
Information Flow Analysis of an RBAC System

Sylvia L. Osborn
Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A-5B7

sylvia@csd.uwo.ca

ABSTRACT
Role-based access control provides a very
exible set of mech-
anisms for managing the access control of a complex system
with many users, objects and applications. In our previous
research, we have shown how, given a role graph and security
labels for objects, one can test whether or not the system
satis�es properties for lattice-based access control. In this
paper we give a general mapping, which takes an arbitrary
role graph and produces another graph which shows the in-
formation
ow that can result from the roles de�ned in the
role graph. An extension builds the information
ow graph
taking user assignments and sessions into account.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: [Access controls]; D.4.6
[Security and Protection]: [Information
ow controls]

General Terms
algorithms, security

Keywords
role-based access control, role graphs, mandatory access con-
trol

1. INTRODUCTION
Role-based access control (RBAC) models have received a

lot of attention in recent years. Two versions are the Sandhu
model (we will refer here to RBAC96 [7, 6]) and the Nyan-
chama and Osborn role graph model [2]. There has also been
research relating RBAC to more traditional discretionary
access control (DAC) models and mandatory access control
models (MAC), which can be found in [3]. MAC models are
also referred to as lattice-based access control (LBAC), be-
cause the security levels of a MAC model are arranged in a
lattice [5]. In [3], a mapping is given from an LBAC system
to an RBAC system which allows and enforces the same ac-
cess to data. Osborn, Sandhu and Munawer [3] also contains

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’02, June 3-4, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-496-7/02/0006 ...$5.00.

a section in which, given a role graph where each data item
is labeled with a security label, we can test whether or not
the system adheres to MAC principles. In this paper, we
will attempt to give a more general mapping, where, given
an arbitrary role graph where data is not labeled, we will
construct another graph which shows the information
ow
implied by the role graph. An extension builds the infor-
mation
ow graph taking user assignments and sessions into
account.
For any given RBAC system, it is trivially possible to con-

struct an LBAC system in which there is one security level
which is assigned to all data items. Our goal here is to try
to show with as much detail as we can, both the information

ow resulting from the RBAC system de�ned, and possibly
a lattice of security labels which would achieve the same
e�ect. We do not expect users to map RBAC systems to
LBAC systems. Rather we envisage this work being used to
provide information
ow analysis to those users who wish
to understand their system from that point of view. Since
RBAC systems can be very large, it can be diÆcult to un-
derstand all the implications of one's RBAC design. This
mapping into an information
ow will provide one more tool
to help security administrators understand their task and
their systems.
The paper is organized as follows: the next section intro-

duces the role graph model and the Sandhu model. This is
followed by a brief summary of LBAC models in section 3.
In section 4, we look at the information
ows produced by
the roles in a role graph. Section 5 extends this mapping
by considering user-role assignments and constraints on ses-
sions. The paper concludes in section 6 with a discussion of
how a security lattice might be constructed from the
ow
graph.

2. THE ROLE GRAPH MODEL
The role graph model was introduced in [1]. A more com-

plete description can be found in [2]. In the model, a role
is de�ned as a named set of privileges, where a privilege is
a pair (o, a), consisting of an object o in the system and
one of its available access modes, denoted by a. The pres-
ence of (o, a) in the privilege set of a role indicates that
users assigned to this role are allowed to perform this ac-
cess on this object. In the role graph, roles are represented
by the nodes of an acyclic directed graph. For each role
r, there is a set Direct(r), the direct privileges of r, which
are privileges (newly) available to r, and not in any of r's
junior roles. E�ective(r) denotes all privileges available to
users assigned to r, and is the union of Direct(r) and all

163

the privileges in any role junior to r. The edges in the role
graph denote the is-junior relationship: ri ! rj if and only
if E�ective(ri) � E�ective(rj). The role graphs correspond
to what is called the role hierarchy in Sandhu's models. It
is possible to introduce a MaxRole to which every role is-
junior, and MinRole which is-junior to every role. If Max-
Role is not already present, E�ective(MaxRole) is just the
union of all the privileges in the system, and if no MinRole
is present, E�ective(MinRole) = �. Sandhu's examples do
not contain MinRole and MaxRole; MaxRole is included in
the role graph model to have some place to represent all
possible privileges in a system.
A number of algorithms for manipulating role graphs are

given in [2]: algorithms to insert and delete roles, insert
and delete edges, and insert and delete privileges to/from
a role. They all have run time which is polynomial in the
size of the graph and in the cardinalities of the E�ective and
Direct sets. Role graphs are acyclic. A role graph is denoted
by G(R;!) where R denotes the set of roles and! denotes
the is-junior relationship.
The set of e�ective privileges of a role represents all priv-

