Data-Centric Security: Role Analysis and Role Typestates

Vugranam C. Sreedhar
IBM TJ Watson Research Center
Hawthorne, NY, USA

vugranam@us.ibm.com

ABSTRACT

In J2EE and .NET roles are assigned to methods using ex-
ternal configuration files, called the deployment descriptors.
Assigning roles to methods, although conceptually simple,
in practice it is quite complicated. For instance, in order
for a deployer to assign a role r to a method m, the de-
ployer must understand the set of roles R that are assigned
to each method n that can be invoked directly or indirectly
from m, and that r has to be “consistently” assigned with
respect R. Understanding such role consistency is a non-
trivial task. Also, in J2EE roles are defined with respect to
method access and not data access. Therefore, in order to
protect sensitive data, one has to encode data access control
using method access control. This can lead to interesting
and subtle access control problems when accessing sensitive
data, including information leakage through data flow from
one method to another.

In this paper we focus on data-centric security by present-
ing two concepts:

e Role Analysis: We present a simple interprocedural
static analysis for detecting security problems when
objects are accessed by multiple methods that do not
have compatible or consistent assignment of roles. We
then introduce the notion of an object “escaping” a
role and present a simple interprocedural static analy-
sis for computing the set of objects that may escape a
role.

e Consistency-Based Security and Role Typestates:
We extend J2EE method-based role assignment to
consistency-based role assignment. In this paper we
will focus on assigning roles to typestates rather than
methods.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features

Permission to make digital or hard copies of all or part of this work for

General Terms

Languages, Security

Keywords

RBAC, Role Analysis, Role Typestates, Role Escape Analy-
sis

1. INTRODUCTION

Role Based Access Control (RBAC) is a popular mech-
anism for defining and managing access to security sensi-
tive resources [9, 26, 10]. In RBAC, security properties,
such as access control to sensitive resources, are controlled
through roles. Users are assigned with one or more roles,
who then inherit the security properties associated with the
roles. RBAC provides greater security by preventing users
from obtaining inconsistent or incompatible security proper-
ties. J2EE [1] and .NET [17] support RBAC by restricting
the roles to method access.'®> In J2EE a role r is simply
a named set of methods M, and whenever a principal p is
assigned the role r the principal can then access any of the
methods in M.® In J2EE, there are two ways to specify
access control security: (1) declarative or container security
and (2) programmatic or application security. In container
security, access control to sensitive resources are defined in
an external configuration file, as part of a deployment de-
scriptor. The container then manages the access control
to sensitive resources. In application security, access con-
trols are encoded within the application and the application
directly manages the access control to sensitive resources.
The J2EE framework encourages the use of declarative se-
curity since it enables greater flexibility by separating se-
curity properties from the application logic. We will use
declarative security in our discussions.

To illustrate how security roles are defined in J2EE, con-
sider an example application of the Observer Pattern shown
in Figure 1 [13]. The Observer Pattern is made of two enti-
ties: a subject that contains data of interest and (2) one or
more observers that display the data of interest. The Ob-
server Pattern defines a one-to-many dependency between

'The security model of J2EE and .NET are quite similar,
and for simplicity we will illustrate our examples using the

personal or classroom use is granted without fee provided that copies areJays, programming language.

not made or distributed for profit or commercial advantage and that copies 2 JOEETM
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SACMAT’06June 7-9, 2006, Lake Tahoe, California, USA.
Copyright 2006 ACM 1-59593-354-9/06/000655.00.

and the Java”™ programming language are the

trademark of the Sun Microsystems. .NET™™ is a trade-
mark of the Microsoft Corporation.

3In practice only application entry methods are assigned
roles (see also Section 2.2).

20:class Subject implements ISubject{

21: private ArraylList obsList;
22: prlx.rate Data data; 47:class Data{
23: Subject() { 48: Strine name :
1: interface IObserver{ 24: obsList = new ArrayList() ; 49: int ig . ’
2: void update(Data info); 25: data = new Data() ; Ty
3:} 26: } 50: Da't.:a(){ }
4: interface ISubjectq{ 27: setData(String name, int id){ g; pr;nzgzzeiii rint (name) ;
5: void addObs(IObserver obs); 28: dat.name = name ; : y : ‘P ’
. . . 53: }
6 void removeObs 29: data.id = id ; .
° 54: printId(){
7:} 30: notifyObs() ; 55: System.out.print(id) ;
8:class ObsId implements IObserver{ 31: } 56: } 4 ’ P ’
9 ObsIdO{} ; 32: void addObs(IObserver obs){ 57: 3
10: void update(Data info){ 33: obsList.add(obs); : .
. . 58: class Driver {
1 info.printId() ; 34: 1 59 ublic static void main(String[] args)
12: 3 35: void removeObs(IObserver obs){ P g€ g
13:} 36: obsList.remove (obs); 60: {
. ’ 61: Subject sub = new Subject();
14:class ObsName implements IObserver{37: 3} .
. . . 62: ObserverId oid = new 0bsId() ;
15: ObsName (){} ; 38: private void notifyObs(){ .
- . . - 63: sub.add0bs (oid) ;
16: void update(Data info){ 39: for(int i = 0;
. 64: ObsName oname = new ObsName() ;
17: info.printName() ; 40: i<obsList.size(); i++){
65: sub.add0bs (oname) ;
18:) 41: I0bserver obs = 66: sub.setData("Ramanujam", 1729) ;
19:} 42: (I0bserver)obsList.get (i) 67 ¥ ' J ’ ’
43: obs.update(data) ; 68: }
44: } ’
45: }
46:}

