World Wide Web 1 (1998) 181-191

181

Browsers for distributed systems:
Universal paradigm or siren’s song?

Robert C. Seacord and Scott A. Hissam

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
E-mail: {rcs;shissam}@sei.cmu.edu

Web-based browsers are quickly becoming ubiquitous in the workplace. Software development managers are quick to incorporate
browsers into a broad range of software development projects, often inappropriately. The purpose of this paper is to examine the technical
issues relevant to incorporating browsers as a component of a commercial off-the-shelf (COTS)-based solution. Issues examined include
portability, performance, functionality, security, human factors, distribution, installation, upgrading, component-based development,

runtime configuration management, and licensing.

1. Introduction

Not since the advent of software development toolkits
has a technology captured the imagination of the software
development community like browsers. Browsers are be-
ing used to provide the interfaces for an increasingly broad
range of applications, from Internet sites intended largely
for entertainment to large government systems. For exam-
ple, onelarge government program is using abrowser-based
interface to access a database of technical drawings. While
browsers have done a great deal to encourage the devel-
opment of distributed systems, we must ask, at what cost?
Has the rapid expansion of Internet browsers into all man-
ner of distributed applications gone beyond the bounds of
reasonableness?

An often-applied rationale for the use of browser-based
interfaces in the development of distributed systems is that
end users are familiar with their interfaces and have grown
accustomed to using them. Other misconceptions about
browsers that we hope to correct include the following:

e Browser applications are inherently “cross-everything”
applications.

e Browsers simplify the development of any distributed
system.

o Browser-based systems are always easier to install and
upgrade.

e Browsers have robust and well-considered security mod-
els.

e Poor performance in browsers is a result of network
latency.

In some cases a browser-based design may be optimal
— for example, in the development of a distributed system
that is principally hypertext. The problem is that the ubig-
uity and popularity of browsers is dangerously misleading
and leads to a thoughtless, high-risk adoption of browser
technology in inappropriate settings. By identifying both

0 Baltzer Science Publishers BV

the benefits and risks of browser-based designs we hope to
educate developers of distributed systems so that they may
make informed decisions about the use of browsersin their
systems.

2. Definitions

To examine the problems surrounding the devel opment
of browser-based systems, we must provide a characteri-
zation of browser development and runtime environments.
We will also characterize an alternative approach to imple-
menting distributed systems that does not require the use
of a browser.

2.1. Browser-based design

In the runtime environment, the browser is merely the
tip of theiceberg. Browsers are used to establish communi-
cations with one or more back-end servers, as shown in fig-
ure 1. Most commonly, the browser establishes communi-
cations with a hypertext transfer protocol (HTTP) server re-
sponding to requests on a well-advertised port (commonly,
TCP/IP port 80). The HTTP server provides browser con-
tent, primarily in the form of hypertext markup language
(HTML) pages [Raggett 1998]. The HTTP server may be

Browser HTTP
Static Server
Content [¥
I Welcome] w
Java 4 Server-side
Applet % il Interface
X
Active — S
Content s &\\ Application
Logic

Figure 1. Browser-based design.

182

configured to communicate with other specialized servers,
such as a directory server or certificate server, to provide
services such as end-user authentication and authorization.

In the context of distributed system development, the
combination of browsers and HTTP servers can be more
readily classified as system frameworks in which system
logic is inserted using well-defined interfaces. These well-
defined interfaces exist both at the client side (i.e., browser)
and server side (e.g., HTTP server). Browser capabilities
can be extended using plug-ins or by downloading active
content from the server. HTTP servers may be extended
using a variety of server-side application programming in-
terfaces (APIs). Generadly, these APIs fal into one of two
mutually exclusive categories. inter-process communica
tion mechanisms and specialized intra-process communica
tion mechanisms.

The communication mechanisms that underlie inter-
process server-side interfaces have generally developed in-
dependently from any particular HTTP server implemen-
tation. Such mechanisms include the Common Gateway
Interface (CGI), Windows™ Common Gateway Interface
(WinCGl), Common Object Request Broker Architecture
(CORBA), Open Database Connectivity (ODBC), and Dis-
tributed Component Object Model (COM/DCOM). It is
apparent that many of the application program interfaces
(APIs) on this list are not unique to browser-based designs
and, except for CGl and WinCGlI, came into existence in-
dependently of browsers and HTTP servers. As such, these
mechanisms are available to a broad range of client/server
systems and not strictly limited to HTTP servers.

Intra-process communication mechanisms that function
as server-side interfaces are typically specific to an HTML
server product. Such mechanisms include Netscape Ap-
plication Programming Interface (NSAPI), Internet Server
Application Programming Interface (ISAPI), Active Server
Pages (ASP), and Server-Side JavaScript (SSJS).

Regardless of the mechanism, much of the interaction
between the end user and the system logic is channeled
through the browser’s runtime environment and the server-
side interface. Application state and session management is
encapsulated in the HTTP server. Active and static content
in the browser controls presentation management as well as
look and feel. Higher level functionality is performed by
system logic in the server.

2.2. Non-browser design

Browser-based design is a relatively new paradigm.
Prior to the advent of browsers, considerable research
and development effort went into the development of
client/server, three-tier, message-oriented, transaction pro-
cessing and distributed object models for open distributed
processing. Many of these models use the same inter-
process communication mechanisms enumerated in the pre-
vious section for extending server-side functionality. Con-
trasting each of these models with a browser-based design
would exceed the scope of this report. Instead, we will

R.C. Seacord, SA. Hissam / Browsers for distributed systems

L Application
Logic

Application Server

Specialized
Server

4

i

Protocol
Gateway

A 4

Figure 2. Distributed object system.

focus on distributed object systems as an alternative ap-
proach, based on recent interest in this model [Wallnau et
al. 1997a).

