called
Rule-Based RBAC (RB-RBAC) is introduced: In contrast
to the standard RBAC model, roles are not assigned directly
to users. Instead, rules using user attributes compute the
role assignments for users dynamically (see figure 3). Some
user attributes which might be used for this purpose in our
context include organisation, job function or location.

The concept of combining rules and roles has the following
advantages:

e This approach offers most of the advantages of RBAC,
including the possibility to use role hierarchies.

132

e Rules feature dynamic role assignments based on user
attributes and thus reduce administration effort.

If changes in the role assignments are necessary, e.g. due
to organisational or operational changes, no manual assign-
ments and deassignments of roles are necessary. Often, only
the user attributes change thus adapting the user’s role as-
signments automatically. For structural changes, the appro-
priate rules are written or changed.

However, this approach has some disadvantages:

e Large organisations probably have quite a lot of rules,
which makes it difficult to maintain an overview of who
has which permissions.

e The missing overview makes it especially difficult to
fulfil auditing requirements.

e Furthermore, it is often difficult to foresee the impact
of a new rule or the modification of an existing rule.

2.2.3 Rule-Based Provisioning of RBAC

As described in the previous section, the most important
advantage of applying rules is the possibility to automate
role assignments. The main drawback — at least when used
for large user populations in complex environments such as
banks and other large organisations — is the lack of overview
and audit capability. This is mainly due to the highly dy-
namic quality of the approach, which implicitly connects
users to roles.

To overcome these disadvantages, we propose an approach
which is more “static”: We separate rule-based provision-
ing and the role-based administration system. With “pro-
visioning” we describe the process of bringing users, their
attributes and further information needed for entering ac-
cess rights into the RBAC system (and thus “provisioning”
the user with the needed access rights). This process is nor-
mally automated by taking information from HR databases,
corporate directories or other information bases in the enter-
prise. Such databases contain information about employees
entering or leaving the company and data such as employee
number, organisational unit, location or job description.

Thus, the provisioning process encompasses two steps (see
figure 4):

1. Provisioning enters new users, deletes old ones and
changes attributes for existing users in the RBAC sys-
tem.

static user-role assignment
User y L Role
@ U_ser @ Permission
Attributes
r--r-—-—-{--~-~>~>""~" -~ - - -~ -~ -"-VF-"-"-" - - - - - TS TTT= hl
| |
| |
| |
! LHS RHS L !
| HR Provisioning |
| Database Conditions Actions |
| |
| |
| Rules |

Figure 4: Rule-Based Provisioning of RBAC

2. Based on the attributes of the users, the process com-
putes which role assignments the users should receive
and adds new role assignments and deletes obsolete
assignments accordingly.

By separating provisioning and the RBAC administration
system, we are thus able to combine the advantages of roles
and rules:

e As the RBAC system contains explicit role assign-
ments, the administrator has a good overview of the

actual authorisations that a user has in the system.

For the same reason, the system provides good au-
diting capabilities, which is very important in many
industries such as banks and insurances.

Rules are used to compute the role assignments by
exploiting information from existing databases.

Using these rules, a high grade of automation can be
achieved, thereby considerably reducing the manual
administration effort.

Automation using rules also reduces the probability of
errors and leads to a higher security level as it prevents
errors made in manual administration.

For RB-RBAC, we mentioned that it is often difficult to
foresee the impact of a new rule or the modification of an
existing rule. This drawback also exists for rule-based provi-
sioning. As a remedy, an impact analysis feature simulates
rules and allows the rule administrator to check the impact
of changes before they are activated.

A disadvantage of rule-based provisioning compared to
RB-RBAC is the more static use of rules: Changes in rules
or attributes do not take effect immediately on permissions
of users. However, we think that in practice — at least for
large user populations — this disadvantage is outweighed by
the improved overview and auditing capabilities. Normally,

133

a daily update of user information and their role assign-
ments is sufficient. As organisational changes, job changes
etc. are normally known in advance, such changes can be
scheduled for the provisioning run at a set date. In urgent
cases, manual administration directly in the RBAC system
is possible. Manual actions that contradict the defined rules
are detected and corrected during the next provisioning run.