Figure 1: An example Observer Pattern

the subject and the set of observers. Whenever the data
in the subject is updated, all the observers that have been
registered with the subject for the data are notified of the
update. In J2EE the security roles are defined within an
assembly descriptor as shown below:

<assembly-description>
<security-role>
<role-name> Manager </role-name>
<role-name> Notifier </role-name>
<role-name> Director </role-name>
<role-name> DisplayIld </role-name>
<role-name> DisplayName </role-name>
</security-role>
</assembly-description>

Once the security roles are defined, the application de-
ployer then associates each role with a set of methods. Fig-
ure 2 shows how roles are defined as a set of method per-
missions. For instance, the Notifier role has the permis-
sion to invoke the method setData defined in the Subject
class.* For the example shown in Figure 2 a principal with
the Notifier role is allowed to access (that is, invoke) the
method setData that is defined in the class Subject. Simi-
larly, a principal with the DisplayId role is allowed to access
all the methods (denoted by the * operator) that is defined
in the class ObsId.®> Also, methods that are not part of any
role, are allowed to be accessed by any principal.

Now consider a principal Mark who is authorized with the
role DisplayId.® Assume that Mark goes ahead and invokes

4In J2EE roles are typically defined for EJB components
rather than arbitrary classes. For simplicity we will use
examples of general Java classes, instead EJB examples.
°In J2EE one can use such access control specification for
other Web resources such as access to a HT'TP method on
a URI (Universal Resource Identifier).

5In the rest of the paper we assume authentication mecha-
nism similar to J2EE authentication mechanism [1].

171

the method Driver.main. Since this method is not part of
any role, the access control manager does not prevent Mark
from executing the method. Now when Mark attempts to
invoke Subject.add0bs (indirectly through Drive.main), a
security exception will be thrown since Mark does not have
either the Director role or the Manager role. At this point
an application deployer may assign the Director role to
Mark so as to avoid an access control exception, which in
turn may violate the principle of least privilege. Essentially
what this means is that in order to associate a role r to a
method m, an application deployer has to understand the
set of methods S that can be directly or indirectly invoked
by m. Understanding such control flow is not a trivial task,
especially by an application deployer. In the J2EE secu-
rity model one can also delegate permissions by associating
the <run-as> tag to a class C in the deployment descriptor.
The effect of such an association is to grant the permission
of C to all methods that can be directly or indirectly in-
voked from C. A careless run-as delegation can introduce
some interesting and unforeseen permission problems (see
our companion paper Pistoia et al. for more details [25]).
One main problem with RBAC in J2EE is that roles are
defined for controlling access to methods and not for explic-
itly controlling access to data. In other words, there is no
explicit mechanism for controlling access to data fields and
object instances. Access control to data and objects have
to be done implicitly by giving access to methods which
in turn accesses the data. An important security implica-
tion of such access control through methods is that infor-
mation could potentially be leaked through data flow across
methods. Consider the example shown in Figure 1. Us-
ing pointer analysis [15] one can determine that the object
referenced in statement 43: is accessed by more than one
method (e.g., Subject.notifyObs, Subject.addObs, and
ObsId.update). Unless the roles are assigned correctly
or consistently among these methods there could be po-
tential access control and information flow security prob-

<method-permission>
<role-name> Notifier </role-name>
<method>
<class-name> Subject </class-name>
<method-name> setData </method-name>
</method>
<role-name> Manager </role-name>
<method>
<class-name> Subject </class-name>
<method-name> addObs </method-name>
<method-name> removeObs </method-name>
</method>
<role-name> Director </role-name>
<method>
<class-name> Subject </class-name>
<method-name> * </method-name>
</method>
<role-name> Displayld </role-name>
<method>
<class-name> ObsId </class-name>
<method-name> * </method-name>
</method>
<role-name> DisplayName </role-name>
<method>
<class-name> ObsName </class-name>
<method-name> * </method-name>
</method>
<method-permission>

Figure 2: An example role definition

lems. Consider once again the role assignment shown in
Figure 2. We can see that the method ObsName.update
and and the method ObsId.update are part of two different
roles. Therefore, when obs.update() is invoked at state-
ment 43:, the target method could be either ObsId.update
or ObsName.update depending on the runtime type of obs.
Since, ObsName.update and ObsId.update have two differ-
ent roles, there could be a potential security problem when
the method is dispatched. Therefore it is important to en-
sure that both methods are assigned the same role. The
security problems that arise are either: (1) too many per-
missions are given to a principal, which in turn may violate
the principle of least privilege, or (2) inadequate permissions
are given, which can lead to unnecessary access control ex-
ceptions. There can be subtle security violation, such as in-
formation tainting and information leakage, when the prin-
ciple of least privilege is compromised. Notice that a simple
propagation of roles over the call graph of the program is
not sufficient to detect such data flow security problems.