Distributed object systems often use a variety of servers
and inter-process communication (IPC) mechanisms. Ob-
jects operate on a peer-to-peer level in a federated manner.
Subordinate, hierarchical relationships are used to encap-
sulate functionality, act as a protocol gateway, or restrict
access through a proxy.

Figure 2 shows an example of a distributed object sys-
tem that uses an existing, specialized server connected by
a protocol gateway. Examples of specialized servers in-
clude Lightweight Directory Access Protocol (LDAP) di-
rectory servers, mainframe database servers, and messag-
ing servers. A single client object manages interactions
with the end user and communications with one or more
back-end servers.

We have now provided a characterization of both a
browser and non-browser design for implementing distrib-
uted systems. In the following section we will consider
how these approaches address quality-of-service issues.

3. Issues

In this section, we examine quality of service and other
issues that influence the decision to select between browser
and non-browser design solutions.

3.1. Portability (crossware)

At atime when technologies such as the Java program-
ming language and CORBA are making the dream of a
homogeneous computing environment a reality [Wallnau
et al. 1997b], browsers are having the opposite effect of
fragmenting the market. Competing browsers provide sig-
nificantly different capabilities. The two principal browsers
in use today, Microsoft Internet Explorer (IE) and Netscape
Navigator, differ significantly in the manner in which they
support key capabilities such as digital certificates, access-
ing platform resources outside of the browser, and client-

R.C. Seacord, SA. Hissam / Browsers for distributed systems

183

16.0

140

12.0 4

10.0 5

8.0

6.0 4

Memory Allocation (MB)

4.0 -

20

(R —
Internet Explorer 4.0

Netscape Communicator 4.04

Java 1.2

Platform

‘ B Browser Memory Allocation BJava Memory Allocation

Figure 3. Memory usage.

side scripting. Disparate functionality needs to be accom-
modated in the design and implementation of browser-based
software systems resulting in duplication of code and redun-
dancy of effort.

Browser vendors such as Netscape argue that provid-
ing a browser environment that is (roughly) equivalent
across most hardware platforms enables the development
of crossware applications — applications that run “cross-
everything.” However, based on statistics gathered from
the BrowserWatch web site [Browser], Netscape Navigator
has only 54% of the browser market across al platforms
(Internet Explorer has 31.8%). Meanwhile, 84% of desk-
tops run Microsoft operating systems (while the remaining
16% are all other platforms). These numbers suggest that
a broader market exists for desktop applications that run
directly on Microsoft operating systems than “crossware”
applications that are confined to a particular browser.

While it may be possible to develop “portable” active
content that runs across a variety of different browsers, it
may not always be easy — particularly if the active con-
tent needs to access local desktop resources. Alternatively,
Java provides a standard, controlled environment for devel-
oping applications that run on a wide variety of platforms,
including the various Microsoft operating systems.

Current standard activities at the World Wide Web Con-
sortium (W3C) and elsewhere including HTML 4, EC-
MAScript [ECMA 1997], Cascading Style Sheets (CSS)
[Lie 1997; Li 1998a, b], Extensible Markup Language
(XML) [Browser] and the Document Object Model (DOM)
[Wood 1998] provide a roadmap for extending browser
capabilities and enabling the development of browser-
independent applications.*

1 Browser-independent applications denotes any hardware or software
through which a user accesses Web content including different sized
displays, printers, and speech synthesizers.

3.2. Performance

Browsers are resource-intensive software components
that add an additional layer of functionality between the
operating system and application. Figure 3 illustrates a
measure of this overhead by showing the memory used by
a Java applet under Internet Explorer and Navigator com-
pared to a stand-alone Java application on a Windows NT
4.0 system. Both Internet Explorer and Navigator require
considerably more memory than the stand-alone Java appli-
cation. If the memory required by the browser was com-
pletely ignored, the amount of memory required by the
browser’s Java Virtual Machine (JVM) to run the down-
loaded applet is till greater than the memory required by
the stand-alone Java application.

Browser-based applications are downloaded each time a
user accesses the application’s Uniform Resource Locator
(URL). This constrains the design by severely restricting
the size of applications that can be downloaded and run on
the client desktop, because the download time — particu-
larly, over modems and congested | nternet service providers
(ISPs) — can be prohibitive.

The development of Java “orblets’ illustrates this prob-
lem. Anorblet isaclient of an object request broker (ORB)
service. When developing an orblet, the vendor's ORB
classes or jar file must be downloaded to the client plat-
form.? For version 3.0 of Visigenics ORB, this jar file is
2.2 MB (2,301,416 bytes). Assuming thisfileisto be trans-
ferred over a dedicated 56 Kbps modem, we can use the

2 Netscape tried to solve this problem by integrating the VisiBroker ORB
into Netscape Communicator. Unfortunately, if the browser does not
support the correct version of VisiBroker, or the orblet uses a different
vendor’s ORB; it may still be necessary to download these libraries.

