
Articulating and Enforcing Authorisation Policies with UML
and OCL

Karsten Sohr
Department of Mathematics

and Computer Science
Universität Bremen

Bibliothekstr. 1
28359 Bremen, Germany

sohr@tzi.de

Gail-Joon Ahn
∗

Department of Software and
Information Systems

University of North Carolina at
Charlotte

Charlotte, NC 28223, USA

gahn@uncc.edu

Lars Migge
Department of Mathematics

and Computer Science
Universität Bremen

Bibliothekstr. 1
28359 Bremen, Germany

lmigge@tzi.de

ABSTRACT
Nowadays, more and more security-relevant data are stored
on computer systems; security-critical business processes are
mapped to their digital pendants. This situation applies to
various critical infrastructures requiring that different se-
curity requirements must be fulfilled. It demands a way to
design and express higher-level security policies for such crit-
ical organizations. In this paper we focus on authorisation
policies to demonstrate how software engineering techniques
can help validate authorisation constraints and enforce ac-
cess control policies. Our approach leverages features and
functionalities of the UML/OCL modeling methods as well
as model driven approach to represent and specify authori-
sation model and constraints. Using our authorisation con-
straints editor, we articulate role-based authorisation poli-
cies. Also, we attempt to validate and enforce such con-
straints with the USE (UML Specification Environment)
tool.

1. INTRODUCTION
Today information technology (IT) pervades more and

more all aspects of our daily life. This applies to very differ-
ent domains such as healthcare and digital government. On
the other hand, new technologies go along with new risks,
which must be systematically dealt with, such as preventing
unauthorised access. Hence it is mandatory to establish ad-
equate mechanisms that enforce the security and protection
requirements demanded by the rules and laws relevant to

∗This work of Gail-J. Ahn was partially supported at the
Laboratory of Information of Integration, Security and Pri-
vacy at the University of North Carolina at Charlotte by the
grants from National Science Foundation (NSF-IIS-0242393)
and Department of Energy Early Career Principal Investi-
gator Award (DE-FG02-03ER25565)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Software Engineering for Secure Systems – Building Trustworthy Applica-
tions (SESS’05)St. Louis, Missouri, USA
Copyright 2005 ACM 1-59593-114-7/05/05 ...$5.00.

the organisation in question.
Implementing such higher-level organisational authorisa-

tion policies in computer systems can be cumbersome and
inefficient. However, it has turned out that one of the great
advantages of role-based access control (RBAC) is that sep-
aration of duty (SoD) rules can be implemented in a natural
way [4]. Generally speaking, role-based authorisation con-
straints are an important means for laying out higher-level
access control policies [1, 5].

As demonstrated in [2, 7], the Unified Modeling Language
(UML) and the Object Constraint Language (OCL) can be
conveniently used to specify several classes of role-based au-
thorisation constraints. Moreover, owing to the fact that
OCL has proved its applicability in several industrial appli-
cations1, OCL is a good means for such a practically relevant
process like the design of access control policies.

However, in order to have a broader practical use, tool
support is needed such that the specified authorisation con-
straints can be automatically enforced by the IT systems.
Such an authorisation editor should be designed and imple-
mented by sound software engineering techniques. In par-
ticular, the main focus should lie in the modeling process,
whereas the implementation should be carried out routinely
and as much as possible automatically. Hence, we demon-
strate in this paper how to employ the USE system (UML
Specification Environment) [8] to validate role-based secu-
rity policies and to implement an authorisation tool. In
particular, USE is a validation tool for UML models and
OCL constraints, which has been reportedly applied in in-
dustry and research [8]. Since we employ UML/OCL for
the specification of RBAC system, new software engineering
techniques like Model Driven Devlopment (MDD) could be
used for the development process of the authorisation editor.

The paper is now organised as follows: Section 2 gives
a short overview of RBAC, UML/OCL, and MDD, and in-
troduces the USE system. In Section 3 authorisation con-
straints are specified in OCL. Furthermore, it is described
how the USE system can be employed to validate role-based
authorisation policies. In Section 4 an authorisation editor
is presented, which can enforce various kinds of authorisa-
tion constraints and which is based upon the USE system.
Section 5 summarises and gives an outlook on future work.

