
Practical Safety in Flexible Access
Control Models

TRENT JAEGER
IBM T. J. Watson Research Center
and
JONATHON E. TIDSWELL
University of New South Wales

Assurance that an access control configuration will not result in the leakage of a right to an unau-
thorized principal, called safety, is fundamental to ensuring that the most basic of access control
policies can be enforced. It has been proven that the safety of an access control configuration can-
not be decided for a general access control model, such as Lampson’s access matrix, so safety is
achieved either through the use of limited access control models or the verification of safety via
constraints. Currently, almost all safety critical systems use limited access control models, such as
Bell–LaPadula or Domain and Type Enforcement, because constraint expression languages are far
too complex for typical administrators to use properly. However, researchers have identified that
most constraints belong to one of a few basic types, so our goal is to develop a constraint expres-
sion model in which these constraints can be expressed in a straightforward way and extensions
can be made to add other constraints, if desired. Our approach to expressing constraints has the
following properties: (1) an access control policy is expressed using a graphical model in which the
nodes represent sets (e.g., of subjects, objects, etc.) and the edges represent binary relationships
on those sets and (2) constraints are expressed using a few, simple set operators on graph nodes.
The basic graphical model is very simple, and we extend this model only as necessary to satisfy
the identified constraint types. Since the basic graphical model is also general, further extension
to support other constraints is possible, but such extensions should be made with caution as each
increases the complexity of the model. Our hope is that by keeping the complexity of constraint
expression in check, flexible access control models, such as role-based access control, may also be
used for expressing access control policy for safety-critical systems.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management—software con-
figuration management; K.6.5 [Management of Computing and Information Systems]: Secu-
rity and Protection—unauthorized access

General Terms: Design, Management, Security

Additional Key Words and Phrases: Access control models, authorization mechanisms, role-based
access control

The work of J. E. Tidswell was done while he was on an internship at the IBM T. J. Watson Research
Center.
Authors’ addresses: T. Jaeger, IBM T. J. Watson Research Center, 30 Swamill River Road,
Hawthorne, NY 10532, e-mail: jaegert@watson.ibm.com; J. E. Tidswell, Department of Com-
puter Science and Engineering, University of New South Wales, 2052 NSW Australia, e-mail:
jont@cse.unsw.edu.au.
Permission to make digital /hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2001 ACM 1094-9224/01/0500-0158 $5.00

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001, Pages 158–190.

Practical Safety in Flexible Access Control Models • 159

1. INTRODUCTION

An important feature of an access control model is the ability to verify the safety
of its configurations (i.e., the policies expressed using the access control model).
A configuration is said to be safe if no rights can be leaked to an unauthorized
principal [Harrison et al. 1976]. The verification that a configuration is safe
is necessary to ensure that a mandatory access control (MAC) policy, such as
multilevel security or separation of duty, is being enforced by the configuration.

Unfortunately, the problem of verifying safety for an arbitrary configura-
tion of a general access control model (e.g., Lampson’s protection matrix [Kuhn
1997]) was shown to be undecideable [Harrison et al. 1976]. To overcome this
problem, two approaches have been taken: (1) restrict the access control model,
such that safety can be proven in general for that model, or (2) augment the ac-
cess control model with expressions, typically called constraints, that describe
the safety requirements of any configuration, such that the safety of each con-
figuration can be verified (i.e., ensure that no right is leaked to an unauthorized
principal). The first approach results in specialized models designed for a lim-
ited or static policies [Bell and La Padula 1973; Boebert and Kain 1985] or
models that are difficult to use because it is hard to ensure that the restrictions
are satisfied Ammann and Sandhu [1991]. The second approach suffers from
the fact that constraint expression is a difficult task. Because the entities that
safety constraints govern are not known a priori, we must use a first-order
predicate logic rather than propositional logic to express constraints in gen-
eral. A few logical constraint expression languages have been proposed [Ahn
and Sandhu 2000; Bertino et al. 1999], but such languages are too complex
for administrators to determine whether a set of constraints really expresses
the desired safety requirements properly. Also, we must be careful in the de-
sign of higher-level expression models because approaches may be chosen that
are too limited, lack necessary extensibility, and prevent administrators from
understanding the relationships between constraints.

The lack of a simple, comprehensive approach to constraints means that re-
stricted access control models are used in safety-critical systems. For example,
Bell–LaPadula [Bell and La Padula 1973] and Domain and Type Enforcement
(DTE) [Boebert and Kain 1985] require completely trusted principals to assign
subjects and objects to types (or labels). In general, the access control policies are
expressed only once by a trusted principal and fixed for the life of the system,
so access control policies are safe by definition. However, any flexibility that
may be added to these models introduces the possibility of safety problems. For
example, the SeaView model [Lunt et al. 1990] generalizes the Bell–LaPadula
model to define the extent to which principals of one label may make changes
to the assignment of objects and subjects to labels. Therefore, principals are
created that can modify the model that are not fully trusted. There are two
possible interpretations: (1) that the principals are fully trusted within their
domain of administration (the SeaView policy) or (2) that the safety of config-
uration changes must be verified. Once complete trust is not practical, then
there is the possibility of a safety violation, so in practice safety is an issue in
many systems.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

160 • T. Jaeger and J. E. Tidswell

More flexible access control modeling is often necessary in commercial sys-
tems or when more complex safety policies, such as Chinese Wall [Brewer and
Nash 1989] and Dynamic Separation of Duty (SOD) [Simon and Zurko 1997],
are required. Such policies require that a principal’s or role’s rights change
dynamically to prevent an unauthorized action (e.g., signing a check). There-
fore, configuration changes are part of the application domain. In addition, the
notion that an administrator may not be fully trusted is built into some of
these models, such as role-based access control (RBAC) (e.g., ARBAC [Sandhu
et al. 1999]). To enable the enforcement of safety under these conditions, these
models include the concept of constraints whereby the administrators can ex-
press explicit tests of whether the current configuration meets the system’s
safety policy.

We observe that there is a continuum in the trade-off between the expressive
power of an access control model and the ease of safety enforcement. In a re-
stricted model, such as Bell–LaPadula, constraints are implicit in the model’s
definition (e.g., a subject of one label cannot write to any object of a “lower”
security label). Therefore, safety enforcement is trivial, but policy expression is
limited. On the other hand, general policy expression models, such as RBAC,
make constraints explicit concepts and permit the definition of arbitrary con-
straints. In this case, the expression of safety requirements has proven to be
difficult. However, we have recently found that a variety of common safety poli-
cies can be enforced by a few constraint types [Tidswell and Jaeger 2000a].
Further, we have found that these constraints can be expressed as binary re-
lationships in a graphical access control model [Tidswell and Jaeger 2000b].
Therefore, we want to determine the extent to which safety verification may be
simplified by a graphical access control model whose safety expression is based
on these constraint types.

Toward this end, we propose a graphical access control model in which con-
straints are defined using a small number of relationship types. Constraint ex-
pression in this model is simplified in four ways: (1) by defining all constraints
in terms of binary relations; (2) by splitting constraint expression into three
distinct steps, set identification, input selection, and input comparison; (3) by
using the graphical model to do set identification; and (4) by using a small num-
ber of set-based operations for constraint input comparison. This contrasts with
a rule-based approach in which all these facets of a constraint are lumped into
a single rule. We find that the expressive power of our constraint expression
model is comparable to that of logical languages, except that we require only a
small set of binary relationship types to express the examples.

Using this model, we demonstrate the expression of a variety of constraints
collected from the literature [Kuhn 1997; Nyanchama and Osborn 1999;
Simon and Zurko 1997]. Given these constraint expressions, we can empiri-
cally evaluate whether and how a graphical access control model simplifies
safety enforcement. We find that all our example constraints can be expressed
as binary relationships, except for precondition constraints for which two such
relationships are needed. Also, we compare the expression of a constraint in
RSL99 to the same constraint using the graphical model [Ahn and Sandhu
1999]. The constraints are the same except that: (1) the specific sets involved

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 161

in the constraints are indicated graphically by our approach rather than be-
ing part of the rule and (2) we define a higher-level comparator function than
RSL99 that reduces the length of the statement. However, some constraints
require iteration over the members of one set or the other, and the addition of
this expression starts to make the constraints complex. Thus, we find that the
graphical model enables the expression of a variety of constraints, expression
complexity is reduced (but, not always as simple as we would like) because of
the graphical expression of some constraint concepts, and the same model may
be used for system administrator tasks, internal representation, safety verifica-
tion, and safety policy analysis. We believe that graphical access control models
can form the basis of an access control framework for enforcing practical safety
in general access control models.

The paper is structured as follows: In Section 2, we collect the various safety
policies that others have identified in the literature. The properties of these
safety policies drive the design of the access control model. In Section 3, we
present background on safety enforcement and discuss the effectiveness of pre-
vious approaches. In Section 4, we describe our approach to safety verification.
In Section 5, we develop our access control model. We begin with a simple model
consisting only of the most basic access control concepts. We then define con-
straints and incrementally add complexity both in terms of constraints, such
as universal quantification, and access control representation, such as inheri-
tance. In Section 6, we discuss some key issues about the utility of our proposed
access control model, such as computation complexity and maintenance com-
plexity. In Section 7, we conclude and outline future work.