184

5
8

R.C. Seacord, SA. Hissam / Browsers for distributed systems

w
&

@
8

o
]

22

n
3

@

°

Average Number of Seconds to Startup

o

3
- ;

vbi30.jar preinstalled

vbi30.jar expanded

vbi30.jar on-deman

jar file

Netscape 4.04 Cold Start

B Netscape 4.04 Hard Reload O Netscape 4.04 Soft Reload ~ # Java Application

Figure 4. Average start-up time (Java applets vs. Java applications).

formula in equation (1) to predict download time:®

57,344 hits per second/ 10 bits per byte

= 5,734 bytes/second,
Bytes transferred - PPP Overhead/(bytes/second)

= down load time (seconds), (D)
2,301,416 - 1,02/5,734

= 409 seconds = 6.82 minutes.

Performance and network congestion problems caused by
multiple users downloading large applications can be al-
leviated through the use of an enterprise cache. An en-
terprise cache consists of a series of strategically located
traffic servers that can “cache” data to ensure that the user
has access to the frequently accessed information. These
traffic servers ensure that the data is only sent, eliminat-
ing redundant traffic over the Internet. However, enterprise
caches do not reduce traffic over the local area network,
as locally cached data still needs to be transferred to client
workstations.

To illustrate performance issues on a typical Intranet,
we examined the performance of a Java applet vs. a Java
application running over a local 10 Mbps Ethernet-based
local area network (LAN) using a Solaris 2.5.1 server and
a Windows NT 4.0 desktop. Figure 4 shows the average
start-up time (using the wall clock) for a Java applet run-
ning under Netscape 4.04 and a native Java 1.2 application
running on the Java Runtime Environment (JRE).*

3 The point-to-point protocol (PPP) overhead factor is derived from a
discussion of serid line throughput factors described in W. Richard
Stevens's book on Transmission Control Protocol/Internet Protocol
(TCP/IP) [Stevens 1994].

4The JRE is the minimum standard Java platform for running Java pro-
grams containing the Java virtual machine, Java core classes, and sup-
porting files. The JRE does not contain any of the development tools
(such as appletviewer or javac) or classes that pertain only to a devel-
opment environment.

Start-up times for the Java applet were recorded using
three different scenarios: cold start, hard reload, and soft
reload. Cold start was measured from the initial server con-
nection to the time the applet was displayed in the browser.
Hard reload is measured from the time Shift-Reload is
pressed until the applet redisplays (Shift-Reload causes
Navigator to retrieve a fresh version from the network
server regardless of whether the page has been changed,
effectively bypassing the cache). Soft reload is measured
from the time the Reload button is pressed until the applet
re-displays. Reload displays a fresh copy of the current
Navigator page. Navigator checks the network server to
see if the page has changed. If there is no change, the
fresh copy is retrieved from the cache. If thereis a change,
the fresh copy is transmitted from the network server.

In addition to measuring the performance of the Java ap-
plet for cold start, hard reload, and soft reload, we aso var-
ied the installation of the Visigenicsjar file “vbj30.jar” con-
taining the client-side CORBA classes.® In the first case,
we pre-ingtalled the vbj30.jar file in the CLASSPATH for
Netscape Navigator on the client’s desktop. In the second
case, classes contained in the jar file were expanded. Fi-
nally, we conducted the experiment with no pre-installation
— requiring that the jar file be installed on demand. By
definition, the Java application and associated libraries are
pre-installed; therefore we only considered this case for the
application.

Figure 5 shows the average number of Ethernet packets
transmitted between the client and server for both the Java
applet and Java application. This includes both HTTP and
Internal Inter-ORB Protocol (I1OP) traffic. Measurements
for the Java applet were taken for the three cases discussed
earlier. Figure 6 shows the average number of bytes trans-
mitted over the Ethernet for both the Java applet and Java

5 According to Visigenics, the vbj30.jar file has been divided into three
separate files: vbjapp.jar, vbjorb.jar, and vbjtools.jar, to provide alighter
weight client footprint.

R.C. Seacord, SA. Hissam / Browsers for distributed systems

3500

185

W
=1
S
S

2500

2000

o
S
S

Average Number of Packets Transmitted
2

o
=]
=]

vbi30.jar preinstalled

vbi30.jar expanded

2959 2935

76

vbi30.jar on-demand

jar file

‘ B Netscape 4.04 Cold Start

B Netscape 4.04 Hard Reload

ONetscape 4.04 Soft Reload ®Java Application

Figure 5. Average number of packets transmitted (Java applet vs. Java application).

3000

smitted

3 2 3 3
8 8 8 8

Average Number of Kilobytes (Kb) Tran

|

vbi30.iar preinstalled

vbi30.jar expanded

24739 24488

vbi30.iar on-demand

jar file

‘ENetscape 4.04 Cold Start B Netscape 4.04 Hard Reload

ONetscape 4.04 Soft Reload EJava Application

Figure 6. Average number of bytes transmitted (Java applet vs. Java application).

application. This number includes Ethernet, IP, TCP, UDP
(User Datagram Protocol), [10OP, and HTTP headers as well
as data.

Performance, particularly start-up time, is a major prob-
lem with a browser-based approach. Most human factors
guidelines recommend start-up times of under one minute,
but simply downloading one of the libraries required by the
example application in this section exceeds 6 minutes over
a 56 Kbps modem. While performanceis better in a typical
LAN configuration, measured start-up times for an applet
were 18 times slower in some cases than a functionally
equivalent Java application.

Slow start-up times require that systems be designed to
minimize the amount of logic downloaded to the client.
Thisisan artificial design constraint that inhibits the proper
separation of functionality between the client and server
processes in a distributed system [Seacord 1990].