1OCL is UML’s constraint specification language and UML
has been widely adopted in software engineering discipline.

1

2. RELATED TECHNOLOGIES
We first give a short overview of RBAC, then we briefly

describe UML/OCL and MDD, and introduce the USE tool,
which can be employed to validate OCL constraints.

2.1 RBAC and Authorisation Constraints
RBAC has received considerable attention as an alter-

native to traditional discretionary and mandatory access
control. One reason for this increasing interest is that in
practice permissions are assigned to users according to their
roles/functions in the organisation. In addition, the explicit
representation of roles greatly simplifies the security man-
agement and allows to use well-known security principles
like separation of duty and least privilege.

In the following, we briefly describe RBAC96, a family of
RBAC models introduced by Sandhu et al. [10]. RBAC96
has the following components:

• Users, Roles, P, S (sets of users, roles, permissions,
activated sessions)

• UA ⊆ Users × Roles (user assignment)

• PA ⊆ Roles × P (permission assignment)

• RH ⊆ Roles × Roles is a partial order also called the
role hierarchy or role dominance relation written as ≤.

Users may activate a subset of the roles they are assigned
to in a session. P is the set of ordered pairs of operations
and objects. In the context of security and access control
all resources accessible in an IT-system (e.g., files, database
tables) are referred to by the notion object. An operation
is an active process applicable to objects (e.g., read, write,
append). The relation PA assigns each role a subset of
P . So PA determines the operation(s) that each role may
execute and the object(s) to which the operation in question
is applicable for the given role.

An important advanced aspect of RBAC are authorisation
constraints. Authorisation constraints are sometimes argued
to be the principal motivation behind the introduction of
RBAC [10]. They allow a policy designer to express higher-
level organisational authorisation policies. Depending on
the organisation, different kinds of authorisation constraints
are required such as SoD in the banking field or constraints
on delegation and context constraints in the healthcare do-
main [12].

2.2 Overview of UML and OCL

2.2.1 Unified Modeling Language.
The Unified Modeling Language (UML) [9] is a general-

purpose visual modeling language in which we can specify,
visualize, and document the components of software sys-
tems. It captures decisions and understanding about sys-
tems that must be constructed. UML has become a stan-
dard modeling language in the field of software engineering.

UML permits to describe static, functional, and dynamic
models. In this paper, we concentrate on the static as-
pects of UML. A static model provides a structural view
of information in a system. Classes are defined in terms of
their attributes and relationships. The relationships include
specifically associations between classes. In Figure 1, the
conceptual static model for RBAC is depicted.

Session

name: String

User

name: String

Permission

name: Stringname: String

Role

Inherits

Establishes
(user)

(roles)
Activates

	UA 	PA

*

** *

1

*

*

Figure 1: Conceptual Class Model for RBAC-Entity

Classes.

2.2.2 Object Constraint Language.
The Object Constraint Language (OCL) [13] is a declar-

ative language that describes constraints on object-oriented
models. A constraint is a restriction on one or more values
of an object-oriented model. OCL is an industrial standard
for object-oriented analysis and design.

Each OCL expression is written in the context of a specific
class. In an OCL expression, the reserved word self is used
to refer to a contextual instance. The type of the context
instance of an OCL expression is written with the context

keyword, followed by the name of the type. The label inv:
declares the constraint to be an invariant. Consider the
RBAC model from Figure 1: If the context is Role, then
self refers to an instance of Role. The following lines show
an example of an OCL constraint expression describing a
role with at most two users:

context Role inv: self.user->size()<2

self.user is a set of User objects that is selected by navi-
gating from objects of class Role to User objects through an
association. The ‘‘.’’ stands for a navigation. A property
of a set is accessed by an arrow ‘‘->’’ followed by the name
of the property. A property of the set of users is expressed
using the size operation in this example.

The following shows another example describing that a
user can be assigned to a role r2 only if she is already mem-
ber of r1:

context User inv:

self.role_->includes(’r2’) implies self.role_->includes(’r1’)

The expression self.role ->includes(’r2’) means that
r2 is a member of the set of roles the user is assigned to.
The implies connector is similar to logical implication.