2. EXAMPLE SAFETY POLICIES

Our primary goal is to collect a set of common safety policies and define an
access control model in which these policies can be enforced. In defining such
an access control model, we prefer concepts that make the expression of such
policies relatively easy and the computation of safety (i.e., that the policy is be-
ing enforced) efficient. Fortunately, a significant body of access control research
has focused on policy. Thus, we can simply gather this knowledge.

However, it is more difficult to define criteria that identify policy expression
as “relatively easy”. In this article, we propose an approach to access control
modeling and constraint expression, and express a variety of common examples
using the approach. Verification of the efficacy of the approach is done empiri-
cally using these examples and formally by comparing the resultant expressive
power and usage of the graphical system in Section 6.

One of the important themes that resonates through (and predates) the lit-
erature on RBAC is separation-of-duty or conflict-of-interest constraints (see,
for example, Gligor et al. [1998], Kuhn [1997], Lupu and Sloman [1999],
Nyanchama and Osborn [1999], Sandhu [1998; 1999], Saltzer and Schroeder
[1975], Sandhu et al. [1996], Simon and Zurko [1997], and Tidswell and Potter
[1998]). For the sake of clarity, we will present a harmonized merge of the tax-
onomies by Simon and Zurko [1997] and the extensions by Nyanchama and
Osborn [1999].

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

162 • T. Jaeger and J. E. Tidswell

In the standard RBAC language [Sandhu et al. 1996], the harmonized tax-
onomies of Simon and Zurko and Nyanchama and Osborn are:

User—user conflicts are defined to exist if a pair of users, should not be
assigned to the same role. In models extended to support groups of users,
this extends to not assigning the users to the same group (except a logical
group containing everybody).

Privilege—privilege conflicts are defined to occur between two privileges
(a privilege is a pair right×object) when they should not both be assigned to
the same role.

Static user—role conflicts exclude users from ever being assigned to the
specified roles. These constraints are intended to be used to capture restric-
tions imposed by factors (such as qualification or clearances) that are not in
the model.

Static separation of duty exists if two particular roles should never be as-
signed to the same person.

Simple dynamic separation of duty disallows two particular roles from be-
ing assigned to the same person due to some dynamic event (e.g., Chinese
Wall).

Session-dependent separation of duty disallows a principal from activat-
ing two particular roles at the same time (e.g., within the same session).

Object-based separation of duty constrains a user never to act on the same
object twice. They can also be specified to constrain the same role from acting
on the same object twice.

Operational separation of duty breaks a business task into a series of
stages and ensures that no single person can perform all stages. Thus, the
roles that are entitled to perform each stage may have users in common so
long as no user is a member of all the roles entitled to perform each stage of
a business task.

Order-dependent history constraints restrict operations on business
tasks based on a predefined order in which actions may be taken. These
are a variation of assured pipelines [Boebert and Kain 1985] and a potential
part of well-formed transactions [Clark and Wilson 1987].

Order-independent history constraints restrict operations on business
tasks requiring two distinct actions (such as two distinct signatures) where
there is no ordering requirement between the actions. These are a part of
well-formed transactions [Clark and Wilson 1987].

In addition, Kuhn [1997] published an alternative taxonomy identifying two
axes on which to classify such constraints. His first axis—time—is synonymous
with static versus dynamic constraints, and is subsumed by the taxonomy of
Simon & Zurko. Kuhn’s second axis—the extent to which roles involved in
mutual exclusion relationships share rights with other roles—has been largely
ignored by the RBAC community. We would also like to express mutual exclu-
sion where some basic rights may be shared as well.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 163

There are a few ways in which these constraints may be viewed. For exam-
ple, the user—user conflict may be between two specific users, two sets of users
(i.e., no roles may be shared by either set), or one set of conflict users (i.e., no
two in the set may share a role). The expression of these constraints may be
quite different. For example, a constraint between two specific users can be ex-
pressed in propositional logic, whereas a constraint over all users is generally
expressed in a predicate logic. Therefore, we must examine a number of rea-
sonable variations of these constraints in order to get a sense of the flexibility
and complexity of constraint expression in the model. The specific variations
are described as the examples are developed.

3. SAFETY ENFORCEMENT BACKGROUND

For models that are not safe by definition, some mechanism for verifying the
safety of a configuration in that model is necessary. Since Harrison et al. [1976]
showed that the safety problem was undecidable, research has focused on two
areas: (1) determining whether safety could be decided for access control mod-
els with limited, but practical, expressive power and (2) defining constraint
languages to express verifiable safety requirements. While a number of access
control models were designed that enabled polynomial time safety verification,
these models were not used in practice. Therefore, recent research has focused
on the development of constraint languages, but thus far no sufficiently simple
and expressive language has been proposed.

First, in the case of limited access control models, the take-grant model has
a linear time safety algorithm, but there is still a significant difference in ex-
pressive power between take-grant and HRU [Bishop and Snyder 1979; Snyder
1977; Sandhu 1998]. Sandhu et al. eliminates most of this difference in his mod-
els (SPM, TAM, ESPM, and nonmonotonic ESPM) [Ammann and Sandhu 1991;
1994; Sandhu 1988; 1992]. They demonstrate that an access control model could
be designed for which safety is efficiently decidable (i.e., in polynomial time)
given a few restrictions, which were claimed to be reasonable for almost any
policy.

Ultimately, despite proven expressive power and safety determination, these
access control models have not been adopted in practice. We claim that there
are two primary reasons for the lack of acceptance: (1) these models are rather
complex to use, both due to the subtlety of the restrictions and the complex
relationship between SPM/TAM types and capabilities and (2) it is difficult to
both define the safety requirements and write practical algorithms that enforce
these requirements. Simply stating an initial configuration is difficult enough,
but system administrators must also define the safety criteria and, thus far,
few, practical safety algorithms have been implemented.

In the second approach, constraints have been part of most RBAC models
of recent years [Bertino et al. 1999; 1997; Lupu and Sloman 1997; Sandhu
et al. 1996; 1999], but with a few exceptions highlighted below they have always
been specified using rule-based systems. Unfortunately, rule-based systems,
while highly expressive, are harder to visualize and thus to use; thus far they
have been avoided by practitioners. A common claim is that such rule-based

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

164 • T. Jaeger and J. E. Tidswell

approaches underlie a higher-level expression, but currently there is still no
useful approach to either expressing or managing managing constraints.

Ahn and Sandhu [1999] propose a limited logical language called RSL99 for
expressing separation of duty constraints in a RBAC model (the updated and
current version of this language is called RCL 2000 [Ahn and Sandhu 2000]).
RSL99 still provides significant expressive power, but remains quite complex.
The combination of quantification functions and modeling concept functions
makes the constraints expressed in the language difficult to visualize. Thus,
this approach is an improvement over a completely general logical language,
but it is still too complex.

Nyanchama and Osborn [1999] define a graphical model1 for role—role re-
lationships that includes a combined view of role inheritance and separation of
duty constraints based on roles. Recently, Osborn and Guo [2000] extended the
model to include constraints involving users. However, neither the basic model
nor the extended model distinguish between accidental relationships and ex-
plicitly constructed relationships. Thus, these models do not support policies
with a historical component. Furthermore (as Nyanchama and Osborn noted),
the lack of object typing in RBAC models makes it hard to model workflow
constraints.

We proposed the basis for the model presented in this paper in the Dynami-
cally Typed Access Control model [Tidswell and Potter 1998]. We demonstrated
[Tidswell and Jaeger 2000a; 2000b] that it is possible to construct graphical
representations for most of these constraints in the context of role-based ac-
cess control. In this paper, we formalize the semantics of the access control
model and perform in-depth evaluation of how our common constraints can be
expressed using the model.

4. AN ALTERNATIVE SAFETY APPROACH

To be able to use constraints to ensure safety, we must find a suitable formalism
to express constraints. In general, constraints in an access control environment
are set comparisons. We observe two steps in expressing a set comparison:
(1) expressing the sets to be compared and (2) expressing the comparison to
be made. When a rule-based predicate logic formalism is used to express a
constraint, the distinction between these two steps is not clear. Thus, one goal
we have is to simplify the identification of the sets to be compared. Also, the
comparisons that are possible in a predicate logic framework are arbitrary.
Thus, comparison can be arbitrarily complex, so another goal is to reduce the
complexity and the number of types of comparisons.

To address both these problems, we propose the use of a graphical model
to express constraints. That is, we extend the “graphical role model” used with
significant success in RBAC to enable the expression of constraints directly. The
obvious advantage of a graphical model is as an aid to visualize a system’s policy.
An administrator can see the roles, users, and permissions of interest, and see
whether any constraints are relevant to these entities. Also, it is possible to

1Their graphs are directed acyclic graphs with a top and a bottom.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 165

provide specialized views of the graph that show only the associated information
or information of particular interest.

More importantly, the use of a graphical access control model helps us sep-
arate the steps of set identification and set comparison in constraints. First,
since each node in the graph represents a set, each set involved in a constraint
can be represented explicitly by a node. This means that constraints can be
simply expressed between the relevant nodes, and administrators can see if
they are creating a lot of nodes simply to express constraints (i.e., expressing
complex constraints).

Second, since constraints are relationships among nodes in the graph, we can
keep the configuration simple by preferring the use of binary constraints. A bi-
nary constraint is a comparison between a pair of sets. If all the sets involved
in a constraint are precomputed, then in most cases all that is necessary are
binary constraints. However, as the examples show, some more complex con-
straints will be necessary. These constraints are required only for more complex
concepts than set comparisons (e.g., ordering of set elements).

