Administrative Scope: A Foundation for
Role-Based Administrative Models

JASON CRAMPTON and GEORGE LOIZOU
Birkbeck, University of London

We introduce the concept of administrative scope in a role hierarchy and demonstrate that it can
be used as a basis for role-based administration. We then develop a family of models for role hierar-
chy administration (RHA) employing administrative scope as the central concept. We then extend
RHA,, the most complex model in the family, to a complete, decentralized model for role-based
administration. We show that SARBAC, the resulting role-based administrative model, has sig-
nificant practical and theoretical advantages over ARBAC97. We also discuss how administrative
scope might be applied to the administration of general hierarchical structures, how our model
can be used to reduce inheritance in the role hierarchy, and how it can be configured to support
discretionary access control features.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
Access controls; K.6.5 [Management of Computing and Information Systems]: Security and
Protection; 1.6.0 [Computing Methodologies]: Simulation and Modeling

General Terms: Security, Theory

Additional Key Words and Phrases: Role-based access control, role-based administration,
administrative scope, encapsulated range, role hierarchy operation

1. INTRODUCTION

Role-based access control (RBAC) models have been the subject of consider-
able research in recent years resulting in several important models: the NIST
model [Gavrila and Barkley 1998]; the role graph model [Nyanchama and Os-
born 1999]; the RBAC96 model [Sandhu et al. 1996]; the graph-based formalism
for RBAC [Koch et al. 2002], and the unified NIST RBAC model [Sandhu et al.
2000]. It has been suggested that such models provide an attractive theoret-
ical framework for multi-domain, distributed systems [Joshi et al. 2001]. The
features that make RBAC attractive include policy neutrality, principle of least
privilege, and ease of management. Gligor [1995] provides a good introduction
to the characteristics and advantages of RBAC. The material in this paper is
developed in the context of the RBAC96 model. In particular, we assume the

A preliminary version of portions of this paper appeared in Jason Crampton and George Loizou,
“Administrative Scope and Role Hierarchy Operations,” Proc. 7¢h ACM Symposium on Access
Control Models and Technologies, 2002, pages 145-154.

Authors’ address: Jason Crampton, Information Security Group, Royal Holloway, University of
London, Egham, Surrey, TW20 0EX, England; email: jason.crampton@rhul.ac.uk.

Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appearance, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.

© 2003 ACM 1094-9224/03/0500-0201 $5.00

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003, Pages 201-231.

202 . J. Crampton and G. Loizou

existence of a partially ordered set of roles R (which is visualized as a role
hierarchy).

Despite the enthusiasm for RBAC, the use of RBAC principles to manage
RBAC systems has been less widely studied. We believe that this is a serious
omission: any access control system should be dynamic and changes to such a
system must be controlled. In short, we believe that it is important that a sound
model be developed for controlling changes to RBAC systems.

Previous approaches to role-based administration have either been central-
ized, such as the NIST model [Gavrila and Barkley 1998] and the role graph
model [Nyanchama and Osborn 1999], or decentralized, such as the RBAC96
model [Sandhu et al. 1996], the ARBAC97 model [Sandhu et al. 1999], and the
recent graph-based formalism for RBAC [Koch et al. 2002].

The NIST implementation of RBAC incorporates an Admin Tool and an
RBAC database. The latter stores information about user-role, permission-role
assignments, and the role hierarchy structure. The former is essentially a col-
lection of functions that determine whether an update to the database is per-
mitted and what the effect of such an update would be. The role graph model
includes several algorithms for manipulating the role graph in order to support
administrative functions. Neither the NIST nor the role graph model approach
to administration is role based.

In contrast, RBAC96 assumes the existence of administrative permissions
which are assigned to administrative roles. An important issue when consid-
ering administration is the propagation of permissions—the so-called safety
problem [Harrison et al. 1976]. However, it is often the case that if administra-
tive (or control) permissions are assigned to subjects, then the safety problem is
undecidable. Indeed, Munawer and Sandhu [1999] and Crampton [2002] have
shown independently that the safety problem for RBAC96 is undecidable.