3. RELATED WORK

Al-Kahtani and Sandhu introduce a model and language
for attribute-based user-role assignment, called Rule-Based
RBAC (RB-RBAC) in [1]. We have already discussed this
approach in section 2.2.2. In [3] this model is extended with
negative authorisations. As we do not use these in ERBAC,
we do not further discuss this issue.

Al-Kahtani and Sandhu also introduce seniority levels of
rules: A rule A is senior to a rule B if the users that meet
the conditions of rule B are a subset of those meeting the
conditions of rule A. Seniority requires that an order be de-
fined for the attributes used in rules. Seniority levels might
conflict with role hierarchies: Let us assume that rule A as-
signs role R1 and rule B assigns role R2, and R2 is senior
to R1 in the role hierarchy. Users matching rule B would
then acquire role R through role inheritance although it is
assigned by a rule with a higher seniority level. The impact
of contradicting rule and role hierarchies is explored in [2].
In our context, we do not see seniority levels of rules as an
important aspect. This is mainly because for most of the at-
tributes, no clear order can be defined. This point was also
confirmed by the practical experiences that we have made
in customer projects using rules.

In [5], Chandramouli presents a business process driven
framework for defining an access control service consisting
of five steps:

1. Identify the business processes.

2. Determine access control requirements.

Agent
UNIX
GUI .

Administra- BSLJs;nefs Back-End WAg(;nt
tor Client erve in 2003
Import . Agent

R t
Interface epository RACF

Figure 5: Architecture of SAM Jupiter

3. Define the access control model for the application.
4. Define the access decision rules.

5. Define the access enforcement mechanism.

The framework uses roles and rules: Roles are used as the
basic mechanism of the access control model. Rules are de-
fined to provide access to functions in the applications and
can authorise either roles or users directly. Rules are thus
used as described in section 2.2 and [12].

4. PRACTICAL EXPERIENCE

We have used the approach described in the previous
chapter in a number of identity management projects in
large organisations. Presenting some case studies, we show
in this section how RBAC and rules can be successfully com-
bined in real life. The case studies are based on the expe-
riences that we have made when introducing our identity
management solution — SAM Jupiter — in several compa-
nies.

4.1 SAM Jupiter

SAM Jupiter is a commercial identity management solu-
tion developed by Beta Systems [15]. It provides a central
point of administration, giving administrators full control
of all IT access control management for employees and re-
sources without compromising on the lowest common de-
nominator of security protection. Interfaces to the specific
security systems and applications allow for a consolidation of
information in a common security repository using a system-
independent conceptual model. When these systems are
connected to SAM Jupiter and their data loaded into its
repository, administrators work only in the SAM Jupiter
environment and no longer need specific knowledge about
the systems they administer. This not only consolidates the
administration work, but also reduces the need for in-depth
knowledge about all underlying systems. All administration
work is done in SAM Jupiter and automatically propagated
to the underlying systems in the format required.

Figure 5 shows the architecture of SAM Jupiter. It is
based on a state-of-the-art 3-tier architecture. The presenta-
tion layer is represented by a modern, Web-based graphical
user interface which provides access for both central and de-
centralised administrators. The GUI was developed using a

134

user-centric development process according to ISO 13407 [4].
By ensuring good usability of the administration interface,
it is possible to minimise errors and thereby increase over-
all security. An import interface is provided for automation
purposes. The underlying security systems are connected
via agents and called target systems (TS) of SAM Jupiter.

The Business Server implements the business logic of SAM
Jupiter. This is also where the security and administration
policies enforced by SAM Jupiter are defined. The back-
end component acts as transaction engine for the repository
and provides connections to the supported target systems
via agents. The agents run on the target platform, propa-
gate the administrative work completed in SAM Jupiter to
the relevant security systems and are also able to load the
data to the repository. Standard agents are provided for all
major software systems. Customer applications can be eas-
ily connected using the SAM Jupiter connector technology.
Specific connectors are provided for connecting application
security systems, LDAP-based systems, and other company-
specific applications.