In the remainder of the paper, we define and demonstrate our approach to
safety, using our model for the expression of constraints. We first define the
basic concepts of the access control model and define the functions for com-
puting the sets upon which constraints will be based. This basic access control
model consists of subjects, objects, and roles. Since subjects and objects may
be aggregations themselves quite often, we provide an extensible approach to
expressing these aggregations, such that access policy and constraints can be
specified in terms of these aggregations. We next define the constraint model
that is based on the set operators identified above. We then express constraints
and identify the extension necessary to cover the complete constraint space.

5. ACCESS CONTROL MODEL

In this section, we develop an access control model, including constraints, that
supports the expression of the constraints listed in Section 2. We start with a
traditional basic access control model consisting of subjects, objects and an au-
thorization relation, and a basic constraint model for this access control model.
Both the access control and constraint models are extended to support the ex-
pressions necessary to implement the example constraints. These extensions
are not ad hoc, however. Rather extensions add new general concepts that were
not previously defined in the base model, and we envision that further new
concepts may be built from these concepts as well, if necessary.

To give the reader a complete view of the graphical access control model
developed, we first define the semantics of the complete model. For those that
want to understand the reasoning behind the concepts and semantics, they
can read ahead and refer back to the complete definition as necessary.

Definition 1. The graphical access control model is defined by a graph
G= (Y , Z) where Y is the set of nodes and Z is the set of edges where each
node represents a set and each edge represents a relationship. There are sev-
eral types of sets and relationships in the model that we define formally. We
first define the set types in the model. The sets and the types of assignment

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

166 • T. Jaeger and J. E. Tidswell

Fig. 1. The node types in the graphical access control model and their assignment relationships.

relationships between them are shown in Figure 1. The section number indi-
cates the section in which the concept is introduced.

—S is a set of subject types (Section 5.1)
—P is a set of permission types (Section 5.1)
—T is a set of authorization types (e.g., a role) (Section 5.1)
—X is a set of sessions (Section 5.3)
—O is a set of object types (Section 5.4)
—Op is a set of operations on object types (e.g., rights) (Section 5.4)
—An aggregate is a set of elements of the same type (e.g., subjects and objects)

(Section 5.5)
—The function type(y) where y ∈ Y determines the type of the node.

Next, we define the model’s relationships and display them in Figure 2.

—A subject assignment SA of subjects to authorization types SA⊆ S×T . Such
an assignment enables the computation of the subjects assigned to a type
S(t) and types assigned to a subject T (s). (Section 5.1)

—A permission assignment PA of permissions to authorization types PA ⊆
P ×T . Such an assignment enables the computation of the permissions
assigned to a type P (t) and the types assigned to a permission T (p).
(Section 5.1)

—A subject-session assignment SXA relates a single subject s ∈ S to a session
x ∈ X . This subject is assigned for the lifetime of the session. Such a relation
defines the function S(x)= s. (Section 5.3)

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 167

Fig. 2. The relationship types in the graphical access control model.

—A session-type assignment XTA relates a sessions to authorization types
XTA ⊆ X × T . Such a relationship enables the computation of the func-
tion T (x) that determines the authorization types active in a session.
(Section 5.3)

—Variations on the above relationships are also useful, such as the history
of assignments (i.e., assignments that have ever existed) and unique
applications of assignments (i.e., assignment that have been used in an
authorization). For any type in the model type and node z ∈ Z , we define
functions typeH (z), typeU (z), typeO (z), which compute the history of the as-
signments of elements of type to z, the unique usage of elements of type for z,
and the order of unique usage of type for z, respectively. Unique usage are the
assignments actually used in approved authorizations. Such information is
useful for restricting the history and order of authorizations. (Section 5.3)

—An object assignment OA assigns objects to their permissions OA ⊆O × P .
There is a restriction of one object assigned to a permission. Such an
assignment enables the computation of the object in a permission O(p) and
the permissions to which an object is assigned P (o). (Section 5.4)

—An operation assignment OpA assigns operations to permissions OpA ⊆
Op× P . Such an assignment enables the computation of the operations in
a permission Op(p) and the permissions to which an operation is assigned
P(op). (Section 5.4)

—Implicit in the model are other assignments, such as permission—subject
assignments PSA and object—subject assignments OSA, PSA ⊆ P × S and
OSA ⊆O × S. These relationships enable the definition of functions P (s)
and O(s) which define the permissions and objects accessible to subject s
and S(p) and S(o) that determine the subjects that can use the permission
p and object o, respectively. (Section 5.4)

— An aggregation relation AR assigns a set to a greater set. For each type Z ,
we say ARZ ⊆ Z × Z . Such a relationship enables the computation of Z (z)
for any aggregation (i.e., the members of an aggregation of this type). Such
a relationship aggregates the elements of the lesser set (i.e., the first Z)
into the aggregate (the second Z). (Section 5.5)

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

168 • T. Jaeger and J. E. Tidswell

—An inheritance relation IR relates authorization types IR ⊆ T × T . Such
a relationship aggregates the permissions of the lesser T (i.e., the first)
into the superior T , and aggregates the subjects of the superior T into the
lesser T . (Section 5.6)

— A binary constraint C is a tuple C= (z1, z2, fi1(z1), fi2(z2), fs, fc) where
z1, z2 ∈ Z are nodes in the graph, fi j () are the identifier functions, fs is the
selector function that determines how the set elements are selected for com-
parison, and fc is the comparator function. The identifier functions return
sets given input zi. The selector function determines elements of the sets
are used in the comparison (e.g., iterate). The comparator function takes
two sets as inputs and returns a boolean value. A variety of comparator
functions are defined for the graphical access control model (see Section 5.2).
Note that the form of constraint specification in the model is X Z

Y (A) where:
(1) X is the comparator function X ={= ,⊂,⊆,⊃,⊇,⊥, 6∼, ||} and their
negated counterparts; (2) Y represents the identifier function for both iden-
tified sets that may be any node type or aggregate Y ={S, T, P, O, Op, . . .};
(3) Z is a facet type of the node type Z ={H, U, O}; and (4) A is the selection
function A={null , 〈i, i〉, 〈i〉, 〈a, a〉, 〈a〉} that indicates set-to-set comparison,
element-to-set comparison, set-to-element comparison, element-to-element
comparison, aggregate element-to-set comparison, set-to-aggregate element
comparison, and aggregate element-to-aggregation element comparison,
respectively (see Section 5.5).

—The constraints that are used in safety verification are collected into the set
Cs. (Section 5.7)

The model defined above is essentially a role-based access control model ex-
tended as necessary to support the types of constraint relationships identified
in Section 2. The typical role-based access control model of Sandhu [1999] is ex-
tended by adding new concepts (e.g., objects) because some example constraints
are expressed in terms of objects. Concept functions, such as history, are added
because some example constraints are expressed in terms of such functions.
Since many other types of ad hoc constraints are possible in general, the effect
of constraints on the access control model’s complexity can be very significant.
A possible conclusion is that constraints are only of limited utility—some other
concept may be necessary to limit the complexity of access control models.

5.1 Basic Concepts

The most primitive access control model is the matrix identified by Lampson
[1974]: subject× object→ rights. In this model, each cell x in the matrix defines a
set of functions: (1) S(x)= subject; (2) O(x)= object; and (3)R(x)={rights}. That
is, each cell represents a specific authorization relationship between a subject
and object. Note that functions from the subjects’ and objects’ viewpoints, such
as O(s) for s ∈ S (i.e., the objects to which s has access), are also represented
by this model.

Aggregation is a useful concept in access control models, so recent mod-
els enable the mapping of sets of subjects to sets of permissions (i.e., objects

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 169

Fig. 3. he basic access control model consists of subjects, permissions, and authorization types
(i.e., authorization relationships, such as roles).

and the sets of rights available to those objects for the assigned subjects). We
use a notation between that of the dynamically typed access control model
(DTAC) [Tidswell and Potter 1998] and the classical RBAC models to express
these relationships. First, we define an authorization relation t (i.e., autho-
rization type or role) as a data type with three functions: (1) S(t)={subjects};
(2) P (t)={permissions}; and (3) N (t)=name. In this case, a type represents
an authorization relationship between sets of subjects and permissions (i.e.,
objects and the operations that may be performed on them). Also, the reverse
functions for identifying the type assignments of permissions and subjects are
also defined, the authorization types of a subject T (s) and the authorization
types of a permission T (p).

Note that many access control models are isomorphic to this model at this
level of abstraction. For example, roles in role-based access control models are
also authorization relations with the same functions. Even multilevel security
can be expressed using this model when we view the authorization relationship
as a security level.

Visualization of an access control policy is often useful in understanding it.
Abstracting the DTAC model defined above, we get a graph as shown in Figure 3,
in which elements of the set S are assigned to elements of the set T , and
elements of the set P are also assigned to elements of the set T (the assignments
are many-to-many).

Note that we are often also interested in the propagation of assignments
across the authorization relationship. For any subject s ∈ S, we would want to
determine the permissions available to that subject, P (s) ≡ ⋃t∈T (s) P (t). Simi-
larly, we can determine the subjects to which a particular permission is avail-
able. In general, any assignment to an authorization relation can be propagated
to concepts on the opposite side of the relation.