Furthermore, OCL has several built-in operations that can
iterate over the members of a collection (set, bag, ...) such
as forAll, exists, iterate, any and select (cf. [13]).

2.3 Model Driven Development
This section gives only a brief introduction into the main

ideas behind Model Driven Development (MDD). To ob-
tain more information about MDD, the interested reader is
referred to [14, 13]. Key to MDD is the importance of mod-
els in the software development process. Within MDD, the
software development process is driven by the activity of
modeling the software system. The MDD process consists
of three steps:

1. build a model with a high level of abstraction. This
model is independent of any implementation technol-
ogy and is called Platform Independent Model (PIM),

2

2. transform the PIM into one or more models tailored
towards the specification constructs available in the
specific implementation technology. These models are
called Platform Specific Models (PSM),

3. generate code from the PSMs.

Several tools exist that can automatically produce code
from a PSM. However, the new idea behind MDD is that
the transformation step from the PIM to the PSM can also
be carried out automatically by tools.

As pointed out in [13], the OCL can be regarded as a key
ingredient of MDD. For example, the PSMs can be specified
in OCL. In addition, the OCL can also be used to define lan-
guages for the PIMs and to create transformation definitions
between PIMs und PSMs.

2.4 The USE Tool
This section explains the functionality of the UML Spec-

ification Environment (USE) which allows to validate UML
and OCL descriptions. USE is now available as a mature
version and has achieved more and more functionality since
it was first introduced. USE is the only OCL tool allow-
ing interactive monitoring of OCL invariants and pre- and
postconditions and the automatic generation of non-trivial
system states. These system states or system snapshots con-
sist of the current objects and links between those objects
adhering to the UML model in question.

The central idea of the USE tool is to check for soft-
ware quality criteria like correct functionality of UML de-
scriptions already on the design level in an implementation-
independent manner. This approach takes advantage of de-
scriptive design level specifications by expressing properties
shorter and in a more abstract way. Such properties are
given by invariants and pre- and postconditions, and these
are checked by the USE system against the test scenarios,
i.e., object diagrams and operation calls given by sequence
diagrams, which the developer provides. These abstract de-
sign level tests are expected to be also used later in the
implementation phase.

The USE tool expects as an input a textual description of
a model and its OCL constraints (for an example of such a
description refer to Figure 2). Then syntax checks of this de-
scription are carried out, which verify a specification against
the grammar of the specification language, basically a super-
set of OCL extended with language constructs for defining
the structure of the model. Having passed all these checks,
the model can be displayed by the graphical user interface
provided by the USE system. In particular, USE makes
available a project browser which displays all the classes,
associations, invariants, and pre- and post-conditions of the
current model.

USE can then be employed to generate and change system
states. A system state can be changed by issuing commands
for creating and destroying objects, inserting and removing
links between objects, and setting attribute values of ob-
jects. The USE system provides two different kinds of user
interfaces for these commands, which can be used in parallel:

• a graphical interface supporting an intuitive approach

• a scripting interface providing a shell-like environment
for experts allowing to define scripts with state manip-
ulation commands like !create e1:Employee

The current system state can then be visualised in an object
diagram window, which is automatically updated when the
system state is changed.

The developer can check system states at any time. A
system check includes two phases. First, all model-inherent
must be verified. A model-inherent constraint is a constraint
which is inherent to the semantics of all UML models. For
example, the set of links between objects is verified against
the multiplicity specifications of the association ends. Sec-
ond, if the developer has defined explicit OCL constraints
(invariants and pre- or post-conditions of operations), all
the expressions are evaluated. If any constraint is false, the
system state is considered ill-formed.

Moreover, the developer gets feedback from USE about
the validity of the invariants in a special invariant window
and the validity of the pre- and post-conditions in a sequence
diagram window. Further information about the validity of
invariants can be requested from USE by a dialog window
for evaluating arbitrary OCL expressions. This dialog al-
lows ad-hoc queries useful for navigating and exploring a
system state at any time. Hence, USE helps the developer
in analysing situations when an invariant fails. In order to
give an impression how the work with USE looks like, Fig-
ure 3 depicts a USE screenshot with an example.