In this paper we focus on data-centric security by intro-
ducing two concepts:

e Role Analysis: We present a simple interprocedural
static analysis for detecting security problems that
may arise when objects are accessed by multiple meth-
ods that do not have compatible or consistent assign-
ment of roles to methods. We then present the notion
of an object “escaping” a role and a simple interproce-
dural static analysis for computing the set of objects
than may escape a role.

e (Consistency-Based Security and Role Typestates: We
extend J2EE’s method-based role assignment to
consistency-based role assignment. In this paper we
will focus on assigning roles to typestates rather than
methods. The typestate description of a class is a con-

172

figuration of its fields, and it essentially abstract con-
sistency properties of the fields [8].

The rest of the paper is organized as follows: In the next
section we review the necessary background material for
modeling and analyzing roles. In Section 3 we discuss role
analysis, including role escape analysis. In Section 4 we
discuss consistency-based security, including role typestate
analysis. In Section 5 we discuss some of the related work
and conclude in Section 6.

2. RBAC MODELS

In this section we review some background material re-
lated to role modeling and static analysis for propagating
roles. In Section 2.1 we briefly introduce a call graph and
a pointer graph representation. In Section 2.2 we introduce
role graph representation for modeling role structure that is
based on a lattice structure.

2.1 Program Representation

Static analysis is a process for determining the relevant
properties of a program without actually executing the pro-
gram [21]. A program consists of a collection of methods or
procedures and is represented using a call graph (CG) [14].
A CG G = (N, E) is a directed graph, where N is a set of
nodes and F is a set of edges. The set of nodes N is parti-
tioned into two disjoint sets: (1) N. is a set of call site nodes
and (2) N, is a set of method nodes. The set of edges E
is also partitioned into two disjoint sets: (1) Em,c is a set
of edges from a method node z,, to each call site node z.
defined in the method, and (2) E.,m is a set of edges from a
call site node z. to each method node x,, that can possibly
be invoked from the call site .. A path is a sequence of
edges starting from some node in the call graph. If there is
a path from a method node z,, to another method node y.,
then we say that the method corresponding to x,, may di-
rectly or indirectly invoke the method corresponding to ym.
Figure 3 illustrates the call graph for the example program
of Figure 1.

Pointer analysis consists of computing points-to informa-
tion, represented as a pointer graph, at relevant program
points [15]. A pointer graph consists of a set of nodes rep-
resenting compile-time objects and pointer references. For
heap allocated objects, we say that p can point-to an object
O if p can contain the address of O. Typically the address of
O is not know at compile-time and one then assign compile-
time labels to heap objects. There are several different kinds
of pointer analysis depending on precision and cost of the
analysis [15]. Typically flow insensitive and context insensi-
tive analysis tends to be cheaper, but less precise than flow
sensitive and context sensitive analysis. Figure 4 illustrates
a pointer graph that is computed using a flow insensitive
pointer analysis. We will use the notation p — O to denote
that p points-to O. We will also assume objects have fields
and each field has a name that can be accessed from the ob-
ject type or class. We access fields using dot-notation, p.f
or O.f, and so we can state that p.f — O to denote that
p points to some object O; and the field f of O; points to
another object O.

2.2 Role Modeling

J2EE security is defined in terms of: (1) principals or
authenticated users, (2) roles that define named job func-

[63=sub.addObs | [65:sub.addObs |

[66:sub.sefData |

Subject.addObs

Obsld update

11:info.printld

Data_printld

Subjec

Subject_notifyObs

43-obs.update

t.setData

ObsName_ update

17:info.printName

(Data_printName

Figure 3: Call graph for the example program shown in Figure 1.

tions, and (3) permissions that maps a role to a set of op-
erations or methods defined in one or more classes.” For
instance, consider the Subject class that contains the meth-
ods setData, add0Obs, removeObs, and notifyObs. A role
such as Notifier (see Figure 2) is given the permission
to invoke setData. On the other hand a role such as
Director is given the permission to invoke all four oper-
ations. Notice that a principal with Director role can in-
voke any operation that a principal with a Manager role or
a Notifier role can invoke. In other words, Director is
considered to be “senior” to Manager and Notifier [10].
Let C denote a set of classes for which we want to pro-
vide RBAC and let M denote a set of methods in C. A
permission Per is a mapping from role r € R to a sub-
set of methods in M. Now let Per(r) denote the set of
method permissions assigned to a role r. For instance,
Per(Manager) = {Subject.add0bs, Subject.removelbs}

DEFINITION 1 (SENIOR ROLES). Letr and s be any two
roles in R. We say that r is a senior role of s, denoted as
r = s, if Per(r) 2 Per(s).

We can conversely define junior role as follows: r < s
if Per(r) C Per(s). Next we define a role graph in which
nodes represent roles and edges represent the senior (junior)
relations. In this paper we will assume that the role graph
form a lattice structure, with T representing a role that is
the union of all method permissions and | representing a
role whose permission set is the empty set [10]. A lattice
is a partial order with a join and a meet for every pair of
nodes. Given any two nodes x and y, the set union of x and
y is the join (U), and the set intersection of x and y is the
meet ().

Now let Per;(r) be a set of method permission that is
initially assigned a role r (as specified in the deployment de-
scriptor). In J2EE a method permission can be assigned

"In J2EE roles are often defined for Enterprise JavaBeans
(EJBs), and in this paper for simplicity, we will simply use
Java classes instead of EJBs.

173

to more than one role. Let Role;(m) denote the set of
roles that an application deployer initially assigns to m. In
other words, Role;(m) = {r|m € Per;(r)}. For instance,
Role;(Subject.setData) = {Notifier,Director}. Now if a
method is not explicitly assigned to any role, then it can be
accessed by any principal. Note that one can also use the
* to indicate all the methods in a class as belonging to a
specific role.