5.2 Basic Constraint Model

Since we define our basic model using sets, the natural way to define constraints
is as binary relationships between pairs of sets. We chose to limit ourselves
to binary relationships for two major reasons: (1) they are easy to describe
and draw as labelled edges in a two-dimensional graph, which we hope makes
them easier to understand and (2) they are simpler and more compact than
ternary (or higher) relationships so the algorithms and data structures are
more efficient. In addition, our initial investigations demonstrated that many
common constraints can be expressed using only binary relationships [Tidswell
and Jaeger 2000a].

In our model, a constraint consists of functions that identify the sets to
be compared and perform the comparison. In Section 5.5, we add another

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

170 • T. Jaeger and J. E. Tidswell

Fig. 4. The graphical representation of Example 1, a user–user conflict separation of duty con-
straint. Subject u1 may not be assigned any authorization type to which subject u2 is assigned and
vice versa. That is, their type sets must have a null intersection.

facet to the constraint that defines other ways of using the set elements in
comparisons.

The main function of a constraint is to evaluate a comparison. There are
two broad categories of constraint comparators. The first is based around the
notion of subsets and set equality; thus for example, we have test for equality
(=), subset (⊂), and not subset or equal (6⊆). In addition to the standard subset
operators we define two sets to be incomparable (6∼) if neither is a subset of the
other (except in the degenerate case in which one is empty)

A 6∼ B def= (A 6⊆ B) ∧ (B 6⊆ A) ∨ (A=∅) ∨ (B=∅).
The second is based around the notion of overlap between two sets when

neither is necessarily a subset of the other, and is defined by limiting maximal
cardinality of their intersection; so we write |A ∩ B| ≤ n for two sets A and B.
The notion of two sets having no overlap, which we refer to as being disjoint, is
so common that we give it a special symbol (⊥), and write A ⊥ B for |A∩B| =0.

It is frequently convenient to denote the application of the same identifier
function to both sides of a constraint operator by subscripting the operator with
the function name. Thus, instead of P (A) ⊥ P (B), we may write A ⊥P B. The
most common usage of this is apply to constraints to the objects assigned to
a node (subscripted O), the permissions held by a node (subscripted P) or the
types assigned to a node (subscripted T).

We note here that conflicts between constraints are possible. For example,
one constraint may state that two sets must be equal, but another may state
that the same two sets must be disjoint. Conflict resolution strategies for per-
mission assignments have been studied before [Bertino et al. 1997; Jajodia
et al. 1997, for example], and in this case defaults, such as denials take prece-
dence whereby any negative assignment supersedes a positive assignment, can
be used. With constraints, the situation is not so simple, as multiple negative
constraints can be violated simultaneously, and no resolution may be possible.
In the example above, no resolution is possible: one of the constraints must be
modified. Therefore, tools for aiding in conflict detection can be developed, but
we do not address this problem in this paper.

We now examine the implementation of the first of our constraint examples.

Example 1. In a user–user conflict separation of duty constraint [Simon and
Zurko 1997], it is forbidden for two users to both be assigned to any common
authorization type. This constraint is enforced by requiring that the authoriza-
tion type sets of the two users be disjoint as shown in Figure 4, T (u1) ⊥ T (u2).
Also, using our compressed notation, we write u1 ⊥T u2.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 171

Fig. 5. The graphical representation of Example 2, a privilege–privilege conflict separation of duty
constraint. Permission p1 may not be assigned any authorization type to which permission p2 is
assigned and vice versa. That is, their type sets must have a null intersection.

Fig. 6. The graphical representation of Example 3, a simple separation of duty constraint. In this
constraint, two authorization types are restricted from being assigned to any common subjects.
That is, the intersection of their subject sets must be null.

We note at this point that this particular interpretation of this constraint is
about as simple as possible. In another interpretation, users from two sets
may be restricted from being assigned to any common authorization type.
In yet another interpretation, these users may be restricted from being as-
signed to common authorization types in a set. This constraint is revisited
later when we have the tools to express these other variants (Examples 7
and 8).

Example 2. A privilege—privilege conflict separation of duty constraint is
similar to Example 1. In this case, we must restrict two permissions from being
assigned to a common authorization type. This constraint is shown in Figure 5,
T (p1) ⊥ T (p2) or p1 ⊥T p2. Similarly to the user—user conflict constraint,
other interpretations of this constraint are possible. Since these interpreta-
tions parallel those for the user—user conflict constraint, we do not revisit this
constraint.

Example 3. Lastly, we consider a simple separation of duty constraint shown
in Figure 6. In this constraint, two roles can never be assigned to the same user.
In a simple version of this constraint, we prevent two authorization types that
represent the roles from ever being assigned to a common user, S(t1) ⊥ S(t2)
or t1 ⊥S t2. Interestingly, we need more expressive power to prevent two types
from ever being assigned to one particular user or a particular set of users. We
examine this interpretation of the constraint in Example 8.

5.3 Authorization Relationship State

A few security policies (such as Chinese Wall [Brewer and Nash 1989] and
operational separation-of-duty [Simon and Zurko 1997]) depend not only on
the current authorization relationship assignments but on other facets of
the relationship. We identify the following facets as being useful: (1) the

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

172 • T. Jaeger and J. E. Tidswell

Fig. 7. The graphical representation of Example 4, a dynamic separation of duty constraint. In
this constraint, a Chinese Wall restriction is to be enforced between the assignment of permissions
p1 and p2. That is, the history of subjects granted permission p1 must not overlap with the history
of subjects granted permission p2.

authorizations that are currently activated (session); (2) the authorizations
that have ever been activated (history); (3) the authorizations that have
been approved (unique); and (4) the list of authorization approvals (order
authorizations).

The list of currently activated authorization relationships depends on the
authorization types that are activated at the present time by the individual
subjects. The concept of a session has been defined to describe a particular
activation of a subjects and a subset of its authorization types. A session x ∈ X
is defined by a single subject S(x) and a set of authorization types activated
for that session T (x). Note that the subject assigned to a session cannot be
changed. Further, the typical propagation of access control information results
in the functions P (x), the permissions available to the session, and O(x), the
objects accessible in a session. Effective constraints on sessions require more
representation, so we postpone the definition of a session-dependent separation
of duty constraint until Section 5.5.

The second type of facet of an authorization relationship is its history. Rather
than introducing a new concept for the history of assignments, we introduce new
functions which maintain the history of assignments. Such history functions are
annotated by a superscripted H, such as T H (s).

Example 4. We now consider a dynamic separation of duty example (see
Figure 7), a simple Chinese Wall policy [Brewer and Nash 1989] consisting of a
two permissions (p1 and p2 ∈ P) with the restriction that any particular s ∈ S,
may access one permission or the other, but not both.

Effectively, a Chinese Wall requires no overlap in the subset of S that has ever
had active the authorization to access p1 with the subset of S that has active
the authorization to access p2 (and vice-versa). Since the history of activated
authorizations is a (nonstrict) superset of the current active authorizations
(S(A) ⊆ SH (A)), we can just compare the historical activations of p1 and p2;
thus, we get the simple constraint: SH (p1) ⊥ SH (p2) or p1 ⊥H

S p2.
Since permissions are not assigned directly to subjects or vice versa, this is

the first constraint whose evaluation is nontrivial. To evaluate the constraint
p1 ⊥H

S p2, we need to find SH (p1) and SH (p2) and verify that the intersection
is null. Due to the assignment from S to T , it is possible to find SH (t), for each
t ∈ T , and due to the assignment of p1 to T it is possible to calculate T H (p1),
p1 ∈ P . For each, t ∈ T H (p1) union the values of SH (t) to get SH (p1). Perform
the analogous calculation for p2 to get SH (p2).

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 173

Fig. 8. The graphical representation of Example 5, a conflict constraint between objects. In this
constraint, objects o1 and o2 are restricted from assignment to the same authorization type. That
is, there may be no overlap between the authorization types of objects o1 and o2.

Further, for some constraints we need to track the authorizations requested,
perhaps even the order of authorization requests. For example, object-based
separation of duty constraints may require knowledge of when an object was
used in an authorization (see Section 5.4). Such information should only be
maintained if a constraint is defined that requires it. The superscript U
identifies an unordered list of authorization approvals, and the superscript
O identifies an ordered list of authorization approvals. We define constraints
using such concepts in Section 5.7.

5.4 Other Concepts

In addition to constraints on permissions, authorization types, and subjects,
constraints may also be expressed about the constituents of permissions: objects
and operations (or rights). For example, the object-based separation of duty
constraint requires that a user never act upon a particular object twice. Since
an object may be accessed by multiple permissions, it is necessary to express
this constraint in terms of objects.

Therefore, objects and likewise operations need to be made first class con-
cepts in the model for constraints to be expressed upon them. We define
two new concepts objects O and operations Op, which are composed into
permissions, such that every p∈ P contains two new functions: O(p)= o∈O
and Op(p)={op1, op2, . . . , opn} where opi ∈Op. That is, a permission con-
sists of one object and one or more operations that can be applied to that
object.

Similar to permissions, objects and operations may propagate across the
authorization relation, such that we may identify the objects and operations of
a subject, O(s) and Op(s), respectively. Note that the operations are dependent
on the data type of the object [Tidswell et al. 1999]. That is, operations on
multiple data types with the same name may exist, so the semantics of the
operation depend on the data type and the name of the operation. Therefore,
an operation shall consist of both the data type and name.