Using SAM Jupiter, all users and their access rights across
all systems in the IT environment of an organisation are
administered using RBAC. For this purpose, we have ex-
tended the RBAC model to support Enterprise Roles which
span over more than one security system and consist of per-
missions in multiple systems. The resulting model is called
Enterprise Role-Based Access Control (ERBAC), which is
introduced in [13] and [11] (see figure 6').

As shown in figure 6, ERBAC distinguishes between en-
terprise and target systems level. On enterprise level, enter-
prise-wide entities such as users and roles are defined. The
target system level describes the underlying security systems
and contains the target-system specific entities.

Enterprise Roles include all permissions needed to per-
form a specific role. Users are then assigned to these roles.
The permissions that a user receives through the assignment
of a role are propagated to the administered target systems
(TS). The Enterprise User definition leads to the creation of
user accounts (user IDs) in the T'S. A permission can be any
operation for an object in one of the underlying target sys-
tems. The assignment of a permission to an Enterprise Role

'For a more comprehensive description of ERBAC and its
comparison to the NIST RBAC standard, see [11].

Role Hierarchy

P

Permission
User Permission .
User Assignment Role Assignment || Operation > Object Enterprise Level
|
|
. | ! Propagation
o ‘ = Permission in TS~ ™
| | # jFT T T TS -Aa - --- A |
} A.ccgl_usnt } TS u TS Target Systems
! in ! ¥ Operation; ! Object ! |
Lo e = J [Balinlatiafietielie e S S e e the et i

Figure 6: Enterprise RBAC (ERBAC)

does not necessarily cause any update in the target system.
The user’s accounts receive the permissions defined for the
role in the respective TS only when a role is assigned to the
user. The process is the same, of course, when permissions
are added to or removed from roles.

In addition to the core RBAC features, a general role hi-
erarchy is supported. Enterprise Roles can be assigned to
other roles in a directed acyclic graph. Child roles inherit
all permissions from their parent roles (including all permis-
sions that these roles inherit). A user assigned to a child
role thus receives all permissions assigned to this role, plus
all permissions which the role inherits from its ancestors.

A difference between ERBAC and the RBAC96 model lies
in the notion of sessions. In our enterprise-wide administra-
tion concept, all systems in the enterprise are administered.
The actual user sessions, however, are controlled by the re-
spective target systems. Therefore, sessions are not part of
the ERBAC model.

CE—
-
Direc-

tory
_ Provisioning SAM Jupiter
,ﬁj Engine ERBAC

HR

Database
.
Rule
Engine Rules

Figure 7: Provisioning and ERBAC

To further reduce administration costs, most enterprises
wish to automate administration. The most accurate infor-
mation about employees can usually be found in the human
resources database. Extracted information such as employee
number, organisational unit, location or job description can
be used to add and delete users automatically as well as
update their role assignments. If a new employee starts
with the company or changes position, this information is
transferred directly from the human resources database to

135

SAM Jupiter. SAM Jupiter automatically transforms the
information to role assignments and makes the correspond-
ing updates in the connected target systems. New accounts
are created when necessary. In addition, when an employee
leaves the company, all of the employee’s accounts and ac-
cess rights are automatically deleted, thus greatly reducing
security risks. A prerequisite for automation is the usage of
roles that correspond to organisational structures, job de-
scriptions etc.

The functionality described above is called “provisioning”.
In our system, it is accomplished by the so-called Provision-
ing Engine, which acts as a front-end for the ERBAC system
(see figure 7). It is complemented by a Rule Engine which
contains rules as described in section 2.2.3. We use Jess, a
Java-based general-purpose rule engine developed at Sandia
National Laboratories in the USA [9]. This Rule Engine
uses the Rete algorithm to obtain high performance for rule
evaluation [8].