ileges any subject assigned to that role can exercise. They
correspond to the PA relationship of the RBAC96 model.
The role graph model also includes a user plane and a priv-
ileges plane. The user plane can be used to model groups
of users, which do not need to be considered in this paper.
The privileges plane is meant to model implications among
privileges (for example, in object-oriented databases, a very
rich set of privilege implications can be de�ned [4]). We
assume that all such privilege implications have been taken
into account when de�ning the Direct and E�ective sets for
the roles.
In Sandhu's model, in addition to RH, the role hierarchy

which corresponds to the role graph, and PA which corre-
sponds the the assignment of privileges to roles in the role
graph model, UA and Sessions are given. The UA contains
all (user, role) pairs such that the user can perform this role.
Sessions correspond to one user acting in possibly many of
their assigned roles (according to UA). In addition to these
sets, constraints can be speci�ed which might,for example,
limit the activation of two roles at the same time in the same
session.

3. LBAC MODELS
In an LBAC system, all subjects and objects are labeled

with a security label. These security labels are taken from a
set of labels for which a lattice is de�ned [5]. As well as the
labeling of all objects and all subjects, access in an LBAC
system is governed by rules. Read access is de�ned by the
simple security property:

Simple Security Property: subject s can read object o

only if the label of s � the label of o in the security lattice.

Write access is governed by either the liberal ?-property
or the strict ?-property, which are de�ned as follows:

Liberal ?-property: subject s can write object o only if
the label of s � the label of o.

Strict ?-property: subject s can write object o only if the
label of s = the label of o.

These properties ensure that all information
ow is from
low security levels to high security levels.
A lattice di�ers from a directed graph in that, in a lat-

tice, for every pair of nodes, a unique least upper bound is
de�ned. Whereas every lattice can also be considered to be
a directed acyclic graph, the opposite is not true. The exis-
tence of a unique least upper bound is important in LBAC
systems to classify combinations of data objects. An acyclic
directed graph can provide much useful information about
information
ow, even if it does not satisfy the additional
requirements to be a lattice.
LBAC systems normally refer to subjects, whereas RBAC

systems refer to users. The notion of a session in the Sandhu
models corresponds to a subject in the LBAC sense, i.e.
it corresponds to a process acting on behalf of a user. In
the �rst discussion below, we will ignore users and subjects.
Subsequently we will include them and will refer both to the
UA and possible sessions of the Sandhu models.

4. THE FLOW MAPPING OF THE ROLE
GRAPH

In constructing the mapping from a role graph to an in-
formation
ow graph, we observe that we are constructing a
\can
ow" relationship from objects to other objects. Such

ows can result from the existence of combinations of priv-
ileges in a role. Speci�cally, if the privileges (o1, r) and (o2,
w) are in the same role, then any user acting in this role can
cause information to
ow from o1 to o2.
We should also note that each object has one security

label in an LBAC system, so that although in the RBAC
system, (o, r) and (o, w) might be in di�erent roles, in some
sense these two operations would be available at the same
security level in any LBAC system (every object must have
a single label). Therefore, no matter where (o1, r) and (o1,
w) are, information
ows from (o1, w) to (o1, r), and from
(o1, r) to (o1, w).
Consider, then, an arbitrary role graph G(R;!). In what

follows, we make the following assumptions:

1. R is �nite

2. for each role r 2 R, E�ective(r) is �nite

3. the access modes contained in the pairs representing
the privileges assigned to roles consist of only read and
write, denoted by r and w respectively.

Given a role graph G(R;!), Algorithm 1, FlowStart in
Figure 1 constructs an initial representation F1 of the \can

ow" relationship. In the output, the nodes of result F1

are labeled by individual privileges. The algorithm starts
by looking at all privileges in all roles, and creating a node
in the output graph for this privilege. The nodes in the
output are also labeled with the role name, to keep track of
where the privileges come from. Note that this gives a �nite
number of nodes in F1. Then the algorithm puts edges into
the
ow graph to represent
ows which result from (oi, r)
and (oj , w) being in the same role. Finally it puts edges
between all nodes in F1 which deal with the same object, to
force them to be considered equal in the
ow graph, i.e. it
puts in edges between nodes containing (oi, r) and (oi,w).
Figure 2 shows a role graph in which there are three data

items, a, b and c, and in which roles are labeled by their role

164

Algorithm 1: FlowStart

Inputs: G(R;!), a role graph, including for all r 2 R, E�ective(r)
Output: F1(N ;!), a
ow graph, where each node n 2 F1 is labeled with a privilege