Example 5. Before we express the object-based separation of duty con-
straint, we define a constraint analogous to the privilege—privilege conflicts,
except it is on objects. For example, we may want to prevent two objects (o1
and o2) from being assigned to a common authorization type. In this case, the
constraint is o1 ⊥T o2. As shown in Figure 8, this constraint is drawn between
the individual objects.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

174 • T. Jaeger and J. E. Tidswell

Fig. 9. The graphical representation of Example 6, an object-based separation of duty constraint.
In this constraint, subject s1 is restricted from accessing object o2 more than once. Therefore, the
cardinality of unique applications of permissions to o1 must be no greater than 1.

Example 6. In the object-based separation of duty constraint, a subject is re-
stricted from performing an operation on a particular object twice. In Figure 9,
we define a constraint between the objects that the subject is restricted from
accessing more than once and the subject, |OU (s1) ∩ OU (o1)| ≤1. This means
that the cardinality of the intersection between the subject’s unique object ac-
cesses and the object accesses on this object is no greater than one. A more
compact representation is s1 ||UO≤ 1 o1. An edge annotated with this constraint
is added to the graph.

5.5 Aggregation and Quantification

Note that as finer-grained constraints are created between concepts, the access
control configuration becomes more complex. If we have to express separation
of duty at the object level, then many constraints may be necessary. However,
aggregation of objects into higher-level concepts enables a reduction in the
number of these constraints.

Aggregation applies to any system concept by generalizing each concept
slightly to support a value X (x)={x1, x2, . . . , xn}, where X is the concept type
and x and x1, x2, . . . , xn are instances of that type. Thus, the concepts which we
used before were simply singleton sets. Note that an aggregation relationship
in the model will be denoted by a “+ ”.

The inputs to a constraint comparator are selected from the related sets
by a function called the selection function. There are three types of selection
functions for sets: (1) use the entire set; (2) select each member of the set indi-
vidually; and (3) select each set that comprised an aggregate. In the first case,
the entire set is used in the comparison. For an aggregate, the value selected
is the union of each set that has an aggregate relation with this node. Since we
look at each node as a set, we use this as the default semantics, so a special
symbol is not defined.

Also, each element of the union may be applied independently in the com-
parator. Thus, the selection function is an iterator over each element of the set.
Since there are two sets in a constraint, we can designate the iteration by 〈i, i〉,
〈i〉 for iteration over the left-hand set, right-hand set, or both sets in the binary
relationship, respectively.

Lastly, we define a selection function that uses the individual sets used to
create the aggregate. Thus, the selection function selects each set that was
unioned to form the aggregate individually rather than each of the individ-
ual members of the resultant aggregation. The comparison is then applied to

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 175

Fig. 10. The graphical representation of an alternative interpretation of the user—user conflict
separation of duty constraint in Example 7. In this constraint, no subject in S1 may assigned to an
authorization type to which a member of the S2 is assigned. That is, the set of shared authorization
types between these groups of subjects must be null.

the members of the set (e.g., authorization types of each subject in an aggre-
gate). Like iteration, these can be indicated for either node in the constraint by
〈a, a〉, 〈a〉.

Unfortunately, the semantics of the aggregation relation does not effectively
cover all the types of concept grouping in the model. In particular, the functions
in authorization types do not behave as summation and iteration functions in all
cases. Another relation, called inheritance, is defined for relating authorization
types, as discussed in Section 5.6.

We apply aggregation in three ways: (1) to represent sets upon which con-
straints may be applied; (2) to represent limits on the domain of a constraint;
and (3) to represent universal quantification. First, we may state that a con-
straint is between sets of subjects, objects, permissions, rights, and/or autho-
rization types. Aggregates enable determination of a constraint for all members
of a group. Second, a constraint may be applied to a subset of a particular func-
tion’s values. We use aggregates to define these subsets. Third, universally
quantified constraints, such as the requirement that no subject have access
to two conflicting roles [Ahn and Sandhu 1999], can be enforced explicitly by
associating the set of all subjects with the set conflicting roles, as described
below. Thus, an aggregate of all subjects is used to explicitly define universal
quantifications.

Example 7. We consider an alternative interpretation of the user–user con-
flict constraint expressed in Example 1 in which the two sets of users are re-
stricted from being assigned to any common authorization type. This constraint
is shown graphically in Figure 10. The users u1, u2, . . . and v1, v2, . . . are as-
signed to two separate subject sets S1 and S2. There is a disjoint relationship
on the types that these two sets may be assigned: S1 ⊥T S2. In this case, the
constraint is between each of the members of the sets S1 and S2 since T (Si) is
the union of the values of T for each element in Si.

Example 8. In another interpretation, we want to restrict two users from
a particular authorization type from sharing any authorization type from a
set of restricted types. In this constraint the restricted authorization types are

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

176 • T. Jaeger and J. E. Tidswell

Fig. 11. The graphical representation of yet another alternative interpretation of the user—user
conflict separation of duty constraint in Example 8. In this constraint, u1 and u2 must be restricted
from sharing an authorization type in the set of restricted types rt. That is, the set of authorization
types in rt that are shared between u1 and u2 must be null.

grouped in an aggregate named restricted types rt. Then, a constraint is made
between the two users (or subject aggregates as above), u1 ⊥Trt u2 as shown in
Figure 11. This constraint checks for a null intersection between the types of
the two users that are within the restricted types.

In addition, simple separation of duty between two types, t1 and t2,
and a particular set of subjects Sset is expressed analogously: S(t1) ⊥Sset

S(t2).
Note that this constraint requires an additional operation to compute. The

result of the functions T (u1)∩T (u2) must be intersected with Trt to determine
whether the sets are disjoint with respect to Trt . Fortunately, we can look at
this as a new function Trt(s), which defines the subset of Trt that any subject s
possesses. Given that T (s) means all the members of the set T that are associ-
ated with s, the notion of a function Trt(s) is consistent. With this definition, we
are able to preserve the ability to express constraints using a binary relation
in Example 8. However, this does increase the complexity of understanding as
well as computing the constraint.

Example 9. A constraint that we have not demonstrated yet is static user-
role conflicts as shown in Figure 12. In this constraint, a user or set of users
are prohibited from being assigned to any authorization type in a set. This
is easily captured with aggregation by creating aggregates of the prohibited
users PU and the set of authorization types to which they are prohibited PT:
T (PU) ⊥ T (PT). This constraint restricts the types of all of the prohibited users
from including one of the prohibited roles.

Example 10. Another constraint that we have not demonstrated yet is op-
erational separation of duty. In this constraint, no subject is permitted to
obtain all the permissions necessary to perform all the tasks in a process.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 177

Fig. 12. The graphical representation of Example 9, a static user—role conflict separation of duty
constraint. In this constraint, a set of users PU are restricted from being assigned an authorization
type in set PT. That is, the set of authorization types in PT that are available to any subject in PU
must be null.

Fig. 13. The graphical representation of Example 10, an operational separation of duty constraint.
In this constraint, a set of subjects are prohibited from performing all the tasks in a process. In this
figure, we assume that each task is assigned to an authorization type in ProcT, and each subject’s
types must not be a superset of ProcT.

Typically, each task in a process is represented by an authorization type, so
we can express this constraint in terms of these types (called the process
types or ProcT) for the subject aggregation all users AU: T (AU) 6⊇ ProcT.
However, we want to perform this comparison over each subject in the aggre-
gate independently, not on the aggregate itself. The selection function on the
constraint is <a since we want to compare the authorization types of each
subject aggregated in AU with the set ProcT. In Figure 13, the constraint op-
erator, 6⊇T <a, indicates the iteration is over each of the aggregated elements
of AU.

Example 11. In a session-dependent separation of duty constraint
(Figure 14), we want to ensure that no subjects of a particular group are as-
signed to all the authorization types in a restricted set in the same session. This
is the session-based version of Example 10. In order to ease the specification of
this constraint, we automatically aggregate the sessions belonging to subjects
and their aggregates. Thus, the aggregate of subjects PU may additionally be
restricted from access to all types in ProcT in any of their sessions by assigning
a subject constraint between their session aggregation PUx and ProcT. This is
indicated by a constraint 6⊇T <a, which means that no node aggregated in PUx
may have an authorization type set that is a superset of ProcT.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

178 • T. Jaeger and J. E. Tidswell

Fig. 14. The graphical representation of a Example 11, a session-dependent separation of duty
constraint. In this constraint, all the subjects in an aggregate PU are prevented from being assigned
to all the authorization types in a restricted set ProcT during their sessions PUx .

Fig. 15. The graphical representation of Example 12, a universal quantification where all users
are restricted from being assigned to more than one conflicting authorization type. In this figure,
subjects are automatically assigned to the set AU and we restrict the cardinality of the intersection
with the conflicting roles set CR to 1.

Example 12. To demonstrate universal quantification, we use a separation
of duty constraint demonstrated in the RSL99 constraint language [Ahn and
Sandhu 1999], as shown in Figure 15. This constraint states that no user may
be assigned to more than one role in a set of conflicting roles. To represent this
constraint there are two aggregations: (1) the set of all users (AU) and (2) the
set of conflicting roles (CR). Implicitly, each subject can be added to the set of
all users, and the system administrators should be able to identify the set of all
conflicting roles. Thus, the constraint is between each user in the aggregation
and the conflicting roles: (T (AU) ||T ≤ 1 CR)(< a). Note that this constraint is
an iteration over each member in AU as indicated by the use of the <a.