3. SPECIFICATION AND VALIDATION
In this section, we demonstrate how authorisation con-

straints can be specified in UML/OCL. Thereafter, it is
described how the USE tool can be employed to validate
role-based authorisation policies.

3.1 Constraints Specification
Subsequently, we give three examples that demonstrate

how to use OCL to specify authorisation constraints.

Example 1: Simple Static Separation of Duty (SSOD)
The first example concerns a separation of duty constraint.
Consider two (or more) conflicting roles such as accounts
payable manager and purchasing manager. Mutual exclu-
sion in terms of UA specifies that one individual cannot
have both roles. This constraint on UA can be specified
using the OCL expression as follows 2:

context User inv SSOD:

let

CR:Set={{AccountsPayableManager, PurchasingManager}, ...}

in

CR->forAll(cr|cr->intersection(self.role_)->size()<=1)

Note that CR denotes here a set which consists of conflict-
ing role sets, as introduced in [1].

Example 2: Prerequisite Roles
The second example is based upon the concept of prerequi-
site constraints as introduced in [10]. In this example, we
consider a prerequisite constraint stating that a user can be
assigned to the engineer role only if the user is already as-
signed to the employee role.

2For the sake of simplicity, we have left out here the part
for the creation of the instances AccountsPayableManager
and PurchasingManager. Similar remarks hold for the sub-
sequent OCL specifications.

3

context User inv Prerequisite Role:

self.role ->includes(engineer) implies

self.role ->includes(employee)

Example 3: Static Separation of Duty - Conflict Users
By means of OCL even more complex authorisation con-
straints can be formulated. One example of such a constraint
is SSOD-CU identified by Ahn in [1]. SSOD-CU (Static Sep-
aration of Duty - Conflict Users) means that two or more
colluding users cannot be assigned to conflicting roles. For
example, it might be the company policy that members of
the same family cannot be assigned to the roles accounts
payable manager and purchasing manager. SSOD-CU can
now be expressed in OCL in the following way:

context User inv SSOD-CU:
let

CU:Set(Set(User))=Set{Set{Frank,Susan},Set{Lars,Maria}},
CR:Set(Set(Role))=Set{Set{Cashier,CashierSupervisor},
Set{AccountsPayableManager,BillingClerk}}

in

CR->forAll(cr|cr->intersection(self.role_)->size()<=1)

and

CU->forAll(cu|

CR->forAll(cr|cr->iterate(r:Roles;
result:Set(User)=Set{}|
result->union(r.user))->intersection(cu)->size()<=1))

Obviously, SSOD-CU is a composite constraint consisting of
two parts, an SSOD part and an additional part concerning
the conflicting users. The SSOD part is required because
otherwise obviously the whole constraint would not be use-
ful. The iterate operation iterates over all roles r belong-
ing to a set of conflicting roles and collects all users of these
roles. CR has the same meaning as in Example 1 whereas CU
is a set consisting of all conflicting user sets.

3.2 Validation of RBAC policies
As mentioned in Section 2.4, the main application of the

USE tool is the validation of UML/OCL models. The same
can be carried out with a role-based authorisation policy.
The USE specification of such an example policy is given
in Figure 2 with the authorisation constraints expressed by
OCL Constraints.

The aim of the validation of RBAC policies includes detec-
tion of conflicting constraints and identification of missing
constraints. The validation can be done before the deploy-
ment of the RBAC policy, i.e., during the design phase. As
pointed out above, the USE approach for validation is to
generate system states and check these states against the
specified constraints. In case of the role-based authorisation
policy, this means we could create certain RBAC config-
urations and check if the RBAC configuration adheres to
the access control policy. The RBAC configurations could
be created automatically by running a script with the state
manipulation commands, which are supported by the USE
tool, or as an alternative the graphical user interface of USE
can be used.