Method:

for each rk 2 R
for each privilege (o, a) in E�ective(rk)

create a node n 2 N and label it with the role name and the privilege
for every pair of privileges in E�ective(rk) of the form (oi, r) (oj , w)

insert an edge in F1 from the node whose label contains (rk, oi, r) to the node whose label contains (rk, oj , w)
for each object o

for each pair of nodes ni and nj whose labels contain the same object o,
insert edges ni ! nj and nj ! ni

Figure 1: Algorithm FlowStart

name and set of e�ective privileges. The algorithm Flow-
Start run on the sample role graph in Figure 2 results in
the initial
ow graph shown in Figure 3. The node labels
of Figure 3 also contain the role name where the privilege
originated, to make it easier to follow how some of the edges
originated.
Our claim is that the output of FlowStart contains all

edges representing any potential
ows represented by the
roles themselves. We will see shortly that additional
ows
can result if two or more roles are active in the same session.
It is clear that the
ow graph output from this �rst al-

gorithm is not acyclic. The next step is to collapse cycles.
This is accomplished by the algorithm CanFlow in Figure 5.
The result of algorithm CanFlow on our previous example is
the graph in Figure 4. At this point, we could remove refer-
ences to reads and writes, and to the originating roles, but
this information might still be useful to someone studying
a large example. Essentially in this �rst example, object a

ows to b and c, and b and c must be given the same security
label because of the structure of role R3.
Consider a second example role graph in Figure 6. Here

only 4 objects are shown in the privilege sets, represented
by H, M1, M2 and L. This role graph gives the
ow shown
in Figure 7. Figure 6 is a role graph that can be used to
simulate an LBAC system with the strict ?-property, having
the four labels represented by the data items in Figure 6 [3].
Now consider the role graph in Figure 8. This is actually

the role graph produced by Construction 1 in [3]. Here again
only 4 objects are shown in the privilege sets, represented
by H, M1, M2 and L. The
ow graph resulting from this role
graph has 4 isolated nodes, one each for data items L, M1,
M2 and H (the only edges in F1 generated by FlowStart are
between (H,r) and H,w), (M1,r) and (M1,w), etc.), because
none of the roles contain both read and write operations. In
Construction 1 in [3] is the constraint that each session has
exactly two roles yR and yW where y 2 fH, M2, M1, Lg.
It is this combination of roles active at the same time which
results in the information
ow from L to M1, L to M2, etc.
For this reason, we will now look at
ows which result from
UA and combinations of roles possible in sessions.

5. FLOW GENERATED BY USER-ROLE
ASSIGNMENT AND SESSIONS

In order to get a realistic idea of the information
ow that
can result from the activation of multiple roles in a session,
we must also look at the User-Role Assignment (UA) map-
ping of Sandhu's model and at any constraints on sessions.
If there are no constraints expressed on sessions, then we
must assume that a user can activate all of their roles in one
session, and account for all the information
ow that results
from this. This does not introduce any new nodes in F1,
only more edges. The step shown in the algorithm fragment
in Figure 9 must be added to the end of Algorithm 1.
Now consider if we had added MaxRole to the �rst exam-

ple in Figure 2. MaxRole will contain all the permissions,
and would cause
ows from objects b and c to a. If MaxRole
is not in UA for any user, it can never be activated, so the

ows it implies can never occur. One might also have other
roles in a role graph which are not assigned to any user,
but are part of a design strategy to bundle up collections
of privileges to be inherited by other roles. These latter
roles do have resulting information
ows that appear in the
roles which inherit the bundles of privileges. MaxRole on
the other hand is a special case in that its privilege set is
not inherited by any other role by construction of the role
graph. By ignoring all roles not appearing in UA, we reduce
the number of edges initially generated in F1. In order to
take these cases into account, we now modify the �rst line
of Algorithm 1 as follows:

for each rk in R such that rk appears in UA

6. DISCUSSION
The graph produced by the two algorithms gives the \can

ow" relationship resulting from a given role graph, UA and
constraints on sessions. This graph may or may not be a lat-
tice. It happens that for our examples, the resulting graph
has been a lattice, but this will not always happen. To test if
the resulting graph is a lattice, we must determine whether,
for every pair of nodes in F2, there exists a unique least up-
per bound. If there is no common upper bound, we can add
a top node to the graph. If the upper bound is not unique,
we can merge all of the least upper bounds for a given pair
of nodes into a single node. It is possible to perform these