5.6 Inheritance

Unfortunately, the concept of aggregation defined in the previous section is
not sufficient for authorization types. The problem is that in an authorization
type we have two types of assignments, subjects and permissions, that are
aggregated inversely to one another. Consider the situation where every subject
is an employee, but the permissions of an employee are not the union of the other
types. Instead, the expert inherits all permissions, but has the fewest subjects.

We define an inheritance relation, signified by a “+ /− ”, by the direction in
which information is transferred by the inheritance relationship as shown in

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 179

Fig. 16. In an inheritance relation, subjects are aggregated in an inverse direction to permissions.

Fig. 17. The graphical representation of another operational separation of duty constraint in
Example 13. In this case, we express the constraint in terms of permissions rather than types.

Figure 16. Permission information (e.g., permissions, operations, and objects) is
aggregated in the direction of inheritance relationship (the “+”), but subject in-
formation is aggregated opposite to the direction of the inheritance relationship
(the “−”). Given the direction of the aggregations, the aggregation computation
semantics still hold.

Example 13. Given the semantics above, we define a constraint that ap-
plies in the context of an inheritance relationship as shown in Figure 17.
If we express the constraint in Example 10 in terms of permissions rather
than types, then the constraint is: P (AU) 6⊇ P (ProcT) < a. This constraint
is basically the same, but we must account for the inheritance of permissions
into the types of ProcT. The set of permissions are computed according to the
inheritance relation.

Note that aggregation and inheritance are both instances of relationships
whereby the values of the concept functions (e.g., P , T , and S) in one node
are unioned with values of the same concept functions in another node. In the
definition of such relationships, the set of concept functions, the direction of

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

180 • T. Jaeger and J. E. Tidswell

Fig. 18. The constraint ρ is aggregated to its subtypes in the direction of the aggregation of the
elements of that function (the “+”). Also, the constraint is relative to the original counterpart
node.

combination (e.g., union with the direction of the relationship), and even the
combination operator (e.g., union or intersection) may be specified for the re-
lationship. For example, we found that only a subject of the permissions are
inherited in MLS policies [Tidswell and Jaeger 2000b] (e.g., write-up). Thus, a
more general expression would include each function type (S, T, P, O, Op), the
direction in which the values are modified, and the combination operator. Con-
sidering the example separation of duty constraints, we have not yet found the
need to generalize our expression language beyond the subject and permission
side of the relationship. Nevertheless, such expressions may be necessary and
can be added in a straightforward manner.

We now consider the effect of inheritance and aggregation on constraints.
First, constraints are aggregated in the direction in which the function is ag-
gregated. If two authorization types are restricted from having a common per-
mission, it is clear that types that inherit permissions from these types must
also not have that common permission. Note that due to inheritance the sub-
types are also implicitly restricted. Therefore, subject constraints are aggre-
gated in the “−” direction of an inheritance link, and permission constraints
are aggregated in the “+” direction. Second, constraints are always relative to
the originally related node. As shown in Figure 18, the constraint ρ is relative
to B for A and all types aggregating the information relative to the constraint
from A.

Example 14. Kuhn [1997] identified that there may exist a mutual exclusion
between authorization types whereby some permissions not involved in the
mutual exclusion may be shared. This constraint is expressed in Figure 19
where a mutual exclusion is set between types A′ and B′, but the inheritance of
this constraint only excludes the permissions of B′ from A and A′ from B. The
constraint is written P (A′) ⊥P P (B′). The inheritance of the constraint to A is
interpreted as P (A) ⊥P P (B′). Given this constraint, it is possible for A and B

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 181

Fig. 19. The graphical representation of Kuhn’s shared rights separation of duty constraint in
Example 14. In this constraint, A′ and B′ are mutually exclusive on permissions, but A and B
are only restricted relative to the permissions assigned to A′ and B′. Therefore, they can inherit
permissions from C.

to each inherit permissions from another authorization type C as long as the
permissions inherited from C are disjoint from those in A′ and B′.

An alternative goal for a constraint is to prevent either A′ or its supertypes
from subsuming the permissions of B′ (e.g., a form of operational separation of
duty) or vice versa. An incomparable relationship can be used here to prevent
either set from subsuming the other. The inheritance of this constraint would
prevent the permissions of A and B from subsuming the permissions of B′ and
A′, respectively.

5.7 Order Constraints

The remaining two constraints that we have not examined yet are the his-
tory constraints. Both the order-dependent and order-independent history con-
straints specify that a certain history must have taken place before an operation
can be executed. For example, two signature operations must be executed on
an object before the approval task can be completed.

In general, these constraints are preconditions. In the order-independent
constraints, a set of operations must be executed in any order prior to the
execution of constrained operation. In the order-dependent case, the constraint
requires that the order of the set of required operations be restricted. Of course,
an order can be enforced by specifying the preconditions of each operation to
be the set of operations that must have preceded it. Therefore, preconditions
based on simple sets are sufficient to implement both order-independent or
order-dependent history constraints.

Such history constraints involve individual objects and operations. As such,
they depend on the concepts that were introduced in Section 5.4. How-
ever, these constraints do not interact significantly with the other separa-
tion of duty constraints. The constraints restrict the order of operation ex-
ecution not the notion of whether the operations can be executed at all.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

182 • T. Jaeger and J. E. Tidswell

Fig. 20. The graphical representation of an order-independent history constraint in Example 15. In
this constraint, the operation comp cannot be executed on any business process object in BP1 until
the operations in OP have been executed. Thus, we introduce the notion of a precondition constraint
that verifies that the unique application of operations on each object in BP1 is a superset of OP
before comp can be executed.

Therefore, extension to history constraints is independent of most of the
other extensions.

Example 15. In this example, shown in Figure 20, we describe an order-
independent history constraint. In this case, all objects that implement a
particular business process bp1 j ∈ BP1 require that the application of oper-
ations, OpU (bp1 j), include a particular set of operations (e.g., two operations
of type signature, sig1 and sig2) before the process completion operation comp
can be executed. We define a constraint concept precond (condition, constraint)
where condition cannot be true unless the precondition constraint is true. In this
case, the condition is that the operation comp has been executed on any member
of BP1. The condition is expressed as Op(BP1) ⊃ comp<a. This condition
cannot be true until the operations in OP have been executed on the member of
BP1 first. The precondition constraint is expressed as a relation between the
objects in BP1 and the operations in OP: OpU (BP1) ⊃ OP<a where the OP is
the set of operations that must be executed before comp (i.e., sig1 and sig2).

This creates two problems: (1) the first constraint must be named, so it can
be included in the constraint and (2) the first constraint only is checked within
the context of the precondition, so the context in which it is to be verified must
be restricted. The first problem is addressed by permitting constraints to be
named. In this case, the first constraint is called c1. The second problem is
solved by designating which constraints are required for verification in the set
CS . In this case, the precondition must be checked, but c1 need not be checked
to verify the system’s safety.

Clearly, this dependency of a constraint on a constraint complicates the abil-
ity to express safety policy. Three new concepts (preconditions, named con-
straints, and verification constraints) have been added to the model in order

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 183

to express this constraint properly. Obviously, these constraints are the most
complex that we have had to express thus far, so care must be used to avoid a
complexity overload.

5.8 Further Possible Extensions

At this point, we have defined all the modeling concepts necessary to express
the kinds of constraints that have been identified in the literature. However,
we have reason to suspect that other concepts may be useful. Two concepts
in particular are parameterized types and triggers. Others include time-based
constraints [Gal and Atluri 2000].

Besides aggregation and inheritance, another useful approach for grouping
concepts is the notion of parameterized types [Giuri and Iglio 1997]. A param-
eterized type is an authorization type in which facets of the types are defined
by parameters. For example, we may define a type student(course) where the
rights of the student are defined to be the same except that they are indexed
by the course that the student is taking. In this case, students can only access
objects(course) for the courses to which they are legitimately registered. We
have used parameterized types in collaborative systems [Jaeger et al. 1999b]
and virtual university systems [Jaeger et al. 1999a].

At this point, we have not studied the extensions necessary to support con-
straints over parameterized types. Our intuition is that binary constraints for
parameterized types can aggregate a great deal of information. However, ex-
ceptions to the parameterized types are harder to understand and manage than
other aggregations. Thus, parameterized types should probably be used where
no or few exceptions are necessary.

The second concept is the notion of triggers. A trigger is the opposite of a pre-
condition. Rather than precluding an operations execution, a trigger is executed
upon the execution of an operation. For example, dynamic constraints, such as
dynamic separation of duty, may require a change in the set of constraints
in a configuration given the execution of an operation. We have resisted the
demand to add triggers to the model, as triggers would be similar in complexity
to preconditions, which are the most complex concept in the model. Thus far,
we feel that triggers are not necessary, but we may be proven incorrect. How-
ever, like preconditions, triggers should be used in a limited way to maintain
manageability of the model.

6. MODEL EVALUATION

In this section, we evaluate the effectiveness of the graphical access control
model for enforcing safety. We begin by evaluating the expressive power of the
graphical access control model’s constraint specification. We compare the ex-
pressive power of the graphical constraint model to that of a constraint language
RSL99 [Ahn and Sandhu 1999]. In general, we find that the graphical constraint
model makes some simplifications that reduce expressive power, but our empir-
ical and analytical assessments result in the expectation that this additional
generality of RSL99 adds little benefit. We then define safety verification using
the graphical access control model and evaluate the computational complexity

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

184 • T. Jaeger and J. E. Tidswell

of verifying the example constraints using the model. While no comparable
analyses of other systems exist, we believe that the complexity of constraints
in this model is typical, and the use of caching can reduce the complexity to
near minimal for these constraints (although management complexity would
be increased).