ARBAC97 is a model for administration in the context of the RBAC96 model
that makes use of the structural properties of the RBAC96 hierarchies rather
than relying on administrative permissions. It is widely accepted as the most
mature model for role-based administration. ARBAC97 supports decentralized
administration and incorporates the functionality provided by the NIST and
role graph models.

Although ARBAC97 provides a valuable insight into role-based administra-
tion, we believe that it suffers from several problems, which we will consider
in detail in Section 7. Informally, we believe that ARBAC97 is not complete as
a model, is rather limited in its applicability, and lacks flexibility. (We discuss
these issues in detail in Sections 2.4 and 8.) The aim of this paper, therefore, is to
develop an alternative approach to role-based administration that is complete,
widely applicable, and versatile.

Our approach is built around the concept of administrative scope, which,
informally, associates each role in the role hierarchy with a set of roles over
which it has control. Administrative scope is developed by considering a sim-
ple thought experiment in Section 2.4 and formalized using notation from the
theory of partially ordered sets. The graph-based formalism for RBAC de-
fines decentralized administration in terms of operations on graphs and of-
fers some advantages over ARBAC97. Each administrative role is associated

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 203

with a range, defined by edges in a graph, which is similar to administrative
scope.!

ARBAC97 was developed as three broadly independent models: URA97,
PRA97, and RRA97 which control user-role assignment, permission-role as-
signment, and role-role assignment (i.e., changes to the role hierarchy), respec-
tively. We believe that some of the problems in ARBAC97 arise from the fact
that RRA97, by far the most complex of the three models, was developed after
URA97 and PRA97. This has meant that the interaction between the three
models is not always well defined.

Therefore, we develop a model for role hierarchy administration (RHA) first,
in the beliefthat it would be easier to then incorporate user-role and permission-
role administration. In fact, like the development of several RBAC models, we
develop a family of RHA models of increasing complexity, culminating in the
RHA, model. We believe that RHA, is a more robust, flexible, widely applicable,
and less complex model than RRA97 (its counterpart in the ARBAC97 model).

We can extend the RHA4 model in a natural way to SARBAC (scoped ad-
ministration of role-based access control) in which administrative scope is used
to control the assignment of users and permissions to roles. SARBAC offers
a number of advantages over ARBAC97, not least because all administrative
functions are defined in terms of administrative scope.

In Section 2 we review the essential concepts in partial order theory and
RBACY96, and provide a more detailed motivation for our work. In Section 3
we introduce the notion of administrative scope, the fundamental concept in
RHA. In Section 4 we demonstrate how administrative scope is used to con-
trol changes to the role hierarchy and present a family of increasingly complex
administrative models. In Section 5 we show how administrative scope can be
used to control the assignment of users and permissions to roles. In Section 6
we show how SARBAC can be used in conjunction with the RBAC96 model for
a variety of applications. We demonstrate that SARBAC can administer hier-
archies in which inheritance is reduced, thereby addressing concerns that a
role hierarchy is not necessarily the most suitable structure for modeling ac-
cess control in a hierarchical enterprise [Moffett and Lupu 1999]. Finally, we
discuss how SARBAC might be configured to support discretionary access con-
trol in a simple and rather natural way. To our knowledge, ARBAC97 is the
most comprehensive and widely accepted model for role-based administration.
Therefore, in Section 7 we review the ARBAC97 model. This material is used in
Section 8 in which we conduct a detailed comparison of ARBAC97 and SARBAC.
This section demonstrates how SARBAC can be used to construct role hierar-
chies in a decentralized way in a practical role-based system, and also includes
a preliminary analysis of the complexity of implementing the two models. To
conclude the paper, we summarize the contributions of the paper and discuss
future work.

1A detailed discussion of the graph-based formalism is beyond the scope of this paper. However,
we believe that it is not complete in the sense that it does not define how certain administrative
operations, such as the assignment of users to administrative roles, are accomplished; nor does it
provide a method for constraining the assignment of users to roles, as in ARBAC97.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

204 . J. Crampton and G. Loizou

DIR

DSO

QE2 /\
PSO1 PS02

PE1

(a) A role hierarchy (b) An administrative role hierarchy

DIR | Director

PL Project Leader

PE Production Engineer

QE Quality Engineer

ENG | Engineer

ED Engineering Department
E Employee

DSO | Departmental Security Officer
PSO | Project Security Officer

(c) Legend

Fig. 1. RBACY96 hierarchies.