3. ROLE ANALYSIS

In this section we present two role analyses: (1) role con-
sistency analysis for computing consistent role assignment
and (2) role escape analysis for computing the set of objects
that may escape a role.

3.1 Role Consistency Analysis

Let r be a role assigned to m (by an application deployer),
and let m’ be a method that can be invoked directly or in-
directly from m. A principal who is assigned the role r
should also have permission to invoke the method m/, i.e.,
m’ should also be in Per(r). Often an application deployer
has handle to only entry methods of an application or a com-
ponent. These entry methods are essentially the application
programming interface (API) of the application.® Therefore
an application deployer has the capability to define permis-
sion sets and assign roles only based on the entry methods
defined in an API. Let A be an application, let M. be a set
of entry methods to A (as defined in its API), and R be the
set of roles defined using the entry methods. Figure 5 illus-
trates the application or component model. Notice that an
entry method such as ml can directly or indirectly invoke
another entry method m2. The key question to ask is: how
to define consistent roles and permission sets that is based
on only the entry methods of an application? Consider an

81n the case of a Java application, the entry methods are the
set of public and protected methods defined in interfaces
and classes.

Driver.main.sub

Subject notify_ obs

Obsld npdate.this

Obsld npdate.info

ObsName.update. this

Driver.main.oname

Figure 4: Pointer graph for the example program shown in Figure 1.

entry method mi € M, and let 71 € R. Now let us define
r1 to include m; in its permission set, that is mi € Per(r1),
and therefore 71 € Role(m1) (see Figure 5). What this
essentially means is that if a principal p is assigned the rq,
then p has the permission to invoke m;. Now let m2 be some
other method reachable from m1, and so p should also have
the permission to invoke mga. Let Per(rz) = {ms2, ms}, and
so ma € Role(rz). We have to ensure that r; and r2 have
consistent permission set. There are two cases to consider:

e my is not in Per(r1), and in this case p should also
be assigned the role r2 so as to avoid access control
exception. On one hand, by assigning 72 to p, we also
give p the permission to access mgs, which violates the
principle of least privilege. On the other hand, m3
may be in different sub-component, in which case sep-
arating the roles makes sense in some situations, even
if the principle of least privilege is violated.

e my is in Per(r1), and in this case the assignment is
consistent.

One way to compute consistent role assignment is to first
determine the set of methods that are reachable from an
entry point in the call graph of the program. Let L be
the set of methods that are reachable from an entry point
m € M, in the call graph. Let L), = L N M., and so L/,
is a set of methods that are reachable from m and the set
of method are also entry methods. Now let r be a role with
m € Per(r). Since a method I’ € L, is also reachable
from m, we have to ensure that I’ € Per(r). So rather than
defining arbitrary roles and permission set, a deployer first
computes L., for each entry method m. The deployer can
then define roles based on the entry method m and L, by
ensuring that L;, C Role(m).

Typically applications are composed of many components
and the components must be assigned with consistent roles.
Consider the example shown in Figure 1 and the role as-
signment shown in Figure 2. Let Role;, denote the initial
set of role assignments. In order for a principal to invoke

174

Figure 5: An application model with entry methods
and role assignments.

Subject.setData the principal not only needs the Notifier,
but also DisplayId and DisplayName roles. In the Figure 6
we have annotated the call graph with Role; and Role™,
which are the initial role assignments and the minimum roles
needed to invoked the methods. Computing Role™ for each
method is a straightforward backward propagation of roles
over the call graph and at each step we only propagation
junior roles up the call graph. That is, we perform a lattice
join at each step and propagate the joined role information.

The role analysis described previously is based on reach-
ability over call graph of a program. Although role prop-
agation over call graph is important in preventing certain
kinds of access control problems, it does not detect access
problems that could happen due to data flow across meth-
o0ds.® Subtle problems may arise due to data flow across
methods. For instance, the receiver expression (such as

9A limitation of J2EE security model is that it focuses on
securing the mechanism (that is, methods) that access sen-
sitive information or resources. For instance, J2EE does not
allow one to specify roles for class fields and class instances.

Dnver.main

[63=ub.addObs | [65=sub.addObs | | 66=ub.sctData |
Role; = {Notifier, Director)
Rolet = {Notifier,Displayld,
Subject.addObs Subject.setData DisplayNamc}
Role, = {Director,Mana,
Rt e Eager} Rol= §
Rolet = {Notifier,Displayld,
Subject notifyObs DisplayName}

Role= {DisplayIld}
Rolet = {Displayld]

43:0bs.update

ObsId update
Data printld

Role; = {DisplayName
Role' = {DisplayName}

ObsName update

17:info.printName

Data printName

Figure 6: Call graph annotated with Role; and Rolet for each method.

43: obs.update(data) can target more than one method.
We have to make sure that the roles assigned to the target
method is consistent with the role assigned to method that
invokes the object.

Also, an object is often accessed by multiple methods that
have different roles assigned to them. Consider the points-
to graph shown in Figure 4 and in particular the object
62:0bsId. This object is directly accessed by the meth-
ods Driver.main (which created the object), ObsId.update
(via the this parameter), and Subject.notifyObs. Now
consider the role assignment and method permission shown
in Figure 6. The method ObsId.update is assigned only to
role Display. Unfortunately since the object 62:0bsId is
also accessed by other methods, there can be inconsistencies
among roles assigned to different methods that access the
same object. This can lead to information leakage.