6.1 Expressive Power

An interesting issue is the expressive power of this access control model. In the
simplest access control model conceivable, constraints are expressed purely in
terms of subject sets and permission sets. For example, constraints are ex-
pressed by listing the set of permissions that each subject may be assigned (i.e.,
expression using propositional logic). This model has the nice feature that it is
fail-safe in that only permissions that are allowed to be assigned to a subject
may be. On the other hand, constraint specification is tedious and dynamic cre-
ation of objects requires the creation of new constraints before any rights may
be assigned.

On the other hand, a fully general model enables the use of universal and
existential quantification on an arbitrary number of variables. Also, the full
power of predicate logic would be available.

The graphical constraint model (i.e., the constraint expression subset of the
graphical access control model) contains the ability to express universal quan-
tification over two sets, and provides set operations for use on the result. The
only predicate in the model is precond, and even this has been added with
some trepidation.

A question is how close the expressive power of the graphic constraint model
is to what is necessary in practice. Unfortunately, this is difficult to prove ana-
lytically. As one test, we show empirically in this paper the variety of practical
constraints that can be expressed using the model.

Second, we compare the expressive power of the graphical constraint model
to another recent proposal for a practical constraint model, RSL 99 [Ahn and
Sandhu 1999]. RSL99 supports a restricted first-order predicate logic in which
a universal quantification over a predefined set of functions can be specified.
The functions in RSL99 correspond to those in the graphical constraint model,
except that the different dimensions of the functions, such as history, are not in-
cluded. Thus, we expect that constraints based on these other dimensions will be
more complex to specify. Clearly, RSL99 can express n-ary constraints, whereas
the graphical constraint model can only specify binary constraints. However,
at this point, we see most practical constraints as comparisons of two concepts:
one set has a constraint in relation to another. The addition of ternary and
greater concepts makes the language more complex, and we have reservations
about system administrators’ abilities to express higher-order constraints.

RSL99 also includes typical set operations to create the sets used in the
constraint comparison. We define aggregation and inheritance relations to the
union operator to sets. We did not define an intersection operator for the graphi-
cal constraint model, as none of the example constraints warranted it. However,
it can be added in a straightforward way.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 185

RSL99 uses general, mathematical expressions for performing set compar-
isons. Therefore, arbitrary set comparisons can be made. In the graphical con-
straint model, we define a set of higher-level comparators that represent com-
mon mathematical expressions that are relevant to the example constraint
types. For example, the disjoint comparator expresses a null intersection. We
believe that maintaining a small set of intuitive comparators that cover the
range of useful constraints will be key to model simplicity.

RSL99 also includes operators to ease the expression of universal and exis-
tential quantification oneelement and allother, which take one element from a
set and repeatedly extract all others, respectively. Our selection functions for
sets and elements enable the same information to be expressed. In addition, we
have an additional concept that is the iteration over the sets in an aggregation
which we found useful in a number of cases.

Ultimately, a comparison of constraint expression between the graphical ac-
cess control model and RSL99 will require some empirical analysis of how differ-
ent useful constraints are specified. Example 12 is the expression of a constraint
that is also expressed in RSL99 [Ahn and Sandhu 1999]. The RSL99 expression
for this constraint is | roles∗ (OE(U))∩OE(CR) | ≤1. The constraint expression
in the graphical access control model is also somewhat complex (see Figure 15).
However, the graphical representation reduces some expression complexity by
defining the || comparator rather than requiring the full intersection expres-
sion in RSL99. Also, the graphical representation of the sets involved in the
constraint eliminates the need to express that part of the constraint in the
language. Thus, the same expression in RSL99 is much shorter in our model.
Quantification is still somewhat complex in both expressions, and we feel that
more work is still necessary to make quantification manageable.

In addition, the graphical model has another potential advantage that we
are just beginning to leverage. Unlike a rule, the concepts in a graphical con-
straint have well defined semantics in the model, so a variety of analysis are
possible. For example, we use the graphical access control model to estimate
the complexity of safety verification using constraints [Jaeger 2001]. Further
analyses, such as the identification of redundant or conflicting constraints, may
also be useful.

In summary, we think that the graphical constraint model and RSL99 share
a great deal of common semantics about expressing access control constraints.
The main differences are: (1) that the graphical access control model sepa-
rates the steps of identifying the sets for comparison, selection the compari-
son inputs, and performing the comparison and (2) in the trade-off between
expressive power and complexity for concepts such as quantification and set
comparison and the means of expression of the constraints. In the graphical
access control model, these steps in a constraint comparison are more explicit
separate. The separate step of set identification is made straightforward in
the graphical access control model, in particular. RSL99 provides more flexi-
bility at a cost of additional complexity. We found this additional complexity
unnecessary for our example constraints and are striving to keep the number
of useful comparators small. We believe that more complex relations are be-
yond practical application, and the use of general mathematical expressions

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

186 • T. Jaeger and J. E. Tidswell

Table I. Worst-Case Computational Complexity
for Each Example Constraint

Example Identify Select/Compare

1–2 O(1) O(T 2)
3–4 O(1) O(S2)

5 O(1) O(T 2)
6 O(1) O(O)
7 O(ST) O(ST 2)
8 O(1) O(T 2)

9–10 O(ST + T) O(ST 2)
11 O(X T + T) O(X T 2)
12 O(ST + T) O(ST 2)
13 O(SP + T P) O(SP2)
14 O(P) O(P2)
15 O(O ∗ Op) O(O ∗ Op)

for set comparison deter from an administrator’s ability to intuit the mean of
a constraint.

6.2 Safety Verification

Safety verification involves computing all the constraints to determine if the
comparisons are satisfied or not. The computation of a constraint involves the
three steps made explicit by our constraint definition.

—Identification. First, the sets in the constraint are identified. This task in-
volves using the functional definitions of the two sets in the binary relation
to compute their membership. Such a computation may be optimized by
effective caching of intermediate results.

—Selection. Next, the selection function determines how many comparisons
will be necessary in order to verify the constraint and what those compar-
isons will be.

— Comparison. Lastly, perform the comparison(s) on the selected inputs.
The comparator function is executed on the inputs selected by the
selection function.

The computational complexity of safety verification per constraint is the
sum of the identification complexity and the product of selection cost and
comparison cost.

6.3 Computational Complexity

Any constraint model should enhance the performance of computing con-
straints. Again examining a trivial constraint model, the worst-case compu-
tation time to verify a safe configuration is O(|S || P |2). For each subject, we
must determine whether their permissions are in the set of legal permissions.

In Table I, we list the worst case computation time of each of the example
constraints. The only constraint that is, in worst case, as expensive as the simple
constraint model is Example 13, because this is a constraint between subjects

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 187

and permissions as in the simple model. Constraint 11 is also interesting in that
it is computed on the set of sessions as expressed in the worst-case analysis,
which is larger than the set of subjects. However, the actual enforcement will be
done per session (i.e., one session at a time). When a type is added to a session,
it must be verified that the session types is not a superset of the process types
(O(T 2)).

We briefly examine the computational complexity of the other examples.
Examples 1 through 5 are simply intersection computations on a particular
pair of sets. Therefore, they are all O(n2) where n is the size of the particular
sets. Example 6 simply examines the objects that have been accessed by the
subject to determine if a certain one has already been accessed. Example 7 may
require that the unique type assignments must be collected (i.e., unioned) for
each user, so its worst-case runtime is dominated by this. Example 8 requires
two successive intersections (T (u1) ∩ T (u2) ∩ Trt), but the runtime of each
intersection is the same. Examples 9, 10, and 12 may require the collection of
types for each user, so their runtime is the same as Example 7. Example 14 may
require that we collect all the operations that the user has run, and intersection
them with the precondition operation set.

One potential advantage of a graphical model is that we can direct the
caching of the identified sets. Note that the selection and comparison com-
plexities always are greater than that of identification, so the benefit of caching
is limited to the constant factor of the computation. There are two problems
that we must address in caching data: (1) determining what data is a candidate
for caching and (2) determining whether caching that data provides a benefit.
In the first case, as we see in Example 7, maintaining the set of types of all
subjects in an aggregation at the aggregations S1 and S2 reduces the need to
gather this information from each subject (i.e., reducing the selection cost to
O(1)). Since there is a constraint on types on this aggregation, this indicates
that maintaining the value of this function locally at the aggregation may im-
prove the performance of the constraint check. On the other hand, maintaining
the consistency of a set of distributed caches can be expensive as well. There-
fore, it does not make sense to cache data that changes much more frequently
than the configuration itself, such as activated permissions (e.g., Example 15).

7. CONCLUSIONS AND FUTURE WORK

In this paper, we examine the problem of making safety verification practical
for general access control models, such as role-based access control. Previous
safety constraint expression approaches appear to be too complex for average
system administrators, so we define a graphical access control model that is
designed to simplify constraint expression. Constraint expression in this model
is simplified in three ways: (1) by splitting constraint expression into three
steps, set identification, input selection, and input comparison; (2) using the
graphical model to do set identification; and (3) using a small number of set-
based operations for constraint input comparison.