2. BACKGROUND

2.1 RBAC96

We define our administrative model in the context of RBAC96 [Sandhu et al.
1996], the most well-known role-based access control model. That is, we assume
the existence of a partially ordered set of roles (R, <) which can be visualized as
a role hierarchy. Users and permissions are assigned to roles using the binary
relations UA C U x R and PA C P x R, where U denotes the set of users and
P the set of permissions. That is, u is assigned to r if (u,r) € UA. RBAC96
also assumes the existence of a partially ordered set of administrative roles
(AR, <) which is disjoint from R. Figure 1 shows examples of a role hierar-
chy and an administrative role hierarchy taken from the literature [Sandhu
et al. 1999], which will be used as the basis for all further examples in this

paper.
2.2 Partial Orders

A more comprehensive introduction to partial orders can be found in the book
by Davey and Priestley [1990]. Given a partially ordered set (X, <), we say x
covers y, denoted by y <x,if y <x andforallz € X, y <z < x impliesz = y.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 205

The graph (X, <) is called the Hasse diagram of X . (In the context of this paper,
the set of roles R is a partial order and the role hierarchy is represented by the
Hasse diagram of R.)?> Given x, y € X, we writex | y ifx € y and y £ x.

Given Y C X, we say Y is an antichain if for all x, y € Y, either x = y or
x || y¥. We denote the set of antichains in X by A(X). The width of X is the
cardinality of a maximal antichain in X .

An element y € Y is a maximal element inY) iffor allz € Y, z > y implies
z = y. Similarly, y € Y is a minimal element if for all z € Y, z < y implies
z = y. We denote the set of maximal elements in Y by Y and the set of minimal
elementsinY byY.ForallY € X,Y and Y are antichains.

The lower shadow of x € X, denoted by Ax, is the set {y € X : y < x}. The
upper shadow of x € X, denoted by Vx, istheset {y ¢ X : x < y}.

Given ¥y € X and Y C X, we define |y = {xeX:x <y}, 1y =
{xeX:x>y},|lY ={x e€X :thereexists y € Y suchthatx < y} and 1Y =
{x € X : there exists y € Y such that x > y}.

A closed range in X with endpoints x and y, denoted by I[x, yl, is
the set {z € X :x <z < y}. An open range, denoted by (x, y), is the set
fzeX:x<z<y}

Example 2.1. Using the role hierarchy R in Figure 1,

—{PE1}, {PE1, QE1}, {PE1, QE1, PE2}, and {PE1, QE1, PE2, QE2} are all antichains in
the role hierarchy (i.e., {PE1, QE1, PE2, QE2} € A(R), for example);

—the width of the role hierarchy is 4;

— AENG1 = {ED} and VENG1 = {PE1, QE1};

—{ENG1, PE1, QE1, PL1} = {ENG1} and {ENG1, PE1, QE1, PL1} = {PL1};
— JENG1 = {ENG1, ED, E} and 1ENG1 = {ENG1, PE1, QE1, PL1, DIR};
—[ENG1, PL1] = {ENG1, PE1, QE1, PL1} and (ENG1, PL1) = {PE1, QE1};
—[ENG1, PL1) = {ENG1, PE1, QE1} and (ENG1, PL1] = {PE1, QE1, PL1}.

We will denote the set of roles explicitly assigned to a user u by R(u). That
is, R(u) = {r € R : (u,r) € UA}. Hence the set of roles implicitly assigned to u
is the set | R(u). For example, if Anne is only explicitly assigned to the role QE1,
then Anne is implicitly assigned to |QE1 = {QE1, ENG1, ED, E}.

2.3 Administrative Operations

We will assume throughout that hierarchy operations are initiated by an admin-
istrative role a. We consider the following (role hierarchy) operations: role in-
sertion, role deletion, edge insertion, and edge deletion. We will denote these by
AddRole(a,r, Ar, Vr), DeleteRole(a, r), AddEdge(a, ¢, p), and DeleteEdge(a, ¢, p),
respectively, where Ar is the set of immediate children of (the new role) r, Vr
is the set of immediate parents of r, ¢ the child role, and p the parent role.
We assume that an operation does not introduce a cycle into the hierarchy.
Specifically, p £ ¢ and for all s € Ar and allt € Vr,s £ ¢.