3.3. Functionality

An obvious advantage of using browser technology for
your client application is that the technology provides
support for processing hypertext documents specified in
HTML. HTML provides a simple means of adding text
and graphics to an application and for specifying links be-
tween information. The browser provides mechanisms for
viewing and navigating through a hypertext document.

The extent to which hypertext is actualy used in a
graphical user interface (GUI) varies considerably between
clients. Hypertext provides a relatively quick mechanism
for providing static content, such as text and graphics,
around interactive content. Static content can also be added
using static, GUI “label” widgets (in X/Motif parlance).
Widgets can display fixed graphics or text (in a variety of

186

Application

Application

Commands

a) document-based

b) remote control

¢) component-based

Figure 7. Approaches for integrating hypertext content.

fonts and formats). Adding static content programmatically
using GUI widgets is more devel opment intensive than pro-
viding HTML markup.

In addition to providing static content, hypertext is useful
in more traditional roles as well, such as providing online,
interactive help. Netscape, for example, provides a soft-
ware development kit called “NetHelp” for developing and
viewing HTML-based online help. Microsoft has also made
the decision to replace WinHelp with an entirely new help-
authoring system based on HTML and other Web standards,
called HTML Help [Swenson].

Assuming that a valid requirement to integrate hypertext
exists, the question becomes: What is the best mechanism
for providing this content? Three common approaches used
for integrating hypertext content — document-based, remote
control and component-based — are shown in figure 7.

The document-based approach assumes the use of a
browser. The HTML document becomes the principal con-
tainer that can hold both hypertext and active content. The
component-based approach incorporates an HTML compo-
nent or control within a client. The HotJava HTML com-
ponent, for example, is a JavaBean that parses and renders
HTML that can be incorporated into an application. In the
remote-control approach, the application runs as a sepa-
rate process from the browser and sends commands to the
browser in response to help requests by the end user. The
largest problem with the remote-control approach is coor-
dinating activity between the browser and the application,
as both systems have independent user controls.

The decision to select a browser-based approach should
not be based solely on the fact that HTML content is used
in the implementation. The correct approach for integrat-
ing static content dependslargely on the application, but we
would suggest the following. If the application is largely
a hypertext document, with some interactive content to en-
hance the presentation or usability, then it may make sense
to take a document-based approach. If the system is prin-
cipally an interactive application, it may make more sense
to take a component-based approach to integrating HTML
content. The remote-control approach can be used when
a component-based approach makes the most sense, but a
suitable component is unavailable.

R.C. Seacord, SA. Hissam / Browsers for distributed systems

3.4. Security

Browsers must be careful to restrict access to local re-
sources such as a computer’s registry of installed software,
file system, or debugging software from downloaded, active
content. Destructive programs, such as a Trojan horses, can
tamper with or destroy local data or extract sensitive infor-
mation once they have been downloaded or installed onto a
system and allowed to execute. One approach for protect-
ing local resources is to limit access of the active content
to within a sandbox. The sandbox is a security mechanism
that provides a restricted environment in which the active
content may safely execute. With Java enabled (e.g., in the
Netscape advanced preferences dialog), browsers trust the
Java sandbox for any applet.

While this approach may provide an adequate environ-
ment for small applets, it is typically too restrictive for the
implementation of alarge, complex application. To circum-
vent this problem, browser vendors have invented a variety
of mechanismsto extend the sandbox. Signed applets under
Netscape can request specific privileges using the Netscape
Capabilities Classes. These classes allow the applet to re-
guest, and the user to grant, permission for the applet to
perform specific operations outside of the sandbox. Under
Microsoft’s Internet Explorer, access to native resources is
provided through trust-based security for Java [Microsoft
1997] or simply circumvented through ActiveX controls.
The trust-based security model provides fine-grained ad-
ministration of the privileges granted to Java applets and
libraries based on zones. Zones allow related sites to be
administered as a group. There are five default security
zones defined in the trust-based model for IE 4.0: Loca
Machine, Intranet, Trusted Web, Internet, and Untrusted
Web Sites. The idea is to set nonrestrictive security op-
tions for trusted areas and, at the same time, have very safe
(restrictive) security options elsewhere.

Browsers have a history of aternately disallowing then
allowing applications to access local machine resources.
Browser vendors cannot seem to decide if they want to
allow downloaded applications to access local machine re-
sources or not. The root cause of this conflict stems from
the browser’s dual roles as hypertext viewer and applica-
tion development framework. As a hypertext viewer, it is
important that the browser not allow downloaded applica-
tion programs to access local machine resources because
of the security risks involved. As an application frame-
work, it is critical that downloaded applications can access
local resources to implement advanced application func-
tionality. Because of these conflicting roles, developers are
forced to deal with an assortment of specialized security
mechanisms and APIs to access functionality outside of the
sandbox. This problem is further exasperated by the lack
of a standard approach for providing this capability.

In general, security mechanisms for extending the sand-
box rely on object signing using digital certificates. Sign-
ing an object (e.g., applet) using a developer’s digital cer-
tificate identifies the signer and provides tamper-resistant

R.C. Seacord, SA. Hissam / Browsers for distributed systems

packaging. However, object signing and digital certificate
technologies from JavaSoft, Netscape, and Microsoft are
largely incompatible. For code signing, Netscape provides
signtool for use in Netscape Communicator 4.0. Microsoft
offers Authenticode for use in Microsoft’s Internet Explorer
3.0 & 4.0. JavaSoft's javakey and jar are used in the JDK
appletviewer & the HotJava browser. Netscape's digital
certificates can sign Java applets, JavaScripts, plug-ins, or
any other kind of code object packaged within a .jar or .zip
file. Netscape certificates cannot be used for code signing
using JavaSoft's javakey or Microsoft's Authenticode. Mi-
crosoft Authenticode certificates can sign 32-bit .exe, .cab,
.ocx, and .class files but cannot be used for code signing by
JavaSoft’'s javakey or Netscape's signing tool. Microsoft’'s
Authenticode or Netscape's signing tool cannot use certifi-
cates generated by JavaSoft's javakey.