The result of the validation can lead to different con-
sequences. Firstly, we may have reasonable system states
that do not satisfy one or more authorisation constraints of
our policy. This may indicate that the constraints are too
strong or the model is not adequate. Secondly, the access
control policy may allow undesired system states, i.e., the
constraints are too weak. In the following both situations
are discussed. This will be subsequently demonstrated by

model RBAC
--classes

class Roles
attributes

roleName:String
end

class Users
attributes

userName:String
end

class Permissions

attributes

op:Operations
o:Objects

end

class Objects
attributes

objectName:String

end

class Operations
attributes

operationName:String
end

class Sessions
attributes

sessionName:String
end

-- associations

association UA between

Users[*] role users

Roles[*] role roles
end

association PA between

Permission[*] role permission

Role[*] role role
end

association establishes between

Users[1] role user

Session[*] role session
end

association activates between

Session[*] role session

Role[*] role role
end

association inherits between

Role[*] role senior

Role[*] role junior
end

constraints

context Users inv PrerequisiteRole:
self.role ->includes(r2)

implies self.role ->includes(r1)

context Role inv SSOD-CU:
let

CU:Set(Set(User))=Set{{u1,u2,u3},{u4,u5}}
in

let

CR:Set(Set(Role))=Set{Set{r1,r2},...}
in

CU->forAll(cu|

CR->forAll(cr|cr->iterate(r:Role;
result:Set(User)=oclEmpty(Set(User))|

result->union(r.user))->
intersection(cu)->size()<=1))

Figure 2: USE specification of a role-based authori-

sation policy.

an example, considering the RBAC policy presented in Fig-
ure 2. Clearly, this example policy is rather simple, but in
reality we often have to deal with considerably more com-
plex policies. Now, let us further assume that the policy
designer has forgotten that he had once defined a prereq-
uisite role constraint between r1 and r2. Later, the pol-
icy designer decided to define r1 and r2 mutually exclusive
due to a change of organisational rules/policies. Obviously,
both constraints could not be satisfied at the same time
and hence the composite constraint is too strong. The USE
screenshot in Figure 3 displays the situation after user u

has been assigned to r2. Clearly, the policy designer can-
not have assigned u to role r1; otherwise the new SSOD
constraint would be violated. However, now the constraint
User::PrerequisiteRole is evaluated to false (cf. “Class
invariants” view in Figure 3), and hence the current RBAC
configuration is not a correct system state according to the
given policy specification.

Admittedly, the mere information that a constraint is false
might often not help to find the real reason for the problem
and to resolve the conflict. Additional information is re-
quired which objects and links of the current state violate
the constraint. For such a purpose, the policy designer can
debug the constraints that are not satisfied by the current
system state with the “Evaluate OCL expression” dialog
made available by USE. For example, in Figure 3 the result
of the query “all users who are assigned to r2 but not to r1”

4

Figure 3: USE screenshot: two conflicting con-

straints.

applied to the given RBAC configuration is shown. Here,
one can learn that u is not assigned to r1, although this is
required by the prerequisite role constraint. If the policy
designer now conversely tries to assign u to r1, the SSOD
constraint fails, and as a consequence one can conclude that
both constraints are contradictory. A policy designer could
now employ USE in a similar way for other constraint types
such as cardinality constraints or other SoD properties. In
particular, this approach is helpful if a new constraint is
added to the policy, in order to check if it is in conflict with
the composition of the already defined constraints.

3.2.1 Detection of Missing Constraints
The second consequence of the constraint validation may

be that the policy permits undesirable system states, i.e.,
the authorisation constraints are too weak. Once again sup-
pose that the policy designer has defined a complex access
control policy. Let us further assume that she has missed
to define the SSOD part of the SSOD-CU constraint men-
tioned above and that a system state has been created by
USE in which u is assigned to both the roles r1 and r2.
Now, USE can help detecting the missing constraint in this
scenario: all constraints (in our case specifically the conflict
user part of the SSOD-CU constraint) defined so far are
evaluated to true and hence the policy seems supposedly to
be correct. On the other hand, the policy – in particular,
even the combination of authorisation constraints – permits
a user being assigned to the mutually exclusive roles r1 and
r2. Therefore, a further SSOD constraint must be added
to the policy in order to exclude the undesired state and to
obtain a more restrictive access control policy. This means
that the constraints must be strengthened.