2Equivalently, the Hasse diagram of X can be thought of as the transitive, reflexive reduction of
the graph of the order relation.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

206 . J. Crampton and G. Loizou

i g 1

r r r
Tll ']‘N
r, T// T, T/
T 14 T

(a) Original hierarchy (b) DeleteEdge(a,r’,r'') (c) AddEdge(a,r’,r"")
Fig. 2. Edge operations.

A partial order is a transitive relation. Therefore, if an edge is deleted from
the role hierarchy, edges that had previously been implied by transitivity may
need to be added. Similarly if an edge is added to the role hierarchy, newly
transitive edges may need to be deleted. Figure 2 shows the effect of deleting
and then adding the edge (+/,7”) in a simple hierarchy consisting of the single
chain r < ' < r” < r”. Hence in Figure 2(b), the edges (r,r”) and (', r")
(which were transitive edges in the original hierarchy) have been added. In
Figure 2(c), edges (r,r”) and (+/,r") (which would be implied by transitivity)
have been deleted.? We also assume that role deletion will have the side effect
of inserting transitive edges that would be lost and that role insertion will delete
any transitive edges that arise.

We also include the operations AssignUser(a, u, r), RevokeUser(a, u, r),
AssignPermission(a, p, r), and RevokePermission(a, p, r). Each operation has
an obvious interpretation: for example, AssignUser(a, u, r) means that adminis-
trative role a assigns user u to role r.

Conceptually, an operation consists of a conditional statement and a body,
the latter being some sequence of atomic actions as in the protection matrix
model, for example. We will not usually concern ourselves with the effect of
administrative operations on RBAC96 relations. We believe that such issues are
straightforward and would make the discussion of adminstration less focused.
In this paper, we will concentrate on the tests in the conditional statement of
an administrative operation. For example, we are interested in what conditions
a, u, and r must satisfy for the operation AssignUser(a, u, r) to succeed. We will
not specify what effect this operation has on the UA relation (although it is easy
to see that UA := UA U {(u, r)}, where := denotes “is assigned the value”).

2.4 Motivation for a New Administrative Model

Access control models are typically defined using sets, functions, and rela-
tions, some of which may change over time. For example, the protection matrix
model [Harrison et al. 1976] is defined using the sets S (subjects), O (objects),

3We assume, as in RBAC96, that the set of permissions assigned to a role r is given by Ur/E " P,
where P(r’) is the set of permissions assigned to r’. That is, the set of permissions assigned to r”
following the deletion of the edge (+’,7”) does not include the permissions assigned to 7/, but the
set of permissions assigned to r”” would.

We note that an alternative strategy in the case of edge deletion would be to destroy the inher-
itance by not adding transitive edges that would otherwise be lost. However, our interpretation
of AddEdge and DeleteEdge means that the two operations are mutually inverse, which seems
intuitively reasonable.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 207

A (access modes), and the function M : S x O — 24 (protection matrix). Of
these S, O, and M may change, while A is fixed. We will refer to the latter as a
static component and the remainder as dynamic components of the model. The
state of a model is a “snapshot” of the dynamic components of the model. (More
formally, the state [Harrison et al. 1976] or configuration [Bell and LaPadula
1973] of a model can be regarded as the tuple of all dynamic components in the
model.) We will say a model is complete if a state transition relation is (or can
be) defined (within the framework of the model).

We believe there are two crucial factors that determine the utility and success
of any access control model: simplicity and completeness. In particular, the two
most enduring paradigms in access control are the Bell-LaPadula model and
the protection matrix model, both of which are simple and complete.

In addition, it is desirable that an access control model should be versatile
and practical. The versatility and practicality of a model are obviously difficult
properties to quantify. Our informal understanding of “versatility” is that the
model should be widely applicable, and of “practicality” that the model could
be implemented in a real-world system without incurring unacceptable over-
heads. With this interpretation, the protection matrix model is versatile and
practical, while the Bell-LaPadula model arguably only has the second of these
qualities.