As indicated by the preceding discussion, object-signing
technology is still immature and digital certificate technol-
ogy is in need of further standardization. If the distrib-
uted system you are developing has strict security require-
ments, implementing a browser-based solution requires that
you wade into this quagmire and hope you have sufficient
stature to keep your head above water.

Digital certificates can a so be used for identification and
authentication. Identification allows a user to present their
credentials to a system. Authentication allows the system
to verify that presented credentials are authentic. Once a
user’s identity is authenticated, the system can determine
the user’s authorization.

In a browser-based design, identification and authenti-
cation are managed between the browser and the HTTP
server. The HTTP server interrogates the browser for a
client certificate, validates the certificate, and (optionaly)
looks up the user in a directory server. Authorization for
access is granted if the user credentias are found in the
directory server. This capability is administered through
the HTTP server and does not require the development of
custom code.

In a non-browser design, code for certificate manipu-
lation and authentication must be developed. The devel-
opment of an identification and authorization capability is
supported by means of vendor APIs and libraries. Java
1.2 supplies a Certificate APl for certificate management;
the Netscape LDAP Java SDK can be used for searching
the LDAP directory, and encryption and decryption can be
performed using patented algorithms from RSA (JSAFE).

An advantage of the non-browser approach isthat the au-
thentication policy can be specified, with the corresponding
disadvantage that it must be coded. Specifying an authen-
tication policy is necessary if the system has unique au-
thentication requirements. A custom authentication policy
has the advantage of being less subject to the attention of
hackers, who are likely to target a broadly used authenti-
cation policy. This advantage can be quickly lost if the
authentication policy is not well considered.

A further disadvantage of a browser-based approach is
that to support system auditing, user credentials must be

187

exported from the HTTP server to the system. Under the
Netscape Enterprise Server, this is done using Server-Side
JavaScript or CGIl environment variables. These mecha
nismsintroduce substantial design constraints and add over-
head to solve a relatively ssmple problem.

3.5. Human factors

One of the greatest challenges in designing graphical
user interfaces is making the best use of limited display
“real estate.” When developing a browser-based applica-
tion, the user interface is limited in size by the rea es-
tate required by the browser’'s window and controls. Even
when the mgjority of these controls are hidden, the real
estate required by the browser detracts from the rea es
tate left to the application, particularly on small displays
such as those common on laptops and hand-held devices.
A typical browser user interface includes a menubar and
toolbar that provides commands for filing, editing, view-
ing, and navigating through a series of Web pages. These
commands control functionality in the browser that is in-
dependent of any application logic that may be present on
any given page. The active content within a page may also
have GUI controls, including their own menubar and tool-
bar. These controls can be used to access commands that
interact directly with the application logic, are aware of the
application’s state, and have access to application data.

From a programming perspective, the above design is
flawless. Browser controls are used to interact with the
browser, and application controls are used to interact with
the active content within the browser. The problem, from
a human factors perspective, is that this arrangement is
not always apparent to the end user. Consequently, the
end user is likely to press browser buttons such as Back,
Forward, or Stop in the browser toolbar to interact with the
application content. Depending on the application, this can
have disastrous effects.

Anecdotal evidence of this problem was gathered from
alogistics system in which end users would press the Stop
button on the browser in an attempt to end queries that ap-
peared to be hung. Pressing the Stop button in this case
caused the client to go away but had no effect on the server,
which continued to process the query with no client to re-
ceive the results. Dealing with numerous customer com-
plaints and reworking the system to handle this special case
resulted in three staff months of diagnosis and repair. In
general, unexpected interactions between browser controls
and application logic can confuse end users and result in
critical errors.

A solution to both these human-factor problems is to
launch the active content in a completely separate window.
The ability to do this should be a requirement of the mech-
anism used to extend the browser-based system. However,
the requirement to run active content in a separate window
and completely independent of browser controls thoroughly
refutes the argument for using browsers because they pro-
vide a familiar user interface.

188
3.6. Distribution and installation

Prior to the explosion of the World Wide Web (WWW)
and browsers, most companies distributed software on ei-
ther floppy or CD-ROM, depending on the size of the dis-
tribution. Some companies provided customers with an ac-
count name and password from which they could download
products from an FTP (file transfer protocol) site.

With the advent of the World Wide Web a new model
has evolved. Rather than purchase products, users can sub-
scribe to a site or service. Active content in the form of
Java applets or ActiveX controlsis downloaded at each user
access. Thismodel isreferred to as on-demand installation.