165

R3
{(a,r),(b,r),(b,w),(c,r),(c,w)}

R1
{(a,r),(b,w)}

R2
{(a,r),(b,r)}

Figure 2: Example role graph

(R1,a,r)

(R2,a,r)

(R1,b,w)

(R3,a,r)

(R2,b,r) (R3,c,w)

(R3,c,r)

(R3,b,r)

(R3,b,w)

Figure 3: Resulting Initial Flow Graph

latter two operations in more than one way. More research
is needed to see if there are eÆcient ways to carry out all
of these operations. In a practical sense, if nodes in F2 are
to be merged, a security designer may want to �ne tune the
choices. (And a default option is just to consider one se-
curity label for all the data, so trivially a solution always
exists.) In any case, F2 is �nite, and the operations be-
ing proposed do not change that, so that if F2 does satisfy
the lattice properties, it does provide a candidate security
labeling for the data objects in the original role graph.
Our discussion and algorithms in this paper, then, do not

quite provide a clear mapping from an RBAC system to an
equivalent LBAC system. We have, however, shown how to
compute the resulting information
ows, and discuss how to
generate an equivalent lattice of security labels.

7. ACKNOWLEDGEMENTS
This research was supported by the Natural Sciences and

Engineering Research Council of Canada.

8. REFERENCES
[1] M. Nyanchama and S. L. Osborn. Access rights

administration in role-based security systems. In

J. Biskup, M. Morgenstern, and C. E. Landwehr,
editors, Database Security, VIII, Status and Prospects

WG11.3 Working Conference on Database Security,
pages 37{56. North-Holland, 1994.

[2] M. Nyanchama and S. L. Osborn. The role graph model
and con
ict of interest. ACM TISSEC, 2(1):3{33, 1999.

[3] S. Osborn, R. Sandhu, and Q. Munawer. Con�guring
role-based access control to enforce mandatory and
discretionary access control policies. ACM Trans.

Information and System Security, 3(2):1{23, 2000.

[4] F. Rabitti, D. Woelk, and W. Kim. A model of
authorization for object-oriented and semantic
databases. In Proceedings of the International

Conference on Extending Database Technology, Venice,
Italy, Mar. 1988.

[5] R. Sandhu. Lattice-based access control models. IEEE
Computer, 26:9{19, Nov. 1993.

[6] R. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based administration of roles.
ACM Trans. on Information and Systems Security,
2(1):105{135, Feb. 1999.

[7] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29:38{47, Feb. 1996.

166

{(R1,a,r),(R2,a,r),
(R3,a,r)} (R3,c,r),(R2,b,r),(R3,c,w)}

{(R1,b,w),(R3,b,w),(R3,b,r)

or simply:

a b,c

Figure 4: \Can Flow" Graph for the �rst example

Algorithm 2: CanFlow

Inputs: F1(N ;!), a
ow graph possibly including cycles
Output: F2(N ;!), an acyclic
ow graph where nodes are labeled with sets of privileges

Method:

copy F1 into F2

for every cycle in F2

replace all the nodes in the cycle by a single node whose label is the union of the labels in the cycle

Figure 5: Algorithm CanFlow

{(L,r),(L,w)}

{(H,r),(M1,r),(M2,r),(L,r)}

{(H,r),(M1,r),(M2,r),(L,r),(H,w)}

HR

{(M2,r),(M2,w),(L,r)}

{(M2,r),(L,r)}
M2R

{(M1,r),(M1,w),(L,r)}

{(L,r)}
LR

{(M1,r),(L,r)}

M1R

M2RW

HRW

LRW

M1RW

Figure 6: Example 2

167

M1 M2

L

H

Figure 7: Flow Graph for Example 2

M1R

{(H,r),(M1,r),(M2,r),(L,r)}

{(M2,r),(L,r)}
M2R

LR
{(L,r)}

{(H,w),(M1,w),(M2,w),(L,w)}

M2W
{(M2,w),(H,w)}

{(M1,w),(H,w)}

HW

{(M1,r),(L,r)}

HR LW

M1W

{(H,w)}

Figure 8: Example 3

for all roles ri and rj in UA for a single user, and permitted by constraints to appear in the same session for a single user
for all pairs (ok, r) in ri and (om, w) in rj

add an edge from (ri, ok, r) to (rj , om, w)

Figure 9: Algorithm Fragment to Take UA and constraints into consideration

168