The provisioning process principally works in two steps
(see also figure 4):

1. User data including all relevant attributes are taken
from the HR system and/or other databases such as
corporate directories. This data is then compared to
the data in the ERBAC repository. Transactions for
creating or deleting users and changing user attributes
are generated and automatically run against SAM Ju-
piter. Alternatively, it is possible to work with a differ-
ential input which contains only the changes since the
last provisioning run. However, comparing the entire
user population is much more robust against errors.

2. The users and predefined user attributes are fed into
the Rule Engine. All rules are evaluated and a list of
roles that the users are supposed to have is generated.
This list is compared with the current user-role assign-
ments in the ERBAC repository, and the roles in SAM
Jupiter are changed accordingly.

Normally, the Provisioning Engine runs every night to proc-
ess the changes of the day.

Companies often administer various groups of users dif-
ferently. For instance, the HR system may not contain all
users. Therefore, it is important to flag imported users in
the ERBAC repository. A provisioning run then only up-
dates users that have this flag set. Other users are left for
manual administration.

4.2 Case Studies

4.2.1 Case Study 1: Bank

A European bank is currently using SAM Jupiter as de-
scribed in the previous section to administer some 46 000
users. The administered target systems include three RACF
systems on the mainframe, about ten Windows domains
(NT, 2000 and 2003), SAP, LDAP and application security
systems.

Three types of users are administered:

e Internal users (employees)

e External users (e.g., consultants working for the com-
pany)

e Technical user IDs needed for automated processes,
etc.

Internal and external users are imported from the HR data-
base. For this purpose, all external users are also fed into
the HR system. Technical user IDs are administered directly
in SAM Jupiter.

More than 80% of the roles that the users need for their
work are computed using the Rule Engine and automatically
connected or disconnected. This is accomplished by approx-
imately 1000 rules. The rules are based on about 15 user
attributes such as ‘cost centre’, ‘branch’ or ‘organisational
unit’. The administration is divided between headquartes
and the branches:

e Users in headquarters receive their roles primarily as
a result of the cost centre to which they belong. The
cost centre mainly describes the function of the user.

e Users in the branches receive their roles mainly ac-
cording to the branch (location) in which they work.
Users often work for more than one branch. In this
case, they receive the roles for all of these branches.

These different approaches can easily be reflected in different
rule structures for both domains.

Most of the rules are quite simple. They are based on
branch, cost centre, company and some other user attributes.
A typical rule looks like:

IF User-CostCentre = "AB2500"
User-Company = "Bank1"

THEN Assign Role "Bankl-Cashier"

AND

Rule and role definitions are not static. Organisational,
functional and technical changes lead to changing require-
ments for authorisations. Some typical changes are:

e Changes in the operational structure which encompass
new or changed applications, changing job functions
etc. which lead to new or changed rules. On the aver-
age, two rules are changed per day in the bank.

e Changes in the organisational structure of the bank
also occur at longer intervals. For example, branches
are merged, resulting in the following changes:

— The organisational attributes of the users in the
merged branches change.

— The rules referring to the old branches must be
adapted.

136

In such cases, the rules are migrated in a concentrated
action.

e New user attributes are introduced for use in the pro-
visioning process. This does not happen very often —
normally about once a year. An example was the intro-
duction of SAP-HR, which provided more information
about the users.

To handle these changes of rules in productive environ-
ments, a rule life-cycle management has been implemented:

1. New rules are written in a deactivated state.

2. As the change of a rule can have a great impact on
user authorisations, it is important to validate new
rules before letting them take effect. An incorrect
rule may lead to the revocation of important autho-
risations, which in turn could prevent brokers from
trading or ATMs from dispensing money, for example.
Validation is performed by simulating a modified rule
and listing the total number of affected users and their
identifiers. Based on this information, the rule admin-
istrator determines whether designated users are af-
fected and whether the rule has the correct effect. The
validation can be performed by the following means:

e Checking whether sample users are or are not af-
fected by the rule,

e Checking whether the number of affected users
matches expectations or

e Checking whether the number of affected role as-
signments matches expectations.