On-demand installation has a number of advantages,
chief among them being that downloaded content is cur-
rent. Ignoring problems with caching, browsers guarantee
that both active and static content is current by going back
to the source for each user request. Another advantage of
on-demand installation is that the disk space used by the
client can be automatically reclaimed. The principal disad-
vantage of on-demand installation includes longer start-up
times and the problem that a browser can download only
certain types of active content. For example, it is possible
to write a Java applet that can be downloaded and executed
by both Microsoft IE and Netscape Navigator, although it
is necessary to accommodate differences in the Java Vir-
tual Machine (JVM) [Zukowski 1997].6 |E can also down-
load and execute ActiveX controls. These controls can be
written in a variety of languages, including Visua Basic
and C++, but must conform to the ActiveX model. Since
ActiveX controls are compiled objects, they can run only
on the processor for which they were compiled, and only
within |E. |E and Navigator provide browser-side scripting
languages —instructionsto the browser embedded in HTML
using the SCRIPT element. Although both browsers sup-
port client-side scripting languages, there are differences
between Microsoft's VBScript and Netscape's client-side
JavaScript.

To address problems of performance and functionality
in distributed system development, it is often necessary to
install software on the client platform in addition to soft-
ware installed on demand. We have previously discussed
performance problemsin downloading large Java class files
such as the VisiBroker jar file. Pre-installing the classes on
the client machine, for numerous or large files, can help
reduce long start-up times, although doing so has further
implications that we examine later in this report.

6 Microsoft, deciding that the core Java class libraries were insufficient
for its needs, added about 50 methods and 50 fields into classes within
the javaawt, javalang, and javaio packages. If a developer relies on
these changes, or inadvertently uses them, the program will work only
within Microsoft's Java system. In addition, a program developed out-
side of Microsoft's development environment will expect a certain core
API. Since the core API is different from the one within Microsoft's
environment, the program may not work under the Microsoft JRE. The
Netscape Navigator Java 1.1 patch Preview Release 2 aso fails to fully
implement the Java 1.1 specification.

R.C. Seacord, SA. Hissam / Browsers for distributed systems

It may be necessary to pre-install libraries on the desk-
top to support functionality that is otherwise unavailable.
For example, to provide a secure connection between the
VisiBroker client and the CORBA server, we would like to
use the Secure Socket Layer (SSL). Since the SSL library
supplied by Visigenicsis implemented in C, it must be pre-
installed on the client machine. Plug-ins, another common
mechanism for extending the functionality of the browser,
also requires an ingtallation step.

An dternativeinstallation approach can be used in a non-
browser design. Web pages can be provided from which an
end user can download the client application. Typically, the
distribution file is saved as a compressed archive to reduce
the time required to download the file. To install the pro-
gram, the administrator clicks on the link to the file on the
Web page. The browser then prompts the administrator for
a location to store the downloaded file. On Windows desk-
tops, the file may be stored as a self-extracting, executable
archive. Double clicking this archive causes the program to
extract itself and run Install Shield. Under UNIX, thefileis
normally distributed as a compressed tar file. Compression
is usually performed with either the gunzip or compress
utility. The corresponding utility is used to decompress the
file, and the file is then untarred. The system administrator
isnormally required to complete the installation by running
an ingstallation script.

On-demand installation has advantages in ease of use,
since no installation steps are required by the end user ex-
cept specifying the correct URL; however, on-demand in-
stallation has the disadvantage of long start-up times. More
complex systems that require the use of client-side libraries
(e.qg., for security) or browser plug-ins have no choice but
to go through an installation process.

3.7. Upgrading and component-based devel opment

On-demand installation simplifies the problem of pro-
viding software updates, at least from the point of view
of the vendor. New versions of the product installed on
the vendor’'s Web site are automatically downloaded and
accessed by customers the next time they use the applica-
tion. Software updates downloaded to the client machine
are able to communicate directly with updated versions of
servers at the vendor’s site.

The principal problem with this approach is that the cus-
tomer no longer has a say in the decision to upgrade a sys-
tem. Under this model, it is normal for upgrades to occur
overnight and without warning. This can cause immediate
problems. end users are caught unaware of major changes
in functionality and interface and are unable to adequately
prepareor train prior to the upgrade. Documented processes
and procedures can be rendered instantly obsolete.

Within the commercial world, developing component-
based systems can be viewed as a “just-in-time” program-
ming model where components move along an assembly
line from the developer through the integrator to the end
user, and functionality is added at the latest possible point

R.C. Seacord, SA. Hissam / Browsers for distributed systems

aong this line. Component developers build large-scale
components that provide services that appeal to a large
market; integrators extend and combine the components to
build systems; and end users and their support staff tailor
the system for local needs [Vigder et al. 1996].

Automatic upgrades limit a developer’s ability to inte-
grate a system’s functionality as a component of a larger
system. Tools such as the Web Interface Definition Lan-
guage (WIDL) alow the resources of the World Wide Web
to be described as functional interfaces that can be accessed
by remote systems using standard Web protocols [Allen
1997]. Once functionality has been incorporated into a
component-based system, either directly or through the use
of WIDL or a similar tool, changes in the functionality
would disrupt the operation of the overall system. Con-
sequently, it is difficult, if not impossible, to use a system
that is automatically upgraded as a component of larger sys-
tems, thus creating a further inhibitor to the development
of component-based systems.

The dternative to on-demand installation and automatic
upgrades requiresthat the users upgrade their systems. This
approach eliminates the above-described disadvantages ex-
perienced by the users while shifting the problem to the ven-
dors. The vendor now has no control over when users will
upgrade their systems. This puts vendors in the awkward
position of supporting obsolete versions of client software
beyond a reasonable period. Upgrades to the server can be
inhibited or prevented by a need to maintain compatibility
with the installed customer base.