The ARBAC97 model makes an important contribution to the understand-
ing and modeling of administration in role-based access control. However, we
believe there are a number of problems with ARBAC97, which we will discuss
in detail in Section 8. Briefly, the RBAC96/ARBAC97 model is not complete, it
lacks versatility, and is unlikely to be practical.

Nevertheless, work on ARBAC97 has provided many important insights into
role-based administration, not least that it is important to develop a model for
role hierarchy administration before considering other administrative func-
tions. This is simply because role hierarchy administration appears to be the
most difficult area of role-based administration.

We now consider an example that was used to motivate the development
of RRA97. Consider the following sequence of operations on the hierarchy de-
picted in Figure 1(a): AddRole(DSO, X, {QE1}, {DIR}), AddRole(PSO1, Y, 4, {PE1}), and
AddEdge(PS01, PE1, QE1). The cumulative effect of these three operations is to
make Y < X; this isillustrated in Figure 3 and is considered to be an “anomalous
side effect” [Sandhu et al. 1999] of unconstrained changes to the role hierar-
chy. Therefore, RRA97 seeks to provide a framework in which such side effects
cannot occur.

Hence, RRA97 does not permit the operations AddRole(DSO, X, {QE1}, {DIR})
and AddRole(PS01,Y,#, {PE1}), but does permit the operation (AddEdgePSO01,
PE1, QE1). We believe that the prohibitive nature of RRA97 significantly reduces
its utility.

41t is unclear to us why these side effects should be considered anomalous. For example, in Figure 3,
PE1 £ QE1, but RRA97 permits the operation AddEdge(PS01, PE1, QE1) which causes PE1to become
junior to QE1. In short, there seems to be no qualitative difference between Y being made more
junior to X and PE1 being made more junior to QE1.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

208 . J. Crampton and G. Loizou

QE2

Fig. 3. An RBACY6 role hierarchy and the effect of undesirable changes.

Informally, our model is motivated by the following two intuitively reasonable
suggestions for resolving the problems posed by the hierarchy operations that
led to Figure 3. Namely, once role X has been created:

—Remove QE1 from PS01’s administrative range as QE1 is now less than X,
a role which is not in PS01’s administrative range. That is, only DSO and
above should now be able to administer QE1. In particular, the operation
AddEdge(PS01, PE1, QE1) should not succeed.

—A role r such that |Vr| > 1 (such as QE1 once X has been inserted into the
hierarchy) must be administered by a role which has administrative control
over every role in Vr. In our example, AddEdge(DS0, PE1, QE1) will succeed but
AddEdge(PS01, PE1, QE1) will fail.

These solutions have a similar approach and could be implemented by impos-
ing bounds on the authority of each administrative role. In order to determine
such bounds, which may change as the hierarchy changes, we need to find a
function S : R — 2% such that S() models the set of roles that 7 can administer.

3. ADMINISTRATIVE SCOPE

In this section we will formalize the suggestions we made above, resulting in
the definition of administrative scope. In the following section we show how
administrative scope provides a natural unit of administration that can be
used to impose conditions on hierarchy operations.

Definition 3.1. The administrative scope of a role r is defined as follows:
Sr)={seR:s<r,ts\1r C |r}. (1)

Informally, r € S(a) if every path upwards from r goes through a. That is, any
change to r made by a will not have unexpected side effects due to inheritance
elsewhere in the hierarchy.

It can be seen that for all » € R, r € S(r). Hence we define the strict admin-
istrative scope of r to be S(r)\{r}, which we will denote by S*(r). If s € S*(r) we
say r is an administrator of s.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 209

Example 3.2. Consider Figure 1(a). Then 1ENG1 = {ENG1,PE1, QE1,PL1,
DIR} and {PL1 = {PL1, DIR}; hence 1ENG1\1PL1 = {ENG1, PE1, QE1} C |PL1. That
is, ENG1 € S(PL1). However, ED ¢ S(PL1), since ENG2 € 4ED, for example, and
ENG2 ¢ |PL1. It can easily be seen that S(PL1) = {PL1, PE1, QE1, ENG1}. Hence,
PL1 is an administrator of ENG1, PE1, and QE1.

ProrositioN 3.3. Ifr <r’andr € S*(a) for some a € R, thenr' € S(a).