Given the pointer graph of a program, we compute for
each object the set of methods that directly access the ob-
ject. Let us call the resulting graph as method-annotated
pointer graph (MAPG). It is straightforward to compute
this information if we use fully qualified names for ref-
erences. Consider the pointer graph shown in Figure 4
and the object 62:0bsId. The set of methods that ac-
cess this object can be read off from the pointer graph,
which is Driver.main, Subject.add0Obs, Subject.notify,
and ObsId.update. Since any of these methods have the “ca-
pability” to access the object, the object must be assigned
a role that is the least upper bound of the roles assigned to
these methods. Now a principal who wants to access the
object referenced by 62:0bsId must have a role that is at
least equal to the least upper bound of the roles assigned to
the methods that access the object. Unfortunately, in J2EE
it is not possible to assign roles to objects or class instances
(also see Section 4).

3.2 Role Escape Analysis

In this section we introduce the concept of role escape
analysis inspired by method and thread escape analysis [7].
Escape analysis is a procedure for determining the set of

175

objects that escape the life time of a method or a thread.
Consider the following simple example:

void foo() {
LinkedList head
bar (head) ;
}
void bar(LinkedList h){
LinkedList n = new LinkedList() ;
n.next null ;
h.next = n ;

}

new LinkedList() ;

© 00 ~NO O WwN -

The object 6:bar.LinkedList created at 6: escapes the
method bar because there is an access path to the ob-
ject from the parameter reference h. On the other hand
the object 2:foo.LinkedList created at 2: and the ob-
ject 6:bar.LinkedList created at 6: does not escape foo.
One simple way to compute whether an object O escapes a
method M is first to construct the pointer graph and then
check if there is a path to O in the graph that can be reached
by some node O’ that is accessed in some other method M’
and the life time of M’ exceeds the life time of M.

In role escape analysis we extend the method escape
analysis as follows. An object O role escapes a method M
with role R if there is a path in the pointer graph from
some node O’ that is accessed in some other method M’
with role R and R A R’. Conversely, an object O is role
confined to a M if O does not role escape M.!° The role
escape analysis essentially consists of determining if a node
p in the pointer graph that is annotated with method m and
role 7 € Role™ (m) is reachable from another node p’ that is
annotated with m’ and role r’ € Role™ (m') and r £ v'.

Notice that the converse of role escape, which is role con-
finement, of an object is closely related to information flow
security of Bell and LaPadula’s Multi-Level Security with

00ur definition of role escape is more general than the tradi-
tional method or thread escape, where by we define method
lifetime as a role.

read()
%reateo
close()
Open Close
open()
write()

Figure 7: A typestate diagram for the File example.

Mandatory Access Control [5]. Since we model roles using a
lattice structure, if an object O does not escape a role R then
the object cannot leak information outside the role. Also,
if an object escapes a role, the object can become “tainted”
by an external principal with access to the object [19, 24]

4. CONSISTENCY-BASED SECURITY

It is often the case that an application developer has a
better understanding of the application that he or she is
developing than an application deployer or the system ad-
ministrator. On the other hand an application deployer has
a better understanding of the application deployment envi-
ronment than an application developer. The key idea be-
hind consistency-based security (CBS) is to focus on the
consistency properties of data and methods. An application
developer simply identifies and defines the consistency prop-
erties as code annotation. A simple consistency property
could be that two fields of a Java class are modified by the
same set of methods. Another consistency property is the
typestate property, which is often used to specify ordering
of methods in an application. In CBS, a tool can scan the
code and present the developer’s consistency properties to
an application deployer. An application deployer can then
use the consistency properties as a guide for associating se-
curity properties to roles, and then grant authorization to
users.

4.1 Data Consistency Security

In this section we will illustrate a simple consistency prop-
erty in which two or more fields of an object are all accessed
by the same set of methods. Given this property, an ap-
plication deployer can then associate the same role for all
methods that access these fields. Consider a simple em-
ployee record in a company.

enum EmpType = {RSM, Manager, SoftEng, Staff} ;
class Employee {
String fname ; // first name
String lname ; // last name ;
int id ; // company identity number
int ssn ; // social security number
String gender ;
String ethnic ; // ethnicity
EmpType etype ;

Supposing an application developer is developing a busi-
ness application, such as payroll application, and decides

that gender, and ethnic have the same “consistency prop-
erty”. A simple example of a consistency property is that
the two fields are always accessed by the same set of meth-
ods. Another example of a consistency property is access
rights; if a user is permitted to access one of the two data
fields, then the user is automatically allowed to access the
other data field. Yet another example of a consistency prop-
erty is encryption; the values of the two data fields must use
the same encryption/decryption keys. Typically an applica-
tion developer has a better understanding of the consistency
properties than the application deployer. For instance, if
gender, and ethnic are always accessed by the same set of
methods, the developer can then define a simple consistency
property classification called race.

class Employee {
access(name, idy) String fname ;
access(name, idy) String lname ;
access (idy) int id ;
access (idy) int ssn ;
access(race) String gender ;
access(race) String ethnic ;

Often a field (or a method) can belong to more than one
class of a consistency property. For instance, fname and
lname belong to two different classes of the access prop-
erty. A consistency property consists of two parts: (1)
a property name such as access and a set of classifica-
tions, such as name, idy, and race. Given the consistency
properties defined by an application developer, a natural
question to ask is how will the application deployer use
them. An application deployer first must query the ap-
plication for all application-defined properties. Next, the
application deployer associate roles to consistency proper-
ties. Supposing an application deployer defines two roles
called Manager and NonManager, and associates the Manager
role with access(name,idy,race) and NonManager role with
access(name). With this association, a Manager can access
all the defined fields, whereas a NonManager can only access
the fields fname and lname. Notice that a deployer does
not need to understand how a developer defined the consis-
tency properties. The deployer only has to know what set of
consistency properties have been defined by the developer.