4. AUTHORISATION EDITOR
In this section, it will be demonstrated how an RBAC

authorisation editor could be built based upon the function-
ality of the USE system. This tool can enforce several kinds
of authorisation constraints like those listed in [1]. More
explicitly speaking, the authorisation editor can be used in
principle to specify and enforce all authorisation constraints
expressible in OCL. As a consequence, types of authorisa-
tion constraints beyond those enumerated in [1] can also be
formulated and enforced.

In the following, the functionality of the authorisation ed-
itor will be presented. Thereafter, it will be described more

thoroughly how this tool has been implemented.

4.1 Functionality of the Authorisation Editor
First, the prototype of the authorisation editor currently

supports most of the functionality demanded by the RBAC
standard [3]. This means that we have implemented

• administrative functions,

• system functions, and

• review functions.

According to [3] administrative functions allow for the cre-
ation and maintenance of the element sets (e.g., User, Role,
Permission) and relations (e.g., UA, PA, RH) of the RBAC
models. For example, AddUser, and AssignUser belong
to this class of functions. System functions are required by
the RBAC authorisation editor for session management and
making access control decisions. Thus, examples are Cre-
ateSession and CheckAccess. The third class of functions
supported by the authorisation editor are review functions,
which allow for reviewing the results of the actions created
by administrative functions. Typical examples of review
functions are AssignedUsers and UserPermissions.

Beyond this basic functionality, the RBAC authorisation
editor provides mechanisms for defining and enforcing both
role hierarchies and authorisation constraints. Currently,
the following types of authorisation constraints can be en-
forced with the help of this tool:

• various kinds of SoD properties (such as simple static
SoD, simple dynamic SoD, object-based static SoD),

• various kinds of cardinality constraints,

• prerequisite roles and permissions.

The tool is by no means constrained to the aforementioned
authorisation constraints. Other types of constraints such
as mechanisms for context roles, constraints on the delega-
tion process [12], or the SSOD-CU constraint could also be
implemented. In fact, the tool can be quite easily extended
to support other authorisation constraints such that it is
flexible enough to enforce various role-based authorisation
policies, depending on the internal rules of the organisation
in question.

The authorisation editor can also deal with role hierar-
chies, which are not restricted to inheritance trees, but can
also in general form directed acyclic graphs. Moreover, the
tool can detect and then prevent inconsistencies such as a se-
nior role which inherits two mutually exclusive junior roles.

To give a better overview, a screen shot of the current pro-
totype of the authorisation editor is shown in Figure 4. In
the upper part of the window, there are several buttons, each
button stands for a special administrative functions. The
large window in the middle of the tool visualises the current
system state (RBAC configuration). The visualisation of the
system state will be immediately renewed when the system
state has been changed by an administrative function. At
the bottom of the window there is a log window, which dis-
plays the result of the last applied administrative function,
i.e., a confirmation that the last operation has succeeded,
or a short text if an error occurred. There are currently
two windows open: On the right-hand side there is a small

5

Figure 4: The authorisation editor.

window to create a set of roles for a simple static SoD con-
straint; on the left-hand side there is a window to create a
session for a user with active roles.

4.2 Implementation Aspects
As pointed out above, the authorisation editor has been

implemented by using an API made available by the USE
tool. This way, the functionality of USE is hidden from the
administrator/security officer by the graphical user interface
of the authorisation editor.

Now our implementation, based upon the USE API, will
be described in more detail. In particular, we explain how
the administrative functions, system functions, and review
functions have been realised. Thereafter, the constraint
checking mechanism is sketched and it is discussed how the
development process chosen for the implementation of the
authorisation editor fits into the MDD framework.

4.2.1 Administrative Functions
The core operations provided by an RBAC authorisation

editor are administrative functions. With these functions,
an administrator can change the RBAC configuration. Ad-
ministrative functions can be easily implemented by using
state manipulation commands made available by the USE
system. To demonstrate this, we subsequently consider the
operation AssignUser which assigns a user to a role. The
AssignUser operaration can be expressed by the following
state manipulation command of the USE system:

!insert (u,r) into UA (with a user u and a role r).

This command could then be called by employing the
command execution facility provided by the USE API called
executeCmd(). Furthermore, the other administrative func-
tions can be realised in a similar way. Clearly, in order
to remain in a consistent state, all (relevant) authorisation
constraints must also be checked. This will be explained in
more detail below.