Proor. Suppose r’ ¢ S(a). Then there exists r” € 1r'\1a such that r” ¢ |a.
Thatis,r <r' <r” andr” ¢ la. Hence, r ¢ S(a), which is a contradiction. O

3.1 Flexibility of Administrative Scope

The administrative scope of a role is determined by the role hierarchy and
changes dynamically as the hierarchy changes. (This is in contrast to RRA97,
where administration is largely determined by the can-modify relation, which
in turn imposes restrictions on changes that can be made to the hierarchy.)
For example, following the operation AddRole(DIR, X, {QE1}, {DIR}), QE1 & S(PL1).
Figure 4 shows how the administrative scope of PL1 changes as edges and roles
are added to the hierarchy.

3.2 Decentralization and Autonomy

ProrosiTioNn 3.4. If r has an administrator then the set of administrators
of r has a unique minimal administrator which we refer to as the line manager

of r.

Proor. If r hasasingle administrator the result follows immediately. There-
fore, suppose x and y are minimal administrators of r. (That is, for all admin-
istrators z of r, z < x implies z = x and z < y implies z = y. Hence, x £ y and
y £ x.) Thenr € S*(x) and hence x € 1r. Similarly, » € S*(y) and hence by (1)

tr\ty S ly. (2)

Since y £ x, x ¢ 1y and hence x € |y by 2. Hence x < y, which is a
contradiction. O

The concept of line manager can be applied to administration of the role
hierarchy to ensure maximum decentralization and accountability. That is,
we can insist that all changes affecting a role are made by the line manager.
This feature could be particularly useful in the management of user-role and
permission-role assignments.

4. A FAMILY OF MODELS FOR HIERARCHY ADMINISTRATION

In this section we describe a family of models for hierarchy administration of
increasing sophistication (and incurring larger overheads). Unlike in RBAC96,
we do not assume the existence of a disjoint set of administrative roles. Table I
states the conditions that determine the success or otherwise of a hierarchy
operation in the RHA family of models.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

210 . J. Crampton and G. Loizou

DIR DIR

QE2 QE2

E

(a) Initial hierarchy

DIR DIR

QE2 PEls QE2

(c) AddRole(PS01,Y, 0, {PE1}) (d) AddEdge(DS0, PE1, QE1)

Fig. 4. The dynamic nature of administrative scope: The roles inside the closed curve denote the
administrative scope of PL1.

Table I. Conditions for Success of Hierarchy

Operations in RHA
Operation Conditions
AddRole(a,r, Ar, Vr) Ar € St(a)

Vr C S(a)
DeleteRole(a,r) reSta)
AddEdge(a, ¢, p) ¢, p e Sa)
DeleteEdge(a,c, p) c,peS)

4.1 RHA;

RHA; is the basic model and is applied directly to the role hierarchy. For ex-
ample, AddEdge(PL1, PE1, QE1) and AddRole(DIR, X, {QE1}, {DIR}) both succeed in
RHA;. Clearly RHA; has the benefit of great simplicity and can be used with
the RBAC96 model without the need for any additional relations. Furthermore,
it admits the decentralization of administration. For example, the project leader
role PL1 can administer the roles in project 1.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 211

DSOs...

“.DIR

PSO1e,

admin-authority

PSO1 PL1

PE1 QE2
DSO0 DIR
DSO PSO1

(a)

(b)

Fig. 5. A admin-authority relation and the corresponding extended hierarchy.

However, it is unlikely that RHA; will provide a sufficiently fine-grained
approach to administration and security in many applications. For example,
E € ST(ED), but it is probably undesirable that ED should have any control over
the hierarchy.

4.2 RHA;

We can extend RHA; by insisting that, in addition to satisfying the conditions in
Table I, @ must also have appropriate (administrative) permissions assigned to
it in order to perform hierarchy operations. RHA5 can be implemented without
introducing additional relations and offers finer granularity than RHA; without
incurring any significant overheads.

4.3 RHA;

In this model we introduce a binary relation admin—authority € R x R. If
(a,r) € admin—authority then a is called an administrative role.> We also say
a controls r; we denote the set of roles that a controls by C(a). That is, C(a) =
{r e R:(a,r) € admin—authority}.