4.2 Role Typestates

In this section we define RBAC by focusing on the type-
state consistency property. The approach that we advocate
in this section is very simple: an application developer de-
fines the typestate properties and an application deployer
then assign roles based on the typestate properties. Types-
tates provide much richer information than simple method
interfaces to an application deployer.

Strom and Yemini introduced the concept of typestate as
an extension to the notion of a type by requiring that a vari-
able be in certain state before operations on the variables
can be performed [27]. In other words, certain precondi-
tions must be met prior to performing any operation on a
variable. Typestate was originally introduced for tracking
certain kinds of flow-sensitive errors or bugs, such as unini-
tialized variables. For object-oriented (OO) programs, the
typestate of an object (that is, an instance of a class) is a
description or a configuration of all its fields [8]. In OO pro-
grams, a method that is invoked on an object o typically

Gpenf)
Rezzif)
g::% File IHI
0/ Close
Close / '\
OpenRead OpenWrite
23]
(b)
File

(a)

Figure 8: (a) A hierarchical typestate diagram and (b) Role hierarchy assignment.

has a partial view of the object 0. One can use typestates to
define a consistent view of an object prior to an invocation
of a method on the object. Consider a simple file object that
contains two typestates Open and Close.

class File {

typestate = {Start, Open, Close}

// Q@requires Start

File create(String fname) ; // create file
// Q@requires Close

void open() //

// @requires Open

String read() ; // returns the content of file
// @requires Open

void write(String data) ; // write to file
// requires Open

void close() ; // close the file

}

A typestate diagram is a finite state diagram, with nodes
denoting the typestates of a class and the labeled edges de-
noting transition between typestates of a class. The labels
on the edges correspond to (a subset of) methods defined in
the class. The source and destination nodes of a transition
correspond to pre- and post-conditions of the method that
labels the transition, respectively. An execution of a method
takes an instance of a class from one typestate to another
typestate. Figure 7 illustrates a typestate diagram for the
File class. The typestate diagram specifies the life-cycle of
how an instance of the File class goes between Open and
Close typestates. A method, such as open(), is executed
only when its pre-condition typestate of the File object is
Close, and after the execution the new typestate of the ob-
ject is Open. Both read () and write() methods can execute
only when the File object is in Open state.

The typestate diagram is an external specification of a
class. It prescribes the order in which a client can invoke
various methods defined in the class. Only an application
developer understands the lifecycle of an object. Given such

177

a specification, an application deployer can now associate
security properties to typestates. For instance, an applica-
tion deployer can associate Manager role to Start, Open and
Close typestates, and Engineer role to Open. What this es-
sentially means is that only a Manager is allowed to execute
all methods of the class, whereas an Engineer is allowed to
execute only read() and write() methods.

We partition a typestate diagram into a hierarchical
structure and use the notion of hierarchical typestate dia-
gram [16]. A hierarchical typestate diagram consists of a set
of states and a set of transitions. A state can be composed of
other states, called the sub-states. This enables modeling of
complex hierarchical typestate diagram by abstracting away
detailed behavior into multiple levels. States that do not
contain sub-states are called simple states, whereas states
that have sub-states are called composite states. States may
be nested to any level. A transition relates two states: a
source state and a destination state. Transitions are labeled
and each label corresponds to a method invocation. An
invocation of a method can cause a state transition. The hi-
erarchical states in a typestate diagram induces a tree struc-
ture. Figure 8 illustrates a hierarchical typestate diagram in
which we have expanded the Open state shown in Figure 7.

For role typestates, it is natural to model roles using a
tree structure. This is illustrated in Figure 8(b). The def-
inition of senior relation is simpler: r = s if r is a parent
of s in the role hierarchy tree. We assign roles to hierar-
chical states in the typestate diagram. If s is assigned the
role 7 then the Per(r) = {t|t € Root(s)}, where Root(s)
is a set of all states in the sub-tree that is rooted at s in
the typestate hierarchy tree. Consider the role assignment
shown Figure 8(b), and the permission set for each roles
are Per(R0) = {File,Open, Close, OpenRead, OpenWrite},

Per(R1) = {Open,OpenRead,OpenWrite}, Per(R2) =
{Close}, Per(R3) = {OpenRead}, and Per(R4) =
{OpenWrite}. Once again, consider the role assignment

shown in Figure 8(b). If a principal p is assigned the role R1
then p can invoke both read and write, but cannot invoke

close. Now if p is assigned R3 then p can only invoke the
read method.