4.2.2 Review Functions
RBAC review functions are demanded by the RBAC stan-

dard and can also be conveniently implemented employing
the USE functionality. For this purpose, the query facilities

of USE can be employed (cf. Section 3.2). In particular,
the USE API provides the method eval which evaluates a
query consisting of an OCL expression in the current sys-
tem state. For example, the following OCL query expresses
the UserPermissions function, which returns all permissions
belonging to a user:

UserPermissions(u:User):Set(Permission)=
u.role_->iterate(r:Role;

result:Set(Permission)={}|
result->union(r.permission))

This query can be specified in a USE file (such as that
presented in Figure 2) which can be read when the autho-
risation editor is started. Then the eval method of the
expression evaluator provided by the USE system can be in-
voked with the two parameters “UserPermissions” and the
user u, whose set of permissions is to be determined. The
other review functions can be implemented similarly.

4.2.3 System Functions
System functions can be realised with USE similarly to

the review functions. This will be demonstrated by the
CheckAccess function, which decides if a session s is per-
mitted to execute operation op on object o. Hence, we must
define an appropriate OCL expression:

CheckAccess(op:Operation,o:Object,s:Session):Boolean=
let ps=s.role_->iterate(r:Role;

result:Set(Permission)={}|

result->union(r.permission))
in

ps->exists(p|p.o=o and p.op=op)

As in the case of review functions, the CheckAccess func-
tion can be specified in the USE file and can then be ex-
ecuted by the aforementioned eval method with the cor-
rect actual parameters for op, o, and s. In contrast, the
session-related system functions like CreateSession must
be realised in the same way as the administrative functions
by means of the state manipulation commands.

4.2.4 Constraint Checking
The basic idea of the constraint checking mechanism is

according to [6] as follows: The authorisation editor, or to
put it in another way, the USE system checks if the relevant
authorisation constraints are still satisfied after an admin-
istrative or system function has been carried out. This is
done by the check method made available by the USE API.
If any constraint is violated, the last administrative or sys-
tem function is automatically revoked with the help of an
undo method. As a consequence, the tool produces only
states that are consistent with the specified authorisation
constraints.

Templates for the different types of authorisation con-
straints can be read directly from the USE specification
file as OCL invariants during the start of the authorisation
editor. The OCL specifications for the authorisation con-
straints are slightly different from those given in Section 3
for implementation reasons [6]. In particular, special UML
classes for the sets of conflicting roles or conflicting users
have been introduced. This allows for setting parameters
(e.g., conflicting roles) at runtime.

4.2.5 Aspects of Model Driven Development
As pointed out in the previous section, templates for the

different types of authorisation constraints can be specified

6

in the USE file. Hence, the authorisation editor can be easily
extended with new types of authorisation constraints such
as context roles [12]. Due to the fact that a growing number
of applications process security-critical data, it is expected
that several new types of autorisation constraints might be
identified in the future, depending on the protection require-
ments of the applications in question. For this reason, the
ability to extend the authorisation editor with new classes
of constraints is a crucial aspect of the development process
described in this paper.

Specifically, the main work for the realisation of new con-
straint types lies in the modeling or specification process.
Clearly, some modifications on the authorisations editor’s
graphical user interface must be carried out to support the
new constraint types. In addition, the functions of the USE
API which check the authorisations constraints are called
manually such that we have currently only a semi-automatic
code generation process. Nevertheless, this form of semi-
automatic code generation can be seen as a first step towards
MDD on developing the authorisation editor.

Therefore, we now briefly discuss the relationship between
the development process we employed for the authorisation
editor with MDD. In our case, the USE specification of the
RBAC model can be regarded as the PIM (Platform Inde-
pendent Model) while the concrete USE API calls of the
implementation can be seen as the PSM (Platform Specific
Model). Strictly speaking, however, graphical elements like
dialog windows and menue items are still missing in this
PSM. Moreover, an automatic, hopefully tool-supported,
transformation process between the PIM and PSM would
also be required. At this moment, however, we pursue only
the goal to explain how our development of the authorisa-
tion editor fits into the MDD framework. Due to the fact
that we used UML/OCL for the specification of constraints,
it should be possible to build a tool which helps in auto-
matically transforming the UML/OCL specifications of the
RBAC specification into an authorisation engine. This re-
mains future work.