Informally, we note that admin-authority can be visualized as an extended
hierarchy on the set of roles which includes the original hierarchy. For exam-
ple, the admin-authority relation defined in Figure 5(a) results in the extended
hierarchy in Figure 5(b). The elements of admin-authority are represented by
broken lines. (All subsequent examples in this paper will be visualized us-
ing an extended hierarchy rather than explicitly defining the admin-authority
relation.)

5We observe that (a,r) could denote a range in the role hierarchy, or an edge in the hierarchy or
a tuple in the admin-authority relation. However, the interpretation of (a, r) will always be clear
from context and the symbols chosen.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

212 . J. Crampton and G. Loizou

We extend the definition of administrative scope in a natural way: namely,
S(@) = {r e R :tr\1C(a) € |C(a)} and
Sta) = S@N\Ca),

where the evaluation of 1r, 1C(a) and |C(a) takes place in the extended hi-
erarchy. For example, in Figure 5(a), S(DS0) = [E, DIR] U {PS01} and S(PS01) =
[ENG1, PL1].6

There are two self-evident consistency requirements that admin-authority
must satisfy: for all (a,r) € admin—authority, a £ r; and admin-authority is
antisymmetric. In addition, we require that the second field in admin-authority
is unique. In other words each r € R is controlled by at most one administrative
role. This constraint is introduced in order to preserve the line manager feature
of the preceding models.

RHA; provides a level of indirection not available in RHA; and RHA; and
therefore can be used to implement a far more flexible administrative policy. The
admin-authority relation states which administrative roles have responsibility
for which parts of the role hierarchy. In this sense, it is similar to the can-modify
relation in RRA97.

Finally we note that RHA; is a special case of RHAj3, where (r,r) €
admin—authority for allr € R.

4.4 RHA4

RHA; is not complete (unless we assume that the set of administrative roles
and the extended hierarchy are static). In short, admin-authority should be a
dynamic component of the model. In this section, therefore, we consider how
RHAj3 can be extended to control changes to the admin-authority relation. We
need to consider when and how the admin-authority relation can be updated
indirectly (as a side effect of hierarchy operations) and directly (by the actions
of administrative roles).

4.4.1 Direct Updates. We assume the existence of two further operations:
AddAdminAuthority(a,a’,r) and DeleteAdminAuthority(a,a’,r) which respec-
tively add and remove the tuple (a/,r) from the admin-authority relation.
We first observe that removing a tuple from admin-authority is equivalent to
deleting an edge from the extended hierarchy. Similarly, adding an element to
admin-authority corresponds to inserting an edge into the extended hierarchy.
However, adding a tuple to admin-authority may introduce redundancy. For
example, it is unnecessary to add (PS01, PE1) to the admin-authority relation
in Figure 5(a) because PE1 € S(PS01).

Note also that AddAdminAuthority(a,a’,r) has the side effect of creating
the administrative role a’ if C(a’) = @ prior to the operation. (Similarly,
DeleteAdminAuthority(a, a’,r) has the side effect of destroying the status of
a’ as an administrative role if C(a’) = {r}.) Hence, we do not require a new op-
eration to create or destroy administrative roles. Rather, we create a role using
the AddRole operation and then add tuples to admin-authority if we wish to

6We use ranges because it is more economical than enumerating the elements in the role hierarchy.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 213

Table II. Conditions for Operations on admin-authority

Operation Condition

AddAdminAuthority(a, a’,r) r,a’ € S(a)
r ¢ 8@)

DeleteAdminAuthority(a,a’,r) r,a’ € S(a)

give that role administrative capabilities. Similarly, to delete an administrative
role, we remove all relevant tuples in admin-authority and then delete the role
using DeleteRole. Table II summarizes the conditions that must be satisfied
for operations that update the admin-authority relation.

4.4.2 Indirect Updates. It may be necessary to update admin-authority
following a role hierarchy operation in order to maintain administrative scope
or to eliminate redundancy. We consider the following cases.

AddRole(a,r, Ar,?) In this case r has no administrator(s). For example, in
Figure 6(a), we see that it is necessary to connect the new role X to the extended
hierarchy. The obvious way to do this is to add (PS01, X) to the admin-authority
relation. Hence, the operation AddRole(a, r, Ar, &) requires that (a,r) be added
to the admin-authority relation.