Now consider a method such as File.close() and a prin-
cipal p who is assigned the role R1. The principal p should
not be allowed to invoke File.close() even if the current
typestate of the object referenced by the principal is Open.
This is because, the method File.close() creates a state
transition from Open to Close and p is not allowed to be
in state Close. So only principals with role File are es-
sentially allowed to execute File.close(). Given a set of
roles assigned to typestates, we can easily compute the roles
needed for methods—it is simply the least common ancestor
of the roles assigned to pre- and post-state of the method.
Notice that when a File object is passed around to different
methods that are accessed by different principals, we only
have to ensure that roles are consistent on the current type-
state of the object and not have to worry about the methods
themselves.

Typestates are a useful formalism for modeling access pat-
terns, including message patterns in Web Services. Once
such message patterns are modeled using typestates, we can
assign roles to states using our approach. We are currently
exploring this line of research in Web Service security.

5. DISCUSSION AND RELATED WORK

The main focus of this paper is to address the challenges
of role assignment and role semantics as it is currently used
in building J2EE applications. The current method-based
access control is limiting in terms of its expressive power.
We believe that some form of data-centric security should
complement the method-based security.

Ferraiolo and Kuhn [9] introduced the notion role-based
access control for managing and controlling access to sensi-
tive resource. Since then RBAC model has become popular
because of its generality in expressing a diverse set of access
control policies [26, 22]. Li and Tripunitara propose security
analysis techniques for ensuring that security properties are
correctly maintained even in the presence of delegating ad-
ministrative privileges [18]. Their approach is not directly
related to J2EE RBAC model, although their approach can
be used to detect some of the access control problems with
delegation in the J2EE model.

Pistoia et al. presents static analysis techniques for iden-
tifying inconsistent security role assignment in J2EE appli-
cations [25]. Pistoia et al. model roles as logical expressions
rather than as set of method, and these logical expression
can get very complex. We use a simpler lattice structure for
modeling roles. Pistoia et al. also use a more precise con-
text sensitive analysis for tracking logical expressions and
also deal with role delegation semantics of J2EE model. To
simplify the presentation we chose to ignore role delegation,
which in J2EE is ambiguous. Pistoia et al. approach models
the method-based role assignment, and does not deal with
data flow aspect of RBAC. In our paper we introduce the no-
tion of role escape analysis to specially address the need for
data-centric security. We also presented consistency-based
security, along with role typestates for specifying access con-
trol security.

The role analysis described in this paper is also related to
static analysis described by Naumovich and Centonze [20].
They also rightfully recognize the need for extending J2EE
RBAC to explicitly deal with data fields, but do not give
any solution for how to extend the model. Instead they

178

focus on detecting access-control inconsistencies when two
or more J2EE methods accessing the same data in the same
mode (either read or write) but are assigned with different
roles. They also do not discuss the concept of role escape
analysis and role typestates. Our consistency-based security
and role typestate is a way to extend J2EE model to deal
with data-centric security.

Java 2 Standard Edition (J2SE) provides security mech-
anisms for protecting resources (e.g., file system) in terms
of run-time stack inspection. The security access control
model is based on properties that includes code origin and
principal’s execution environment. Banerjee and Naumann
give static analysis techniques for characterizing safe expres-
sions, that is, expressions that never cause security viola-
tions. Banerjee and Naumann have presented several re-
sults in a series of papers on access control and information
flow control [2, 3, 4]. They approach the problem using
language techniques, such as type theory, to detect security
violations and safety violations. We follow program analysis
techniques for RBAC and also use typestate properties for
RBAC. We also introduce the notion of role escape analysis
and the notion of role typestates to model and detect secu-
rity problems in J2EE. Recently Pistoia et al presented an
interprocedural analysis to detect portions of trusted Java
code should be made privileged, and also to ensure that
there are no tainted variables in privileged code [24].

Park and Goldberg introduced the term escape analysis
in the context of functional program analysis for statically
determining parts of a list that are passed to a function do
not escape the function call, and hence can be allocated on
stack [23]. Recently there have been several work on escape
analysis in the context of Java [7, 6, 12]. Escape analysis
techniques have been applied both for allocating objects on
the call stack and for eliminating synchronization in multi-
threaded programs. Our work on role escape analysis gener-
alizes the traditional escape analysis, where we can consider
method and thread lifetime to be an instance of roles. Role
escape analysis is useful for detecting confinement proper-
ties of objects, and for detecting information leaks through
objects [11].

Role typestates combines the notion of roles and types-
tates. The original work on typestate focused on finding
flow-sensitive errors [27]. DeLine and Fahndrich extended
the classical typestate theory to objects [8]. They use pre-
and post-conditions to express allowed transition rules be-
tween the typestates of the object, and typestates to express
predicates (or constraints) over the objects concrete state,
which includes the field states. Now by associating roles
to typestates we define a more general model for specify-
ing roles—instead of specifying roles on methods, we now
specify them on typestates.

6. CONCLUSIONS

In this paper we brought out some of the security issues
related to J2EE RBAC model. We illustrated several exam-
ples that show the limitation of method-based role assign-
ment. We then discussed the concepts that bring out data-
centric security model. We believe consistency based se-
curity, that includes typestate security, should complement
method-based security. Our next step is to define and ex-
tend data centric security in the context of web applications,
including web services [11].

Acknowledgement

I wish thank Larry Koved, Samuel Weber, and Xiaolan
Zhang for commenting on the earlier drafts of the paper.