A compromise solution that can be implemented in the
design of non-browser distributed systems provides for ne-
gotiation between the client and server concerning discrep-
ancies in version numbers. For example, a tool provided
by the National Software Data and Information Repository
(NSDIR) [Card and Hissam 1996] used a four-digit version
number scheme to characterize upgrades. Version num-
bers downloaded from the server are compared to version
numbers on the client. If there is a discrepancy the client
notifies the user if the change represents a maintenance re-
lease, inaccessible capabilities, reduced functiondlity, or a
change in the application protocol stream. Maintenance
releases and inaccessible capabilities can generally be ig-
nored without affecting a system for which this may be a
component. Reduced functionality may affect the overall
system, while a change in protocol will require an upgrade.
The user (or integrator) has the ability to upgrade based on
their own drivers, while the vendor has a better lever to
move customers onto newer versions.

3.8. Runtime configuration management

In the section on distribution and installation, we argued
that there is often a requirement to pre-install software on
the client platform when building browser-based distributed
systems. Requiring a pre-installation step for performance,
functionality, or other reason means that there are now soft-
ware components installed on the client machine. These

189

versions evolve over time, but may be upgraded at will by
the customer. At the same time, downloadable active con-
tent is updated by the vendor based on availability. This
executable content must determine which versions of the
pre-installed components are available and if it can work
with them or if newer versions must first be installed. Im-
plementing this solution requires that the executable con-
tent operate outside of the sandbox, requiring permissions
that are considered high risk. This mixed model of pre-
installation and on-demand installation creates combinator-
ia problemsin runtime configuration management that out-
weigh any advantage in the browser model.

Another configuration management problem is the ten-
dency of end users to extend, customize, and upgrade their
browsers. Browsers are general-purpose tools used to ac-
cess data and information services over the Internet. As
such, the end user is given endless opportunities to install
plug-ins, patches, and upgrades. Each of these changes has
the potential to affect other applications that run within the
browser. For example, during 1997 Microsoft Corporation
updated the Authenticode security module installed with
Microsoft’s Internet Explorer from version 1.0 to 2.0. No-
tices regarding this update were embedded in Web pages
at Microsoft's Web Site as an embedded JavaScript rou-
tine. Upon reaching one of those pages, the client’s browser
would execute the JavaScript routine, and if Authenticode
1.0 were detected, the script would display a dialog box
suggesting the end user upgrade by pressing the Yes but-
ton. The irritating behavior of this “nag-ware” would con-
tinue until the end user gave in and upgraded the client
browser’s security component to the current version. In
one case the result of this upgrade completely disabled a
functioning Java/CORBA orblet — with no way of revers-
ing the upgrade without completely removing the browser
from the system and re-installing a previous release of the
browser (before Authenticode version 2.0 was introduced).

3.9. Licensing

Vendors have been (relatively) quick to recognize the
necessity of supporting browser-based designs by offering
server-based licensing. Server-based licensing allows un-
limited access by a potentially unknown collection of end
users. However, this same consideration has not been gen-
eraly extended to client/server or distributed object sys
tems.

The architecture of a system is easily influenced by de-
ployment costs driven by the licensing scheme of COTS
vendors. This can best be shown by an example. Fig-
ure 8 shows a browser-based scenario (A) for deploying a
CORBA-based applet and a separate scenario (B) in which
a Java application communicates directly with the ORB on
the server.

In both scenarios the classes contained in the vbj30.jar
file are installed on the desktop and run locally. In sce-
nario A, the classes are installed on demand by the server,
stored in the browser’s cache, and eventually removed by

190

R.C. Seacord, SA. Hissam / Browsers for distributed systems

Welcome

i

vb330.jar
(resident)

Scenario A

>

5

c

E . .

= vb330.jar vb330.jar
a (cached) (resident)
'_

I

Scenario B

Figure 8. Licensing scenarios.

the browser. In scenario B, the classes are pre-installed on
the desktop.

Because it is possible to distinguish between these sce-
narios, it is likely that some vendor’s software licenses do
make this distinction. If the cost of deploying a browser-
based design is considerably lower than a similar non-
browser-based design, it is unlikely that the development
organization would incur the added costs to deploy a non-
browser-based solution.

3.10. Versions

Beta versions of Java 1.1 were available in December
of 1996, and it was generaly available in the first quar-
ter of 1997. However, as of March 1998, full 1.1 support
is gtill not available in the standard release of Netscape
Communicator. In some senseg, thisis the traditional COTS
problem of incompatible versions, but in another sense it is
worse. When developing a C++ application, for example,
language functionality is available to the developer as soon
as the compiler version is released. If necessary, language
libraries can either be statically linked with the executables
or installed on the client machine. Likewise, applications
developed in Java can be installed, if necessary, with the
corresponding JRE version [Sun]. However, when running
Java applets within a browser, the browser dictates the Java
Development Kit (JDK) version and, therefore, which soft-
ware is compatible.

In response to this problem, Netscape plans to re-
architect its future client software products to support com-
patible implementations of a Java Virtual Machine from
industry leaders such as Sun, IBM, and other operating sys-
tem vendors. Netscape plans to provide an OpenJava AP
designed to make it easier for vendors to integrate their
native Java VM into Navigator or Communicator.

Microsoft has no public plans to change their current
strategy of maintaining their own version of the Java pro-
gramming language as a proprietary Windows development
tool.

4, Conclusions

In a browser-based system, the combination of the
browser and HTTP server forms the backbone of the sys-
tem. While this backbone provides some flexibility and
extensibility, it still provides a rigid framework that can
only be bent so far without breaking. Functionality can be
added only if the designers of the browsers anticipated the
needs of your application directly or indirectly by providing
appropriate hooks.