5. CONCLUSION AND FUTURE WORK
In this paper we demonstrated that with the help of OCL

several classes of authorisation constraints can be specified.
Due to the fact that the UML/OCL is quite familiar in in-
dustrial environments there is hope that OCL can be used
by policy designers in different organisations. In addition,
we have demonstrated how the USE tool, a validation tool
for OCL constraints, can be employed to validate authorisa-
tion constraints against RBAC configurations. Specifically,
we showed the USE-based approach could help a policy de-
signer to detect certain conflicts between authorisation con-
straints and find missing constraints.

Moreover, the USE system can not only be employed to
validate an access control policy during the design phase.
but also be helpful to implement an RBAC authorisation
editor. This tool provides administrative, system, and re-
view functions as demanded by the RBAC standard [3].
Moreover, the tool supports role hierarchies and can enforce
several types of authorisation constraints. In addition, we
argued that the tool can be easily extended with new types
of authorisation constraints.

Due to the fact that USE can only check the current snap-
shot, history-based authorisation constraints [11] cannot be
dealt with. For this purpose a temporal extension of OCL

like that introduced in [15] is needed. Hence, it remains
future work to extend USE and the authorisation tool in or-
der to deal with history-based constraints. In the long run,
it is envisioned to develop an authorisation tool automati-
cally from an RBAC specification. For this task, appropriate
MDD transformation tools should be developed.

6. REFERENCES
[1] G.-J. Ahn, The RCL 2000 language for specifying

role-based authorization constraints, Ph.D. thesis,
George Mason University, Fairfax, Virginia, 1999.

[2] G.-J. Ahn and M.E. Shin, Role-Based Authorization
Constraints Specification Using Object Constraint
Language, Proc. of the 10th IEEE International
Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprise, IEEE, 2001, pp. 157–162.

[3] American National Standards Institute Inc., Role
Based Access Control, 2004, ANSI-INCITS 359-2004.

[4] D.F. Ferraiolo, D.R. Kuhn, and R. Chandramouli,
Role-based access control, Artec House, Boston, 2003.

[5] T. Jaeger and J.E. Tidswell, Practical safety in flexible
access control models, ACM TISSEC 4 (2001), no. 2,
158–190.

[6] L. Migge, Specification and Enforcement of Role-based
Security Policies, 2005, Master Thesis, Universität
Bremen.

[7] I. Ray, N. Li, R. France, and D.-K. Kim, Using UML
to visualize role-based access control constraints, Proc.
of the 9th ACM symposium on Access control models
and technologies, ACM Press New York, USA, 2004,
pp. 115–124.

[8] M. Richters, A Precise Approach to Validating UML
Models and OCL Constraints, Ph.D. thesis,
Universität Bremen, Fachbereich Mathematik und
Informatik, Logos Verlag, Berlin, BISS Monographs,
No. 14, 2002.

[9] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual, Second Edition,
Object Technology Series, Addison Wesley Longman,
Reading, Mass., 2004.

[10] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.
Youman, Role-based access control models, Computer
29 (1996), no. 2, 38–47.

[11] R. Simon and M. Zurko, Separation of duty in
role-based environments, 10th IEEE Computer
Security Foundations Workshop (CSFW ’97), June
1997, pp. 183–194.

[12] K. Sohr, M. Drouineaud, and G.-J. Ahn, Formal
Specification of Role-based Security Policies for
Clinical Information Systems, Santa Fe, New Mexico,
Proc. of the 20th ACM Symposium on Applied
Computing, 2005, To appear.

[13] J. Warmer and A. Kleppe, The Object Constraint
Language: Getting your models ready for MDA,
Addison-Wesley, Reading/MA, 2003.

[14] J. Warmer, A. Kleppe, and W. Bast, The MDA
explained – the model driven architecture: Practice
and promise, Addison-Wesley, Reading/MA, 2003.

[15] P. Ziemann and M. Gogolla, An OCL Extension for
Formulating Temporal Constraints, Research Report
1/03, Universität Bremen, 2003.

7