3. After testing, a rule is activated and takes effect during
the next provisioning run.

4. Due to organisational or business related changes, a
rule might later become obsolete and is then deacti-
vated or deleted.

4.2.2 Case Study 2: IT Service Provider

Our second case study describes the identity management
solution implemented at an IT service provider. This or-
ganisation administers some 150 000 users in RACF, several
SAP systems, an LDAP directory and customer-specific ap-
plication security systems. Because of extensive automation,
they manage with three administrators.

They also administer different types of users:

e Internal users are administered in the HR system and
imported into SAM Jupiter.

e External users are administered directly in SAM Jupi-
ter; roles and access rights are assigned manually.

The service provider serves several clients with different
administration concepts due to differing business require-
ments. Provisioning of users and their attributes is imple-
mented for all companies. Automated provisioning of roles
is performed for one company with about 15000 users. The
roles that a user receives are again computed using the Rule
Engine. About 2000 rules based on six user attributes are
used. Regular changes of rules occur very infrequently. A
large number of rules must be adapted only after reorgani-
sations.

The provisioning process runs about once a week.

Users 64000 | 150000 | 19000 | 10000 | 11500 | 30000
Users with roles 36000 7500 | 18000 | 6000 | 10500 | 14500
Roles per user 1 1 1 1 5 3
Roles 3000 50 | 1800 400 | 2800 | 2500
Permissions per role 34 3 10 14 2 2

Table 1: Examplary Figures for Users and Roles

4.3 Conclusion

We have made some general observations in our identity
management projects with role-based access control. Dif-
ferent types of users may be administered in different ways.
Reasons for this can be the following:

e Different business needs.

e Master user data is available in different databases
with different attributes. For some types of users, no
data might be available at all. In some organisations,
the RBAC repository contains the only reliable source
for external users.

e More and more companies are outsourcing their I'T to
service providers. These service providers have cus-
tomers with entirely different administration philoso-
phies.

Organisations implementing RBAC do not necessarily do
so for all of their users. It is common knowledge that the
process of defining roles is quite expensive (see e.g. [14]).
Organisations might decide to do one of the following:

e Introduce RBAC step by step, e.g. branch by branch.

e Implement RBAC only in areas where they see the
greatest benefit. Many service providers, for instance,
introduce RBAC only to those customers who request
it and are willing to pay for it.

Therefore, it is important to use an access control model
which provides roles, but does not force organisations to use
them. Our ERBAC system SAM Jupiter allows administra-
tion via roles as well as the direct assignment of permissions
to user accounts. This conclusion is also backed by table 1
which shows the quantity structure for six companies that
have implemented role-based administration with SAM Ju-
piter. The table lists:

e The total number of users the company administers.

e The number of users which are administered using
roles.

e The average number of roles per user.
e The total number of roles.

e The average number of permissions per role. These
permissions can be groups or authorisations in the re-
spective target system (see also section 4.1).2

The table gives some interesting insights: The total num-
ber of roles, the percentage of users administered via RBAC
and the average number of permissions per role vary quite

2In most cases, groups in target systems like RACF, ACF2,
Windows 2000, LDAP directories or Netware are used.

137

widely. On the contrary, it is interesting to note that the av-
erage number of roles per user is quite low for all companies
and does not exceed five.

When considering the use of RBAC in practice, we have
often seen that pure RBAC provides a good methodical ba-
sis, but is too expensive to administer. Generic roles (see
[11]) and rules are extensions which make the use of RBAC
feasible.

Rules have proven to be a very useful supplement to roles.
In addition to use as access decision rules (see [5, 12]), rules
are primarily used to automate the provisioning process.
The following characteristics of a rule-based provisioning
function have proven to be essential:

e Rules can easily be adapted to reflect organisational
and operational changes.

e Attributes used in the Rule Engine are generic so that
new attributes can easily be added.

e Normally, it is sufficient to run provisioning once a
day (or even less often). Urgent administration can be
performed directly in the RBAC system.