We have demonstrated this model on a variety of constraints taken from the
literature to show how constraints can be expressed and motivate the selection

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

188 • T. Jaeger and J. E. Tidswell

of concepts for the model. All these constraints can be expressed, but some
expressions, particular those requiring iteration over a set, start to become
complex. Some further syntactic sugar may be useful here. However, the con-
straint expression requires much less language expression than even simplified
constraint languages like RSL 99.

We also evaluate the expressive power of the model. Our model is restricted
along two dimensions: (1) all constraints must be expressed as binary relation-
ships and (2) only a limited number of constraint relationships (i.e., set com-
parator functions) are available. Neither of these restrictions has prevented us
from expressing the constraints, but both are useful, and in the case of binary
relationships necessary, in reducing expression complexity.

Lastly, we identify another feature of graphs that may be useful in manag-
ing safety policy: the constraint expressions themselves may be reasoned about.
This may enable us to automate some management tasks, such as redundancy
and conflict detection, and perform some new tasks, such as complexity man-
agement. We will pursue the goals in the future.

ACKNOWLEDGMENTS

The authors would like to thank John Potter, Leendert van Doorn, Peter
Gutmann, and many others who have given us feedback on this work. The
authors would particularly like to thank Paul Karger for encouraging us to
focus on guaranteeing safety in general access control models.

REFERENCES

AHN, G., AND SANDHU, R. 1999. The RSL99 language for role-based separation of duty constraints.
In Proceedings of the 4th Workshop on Role-Based Access Control.

AHN, G., AND SANDHU, R. 2000. Role-based authorization constraint specification. ACM Trans. Inf.
Syst. Sec. 3, 4 (Nov.).

AMMANN, P. E., AND SANDHU, R. S. 1991. Safety analysis for the extended schematic protection
model. In Proceedings of the IEEE Symposium on Research in Security and Privacy. IEEE Com-
puter Society Press, Los Alamitos, Calif.

AMMANN, P. E., AND SANDHU, R. S. 1992. The extended Schematic Protection Model. J. Comput.
Sec. 1.

AMMANN, P., AND SANDHU, R. 1994. One-representative safety analysis in the non-monotonic trans-
form model. In Proceedings of the 7th IEEE Computer Security Foundations Workshop. IEEE
Computer Society Press, Los Alamitos, Calif., pp. 138–149.

BELL, D., AND LA PADULA, L. 1973. Secure computer systems: Mathematical foundations (Volume
1). Tech. Rep. ESD-TR-73-278. Mitre Corporation.

BERTINO, E., FERRARI, E., AND ATLURI, V. 1999. The specification and enforcement of authorization
constraints in workflow management systems. ACM Trans. Inf. Syst. Sec. (TISSEC) 1, 2 (Feb).

BERTINO, E., JAJODIA, S., SAMARATI, P., AND SUBRAHMANIAN, V. S. 1997. A unified framework for enforc-
ing multiple access control policies. In Proceedings of ACM SIGMOD Conference on Management
of Data (May). ACM, New York.

BISHOP, M., AND SNYDER, L. 1979. The transfer of information and authority in a protection sys-
tem. In Proceedings of the 7th Annual ACM Symposium on Operating System Principles. ACM,
New York, pp. 45–54.

BOEBERT, W. E., AND KAIN, R. Y. 1985. A practical alternative to hierarchical integrity policies. In
Proceedings of the 8th National Computer Security Conference (Gaithersburg, Md.).

BREWER, D. F. C., AND NASH, M. J. 1989. The Chinese wall security policy. In Proceedings of the
IEEE Symposium on Security and Privacy (Oakland, Calif., May). IEEE Computer Society Press,
Los Alamitos, Calif.

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

Practical Safety in Flexible Access Control Models • 189

CLARK, D. D., AND WILSON, D. R. 1987. A comparison of commercial and military computer security
policies. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland, Calif., Apr.).
IEEE Computer Society Press, Los Alamitos, Calif.

GAL, A., AND ATLURI, V. 2000. An authorization model for temporal data. In Proceedings of the 7th
Conference on Computer and Communication Security.

GIURI, L., AND IGLIO, P. 1997. Role templates for content-based access control. In Proceedings of
the 2nd Workshop on Role-Based Access Control.

GLIGOR, V. D., GAVRILA, S. I., AND FERRAIOLO, D. 1998. On the formal definition of separation-of-duty
policies and their composition. In Proceedings of the IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, Los Alamitos, Calif.

HARRISON, M. A., RUZZO, W. L., AND ULLMAN, J. D. 1976. Protection in operating systems. Commun.
ACM 19, 8 (Aug.).

JAEGER, T. 2001. Managing access control complexity using metrics. In Proceedings of 6th ACM
Symposium on Access Control Models and Technologies (May). ACM, New York.

JAEGER, T., MICHAILIDIS, T., AND RADA, R. 1999a. Access control in a virtual university. In Proceed-
ings of 5th IEEE International Workshop on Enterprise Security (WETICE 1999) (June). IEEE
Computer Society Press, Los Alamitos, Calif.

JAEGER, T., PRAKASH, A., LIEDTKE, J., AND ISLAM, N. 1999b. Flexible control of downloaded executable
content. ACM Trans. Inf. and Syst. Sec. (TISSEC) 2, 2 (May).

JAJODIA, S., SAMARATI, P., AND SUBRAHMANIAN, V. S. 1997. A logical language for expressing au-
thorizations. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, Los Alamitos, Calif.

KUHN, D. R. 1997. Mutual exclusion of roles as a means of implementing separation of duty in
a role-based access control system. In Proceedings of the 2nd ACM Role-Based Access Control
Workshop. ACM, New York.

LAMPSON, B. W. 1974. Protection. Oper. Syst. Revi., 8, 1 (Jan.), pp. 18–24.
LUPU, E., AND SLOMAN, M. 1999. Conflicts in policy-based distributed systems management. IEEE

Trans. Softw. Eng. 25, 6 (Nov./Dec.).
LUNT, T., DENNING, D., SCHELL, R., HECKMAN, M., AND SHOCKLEY, W. 1990. The SeaView security

model. IEEE Trans. Softw. Eng., 16, 6 (June).
LUPU, E. C., AND SLOMAN, M. 1997. A policy based role object model. In Proceedings of the 1st

IEEE Enterprise Distributed Object Computing Workshop (Oct.). IEEE Computer Society Press,
Los Alamitos, Calif.

NYANCHAMA, M., AND OSBORN, S. 1999. The role graph model and conflict of interest. ACM Trans
Inf. Syst. Sec. 2, 1 (Feb.).

OSBORN, S. 1997. Mandatory access control and role-based access control revisited. In Proceedings
of 2nd ACM Workshop on Role-Based Access Control (Nov.). ACM, New York.

OSBORN, S., AND GUO, Y. 2000. Modelling users in role-based access control. In Proceedings of the
5th ACM Role-Based Access Control Workshop (July).

SALTZER, J., AND SCHROEDER, M. 1975. The protection of information in computer systems. Proc.
IEEE 63, 9 (Sept.).

SANDHU, R. S. 1988. The schematic protection model: Its definition and analysis for acyclic atten-
uating schemes. J. ACM 35, 2 (Apr.), 404–432.

SANDHU, R. S. 1992. The typed access matrix model. In Proceedings of the IEEE Symposium on
Security and Privacy (May). IEEE Computer Society Press, Los Alamitos, Calif.

SANDHU, R. S. 1998. Transaction Control Expressions for Separation of Duties. In Proceeding of
the 4th Aerospace Computer Security Applications Conference (Dec.).

SANDHU, R. S., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based admin-
istration of roles. ACM Trans. Inf. Syst. Sec. 1, 2 (Feb.).

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. F., AND YOUMAN, C. E. 1994. Role-based access control:
A multi-dimensional view. In Proceeding of the 10th Annual Computer Security Applications
Conference (Dec.).

SANDHU, R. S., COYNE, E., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control
models. IEEE Comput. 29, 2 (Feb.), 38–47.

SIMON, R., AND ZURKO, M. E. 1997. Mutual exclusion of roles as a means of implementing
separation of duty in a role-based access control system. In Proceeding of the 10th IEEE

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

190 • T. Jaeger and J. E. Tidswell

Computer Security Foundations Workshop (June). IEEE Computer Society Press, Los Alamitos,
Calif.

SYNDER, L. 1977. On the synthesis and analysis of protection systems. In Proceedings of the 6th
ACM Symposium on Operating System Principles. pp. 141–150. ACM New York.

TIDSWELL, J. E., AND JAEGER, T. 2000a. Integrated constraints and inheritance in DTAC. In Pro-
ceedings of the 5th ACM Role-Based Access Control Workshop (July). ACM, New York.

TIDSWELL, J. E. AND JAEGER, T. 2000b. An access control model for simplifying constraint expres-
sion. In Proceedings of the 7th ACM Conference on Computer and Communication Security (Nov.).
ACM, New York.

TIDSWELL, J. E., OUTHRED, G., AND POTTER, J. 1999. Dynamic rights: Safe extensible access control.
In Proceedings of the 4th ACM Role-Based Access Control Workshop (Nov.) ACM, New York.

TIDSWELL, J. E., AND POTTER, J. 1998. A dynamically typed access control model. In Proceedings of
the Third Australasian Conference on Information Security and Privacy (July).

Received March 2001; revised May 2001; accepted May 2001

ACM Transactions on Information and System Security, Vol. 4, No. 2, May 2001.