7.
1]

[2

©

[4

[5

=

7

9

(10]

(11]

(12]

(13]

REFERENCES
Eric Armstrong, Jennifer Ball, Stephanie Bodoff,

Debbie Bode Carson, lan Evans, Dale Green, Kim
Haase, and Eric Jendrock. The J2EE 1.4 Tutorial .
Sun Java System Application Server Platform Edition
, 2005.

Anindya Banerjee and David A. Naumann.
Representation independence, confinement and access
control [extended abstract]. In POPL ’02: Proceedings
of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 166—177,
New York, NY, USA, 2002. ACM Press.

Anindya Banerjee and David A. Naumann. Secure
information flow and pointer confinement in a
java-like language. In CSFW ’02: Proceedings of the
15th IEEE Computer Security Foundations Workshop
(CSFW’02), page 253, Washington, DC, USA, 2002.
IEEE Computer Society.

Anindya Banerjee and David A. Naumann.
Stack-based access control and secure information
flow. J. Funct. Program., 15(2):131-177, 2005.

D. E. Bell and L. J. LaPadula. Secure computer
system: unified exposition and multics interpretation.
Technical Report MTR-2997, MITRE Corporation,
March 1976.

Bruno Blanchet. Escape analysis for object-oriented
languages: application to java. In OOPSLA ’99:
Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 20-34, New York, NY, USA, 1999.
ACM Press.

J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In
Proceedings of ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications, Denver, Colorado, November 1999.
R. DeLine and M. Fahndrich. Typestates for objects.
In 18th European Conference on Object-Oriented
Programming, 2004.

David F. Ferraiolo and D. Richard Kuhn. Role-based
access controls. In 15th NIST-NCSC National
Computer Security Conference, pages 554-563,
Baltimore, MD, USA, October 1992.

David F. Ferraiolo, Ravi Sandhu, Serban Gavrila,

D. Richard Kuhn, and Ramaswamy Chandramouli.
Proposed nist standard for role-based access control.
ACM Trans. Inf. Syst. Secur., 4(3):224-274, 2001.
Elena Ferrari and Bhavani Thuraisingam. Web and
Information Security. Idea Group Publishing, 2006.
FredericVivien and Martin Rinard. Incrementalized
pointer and escape analysis. In PLDI ’01: Proceedings
of the ACM SIGPLAN 2001 conference on
Programming language design and tmplementation,
pages 3546, New York, NY, USA, 2001. ACM Press.
Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements od
Reusable Object-Oriented Software. Addison-Wesley
Publishing Company, New York, NY, 1995.

179

(14]

(15]

(16]

(17]

18]

(19]

20]

21]

22]

23]

24]

(25]

[26]

27]

David Grove and Craig Chambers. A framework for
call graph construction algorithms. ACM Trans.
Program. Lang. Syst., 23(6):685-746, November 2001.
Michael Hind. Pointer analysis: haven’t we solved this
problem yet? In PASTE ’01: Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages
54-61, New York, NY, USA, 2001. ACM Press.
Patrick Lam, Viktor Kuncak, and Martin Rinard.
Generalized typestate checking using set interfaces and
pluggable analyses. SIGPLAN Not., 39(3):46-55, 2004.
Brian A. LaMacchia, Sebastian Lange, Matthew
Lyons, Rudi Martin, and Kevin T. Price. .NET
Framework Security . Pearson Education, 2002.
Ninghui Li and Mahesh V. Tripunitara. Security
analysis in role-based access control. In SACMAT ’04:
Proceedings of the ninth ACM symposium on Access
control models and technologies, pages 126—135, New
York, NY, USA, 2004. ACM Press.

V. Benjamin Livshits and Monica S. Lam. Finding
security vulnerabilities in java applications with static
analysis. In Proceedings of the 14th USENIX Security
Symposium, 2005.

Gleb Naumovich and Paolina Centonze. Static
Analysis of Role-Based Access Control in J2EE
Applications. In Workshop on testing, analysis and
verification of web services, pages 1-10, New York,
NY, USA, 2004. ACM Press.

Flemming Nielson, Hanne R. Nielson, and Chris
Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

S. L. Osborn, R. Sandhu, and Q. Munawer.
Configuring role-based access control to enforce
mandatory and discretionary access control policies.
ACM Transactions on Information and System
Security, 3(2), February 2000.

Young Gil Park and Benjamin Goldberg. Escape
analysis on lists. In PLDI ’92: Proceedings of the
ACM SIGPLAN 1992 conference on Programming
language design and implementation, pages 116—-127,
New York, NY, USA, 1992. ACM Press.

Marco Pistoia, Robert J. Flynn, Larry Koved, and
Vugranam C. Sreedhar. Interprocedural analysis for
privileged code placement and tainted variable
detection. In 19th European Conference on
Object-Oriented Programming, pages 362—-386, 2005.
Marco Pistoia, Vugranam Sreedhar, and Robert
Flynn. Static evaluation of role-based access control
policies in distributed component-based systems.
Technical Report RC23836 (W0411-166), IBM TJ
Watson Research Center, IBM Research Division,
Yorktown, NY, November 2004.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-based access control
models. IEEE Computer, 29(2):38-47, 1996.

R. Strom and S. Yemini. Typestate: a programming
language concept for enhancing software reliability.
IEEFE Transactions on Software Engineering, 12(1),
Jan 1986.