A browser-based design may be appropriate if the re-
quirements of the system conform naturally to a browser
infrastructure. For hypertext systems, Internet browsers are
an ideal solution. Based on the current state of the prac-
tice, browser-based designs are not appropriate under the
following conditions:

e The desktop client has a large, complex user interface.

e The desktop client requires access to local machine re-
SOUrces.

e Fast application start-up time is an important require-
ment.

e The system must communicate securely across multiple
protocols, browsers, and servers.

Distributed object systems offer an alternative to a browser-
based design. A distributed object system can offer faster
start-up times and support larger, more complex user in-
terface designs. The application can be implemented in
Java for maximum portability, using either Java Remote
Method Invocation (RMI) or CORBA for communication

R.C. Seacord, SA. Hissam / Browsers for distributed systems

with back-end servers. Software development kits are avail-
able to provide safe, secure communications between dis-
tributed objects.

The use of a browser-based infrastructure is a major
decision that is going to influence and limit the overall
architecture and design of your distributed system. Assuch,
it is critical that thisis an informed, considered decision.

Acknowledgements

The U.S. Department of Defense (DoD) office spon-
sored this work. Special thanks to Kurt Wallnau and John
Foreman for supporting this work. Thanks also to ex-
ternal reviewers Steve Oesterle (Visigenics), Daniel Dar-
dailler (W3C), and Kevin Samborn, and to SEI review-
ers Dan Plakosh, Tricia Oberndorf, Jeromy Carriere, Lisa
Brownsword, Fred Long (SEl visiting scientist from the
University of Wales), Fred Hansen (SEI visiting scientist
from the Andrew Consortium), Eileen Forrester, Suzanne
Couturiaux, and Edwin Morris.

References

Allen, C.A. (1997), “Automating the Web with WIDL,” World Wde Web
Journal 2, 4.

Bray, T., J. Paoli, and C.M. Sperberg-McQueen (1998), Extensible Markup
Language (XML) 1.0 Specification, W3C Recommendation [onling].
http://ww. w3. org/ TR REC- xm .

BrowserWeatch Stats Station [online].
http://browserwatch.internet.conlstats/stats.
htm .

Card, D.N., SA. Hissam, and R.T. Rosemeier (1996),“National Software
Data and Information Repository,” CrossTalk 9, 2. Software Technol-
ogy Support Center.
http://ww. stsc. hill.af.nml/CrossTal k/ 1996/ f eb/
national . htm .

ECMA-262 (1997), ECMAript: A General Purpose, Cross-Platform
Programming Language [online].
http://ww. ecma. ch/ st and/ ecma- 262. ht m

Lie, H.W. and B. Bos (1997), The Cascading Style Sheets — Designing for
the WWeb, Addison-Wesley/Longman, Essex.

191

Lie, HW. and B. Bos (1998), Cascading Syle Sheets, Level 1, W3C
Recommendation [onling].
http://ww. w3. org/ TR/ .

Lie, H.W.,, B. Bos, C. Lilley, and I. Jacobs (1998), Cascading Style Sheets,
Level 2, CS2 Specification, W3C Recommendation [online].
http://ww. w3. or g/ TRl REC- CSS2.

Microsoft (1997), Trust-Based Security for Java, Microsoft white paper
[onlineg].
http://ww. m crosoft.confjaval/ security.

Raggett, D., A. Le Hors, and |. Jacobs (1998), HTML 4.0 Specification,
W3C Recommendation [onling].
http://ww. w3. or g/ TR/ REC- ht ml 40.

Seacord, R.C. (1990), “User Interface Management Systems and Applica-
tion Portability.” IEEE Computer 23, 10, 73-75.

Stevens, W.R. (1994), TCP/IP lllustrated, Vol. 1: Protocols, Addison-
Wesley, Reading, MA.

Sun Microsystems, The Java Runtime Environment Notes for Developers
[online].
http://java. sun. com products/jdk/1.1/runtime.
htm .

Swenson, J. “Making the Big Move to HTML Help,” MSDN Online.
http://ww. m crosoft.conl nedn/ news/ ht m hel p.
ht m

Vigder, M.R., W.M. Gentleman, and J.C. Dean (1996), COTS Software
Integration: Sate of the Art [onling]. Software Engineering Group
(NRC No. 39198).
http://wwsel .iit.nrc.cal/sel docs/cotsdocs/
NRC39198. pdf .

Wallnau, K., E. Morris, P. Feiler, A. Earl, and E. Litvak (1997), “Engi-
neering Component-Based Systems with Distributed Object Technol-
ogy,” In Proceedings of Worldwide Computing and Its Applications,
Springer-Verlag, Heidelberg, Germany, pp. 58-74.

Wallnau, K., N. Weiderman, and L. Northrop (1997), “Distributed Object
Technology with CORBA and Java: Key Concepts and Implications,”
Technical report CMU/SEI-97-TR-004, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA.
http://ww. sei.cmu. edu/ publ i cati ons/docunents/
97.reports/97tr004/97tr04abstract. htm .

Wood, L. et a. (1998), Document Object Model (DOM), Level 1, Specifi-
cation Version 1.0, W3C Recommendation [onlin€].
http://ww. w3. or g/ TR/ REC- DOVt Level - 1.

Zukowski, J. (1997), “How to Avoid Potential Pitfalls of Microsoft's
Non-Standard SDK for Java,” Java World [online].
http://ww.javaworl d. com javawor| d/jw 11-1997/
jw1ll-pitfalls.htm.