Generally, the rules are quite straightforward and based on a
manageable number of attributes (five to fifteen). Although
changes of rules do not occur too often, an effective rule life-
cycle management as described in section 4.2.1 is essential.
The most important rule-related figures of our case studies
are summarised in table 2.

Bank | IT SP
Users 46 000 | 150000
Target systems 25 10
Attributes in rules 15 6
Rules 1000 2000
Rule changes per week 10 1

Table 2: Quantity Structure for Case Studies

Our conclusion is that ERBAC with rule-based provision-
ing has proven to be an efficient concept in practice for the
administration of users and their access rights. It allows a
high level of automation, thus reducing administration costs
while ensuring a high security level.

5. REFERENCES

[1] M. A. Al-Kahtani and R. Sandhu. A Model for
Attribute-Based User-Role Assignment. In Proceedings
of the 18th Annual Computer Security Applications
Conference, Las Vegas, Nevada, USA, pages 353-362,
December 2002.

[2] M. A. Al-Kahtani and R. Sandhu. Induced Role
Hierarchies with Attribute-Based RBAC. In
Proceedings of the 8th ACM Symposium on Access
Control Models and Technologies (SACMAT 2003),
Como, Italy, pages 142-148, June 2003.

3]

[4]

(10]

M. A. Al-Kahtani and R. Sandhu. Rule-Based RBAC
with Negative Authorizations. In Proceedings of the
20th Annual Computer Security Applications
Conference, Tucson, Arizona, USA, December 2004.
A. Beu, A. Kern, and J. Schwagereit. “Das User
Interface ist wunderschén...”. Der benutzerzentrierte
Gestaltungsprozess nach ISO 13407 in der Praxis.
Java Magazin, pages 28-35, May 2002.

R. Chandramouli. Business Process Driven Framework
for defining an Access Control Service based on Roles
and Rules. In 23rd National Information Systems
Security Conference, Baltimore, Maryland, USA,
October 2003.

D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli,
editors. Role-Based Access Control. Artech House,
Norwood (MA), USA, 2003.

D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn,
and R. Chandramouli. Proposed NIST Standard for
Role-Based Access Control. ACM Transactions on
Information and System Security (TISSEC),
4(3):224-274, August 2001.

C. L. Forgy. Rete: A Fast Algorithm for the Many
Patterns/Many Objects Match Problem. Artificial
Intelligence, 19:17-37, 1982.

E. Friedman-Hill. JESS in Action. Rule-Based
Systems in Java. Manning Publications, Greenwich
(USA), 2003.

G. Gebe. Managed Authorization Services:
Implementing Roles, Rules, and Policies. Burton
Group, Midvale, Utah (USA), December 2004.

138

(11]

(12]

(13]

(14]

(15]

(16]

A. Kern. Advanced Features for Enterprise-Wide
Role-Based Access Control. In Proceedings of the 18th
Annual Computer Security Applications Conference,
Las Vegas, Nevada, USA, pages 333-342, December
2002.

A. Kern, M. Kuhlmann, R. Kuropka, and A. Ruthert.
A Meta Model for Authorisations in Application
Security Systems and their Integration into RBAC
Administration. In Proceedings of the 9th ACM
Symposium on Access Control Models and
Technologies (SACMAT 2004), Yorktown Heights,
New York, USA, pages 87-96, June 2004.

A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett.
Observations on the Role Life-Cycle in the Context of
Enterprise Security Management. In Proceedings of the
7th ACM Symposium on Access Control Models and
Technologies (SACMAT 2002), Monterey, California,
USA, pages 43-51, June 2002.

M. Kuhlmann, D. Shohat, and G. Schimpf. Role
Mining — Revealing Business Roles for Security
Administration using Data Mining Technology. In
Proceedings of the 8th ACM Symposium on Access
Control Models and Technologies (SACMAT 2003),
Como, Italy, pages 179-186, June 2003.

For more information about SAM Jupiter see

http: //www.sam-security. com.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE
Computer, 29(2):38-47, February 1996.