DeleteRole(a,r) If(a,r) € admin—authority, then it is necessary toreconnect
a to the extended hierarchy to preserve a’s administrative scope. In this case we
add (a, ') to admin-authority for all7’ € ArnNS(a).” For example, in Figure 6(b),
we add (PSO1, PE1) and (PSO1, QE1) to admin-authority.

AddEdge(a, ¢, p) If (a,c) € admin—authority, it may be possible that the ad-
dition of the edge (c, p) makes the tuple (a,c) redundant. In particular, the
addition of the edge (c, p) may mean that c is in the strict administrative scope
of a. In other words, if ¢ € ST (a) following the insertion of the edge, then we can
remove (a,c) from admin-authority. For example, in Figure 6(c), we remove
(PS01, PE1) from admin-authority.

Similarly, the addition or deletion of a tuple from admin-authority may re-
quire further updates to admin-authority.

DeleteAdminAuthority(a,a’,r) If r were removed from S(a) as a result of
deleting (a’, r), then it is necessary to add (a,) to admin-authority in order to
preserve the administrative scope of a. For example, given the admin-authority
relation in Figure 5(a), DSO can remove (PS01, PL1) from the relation. In this
case it is not necessary to add (DS0, PL1) to admin-authority since (DSO, DIR) €
admin—authority and hence PL1 € S(DS0).

Remark 4.1. Further research is required to determine whether the set
of operations identified above is an exhaustive list of extended hierarchy

"We take the intersection because there may be elements in Ar that do not belong to S(a). Note
that ’ may now occur twice in admin-authority as a result of this procedure and hence several
more deletions from admin-authority may be necessary because of the requirement that each role
be controlled by a single role. Detailed algorithms for role hierarchy operations and their effect on
the extended hierarchy are beyond the scope of this paper.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

214 . J. Crampton and G. Loizou

DSOs... DSOs...

“.DIR

QE2 QE2

E

(a) AddRole(PSO01, X, {PE1},0) (b) DeleteRole(DIR, PL1)

DSOO

QE2 QE2

E E
(c) AddEdge(PS01, PE1, QE1) (d) DeleteEdge(PS01, ENG1, PE1)

Fig. 6. Updates to the extended hierarchy.

operations that may have side effects. In particular, the following question is of
interest. Let R C R be the set of maximal elements in R. It seems reasonable to
insist that for all» € R, there exists an administrative role a such thatr € C(a).
Does this guarantee that for every DeleteEdge operation, no additional edges
need to be introduced to the extended hierarchy? In Figure 6(d), for example, the
side effect of the role hierarchy operation DeleteEdge(PS01, ENG1, PE]) is to in-
troduce the edges (ENG1, QE1) and (ENG1, X), which means that ENG1 still belongs
to S(PS0O1).

5. SARBAC

SARBAC (scoped administration of role-based access control) is intended to be
used with RBAC96 as a complete role-based model for administration. It ex-
tends the RHA4 model to include administration of user-role and permission-
role assignment. In the next section we introduce the idea of a SARBAC

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 215

constraint and in Section 5.2 we introduce two relations used to control user-
role and permission-role assignment.

5.1 SARBAC Constraints
Let R’ ={ry,...,rz} be a subset of R and let A R’ denotery A ... AT,

Definition 5.1. A SARBAC constraint has the form A C for some C C R.
A SARBAC constraint A C is satisfied by a user u if C € |R(u). A SARBAC
constraint A C is satisfied by a permission p if C € 1 R(p), where R(p) is the
set of roles to which p is assigned.

For example, the constraint PE1 AQE1 is satisfied by any user assigned to both
PE1 and QE1, and by any user assigned to either PL1 or DIR. Note that A @ is
trivially satisfied by all users and permissions (and corresponds to the URA97
constraint r v —r). We also note that it is sufficient to define a constraint to be
N A, for some A € A(R), rather than A C, where A(R) is the set of antichains
in R. In particular, we have the following result.

ProposiTioN 5.2. Let C € R be a SARBAC constraint. Then)\ C is satisfied
by a user u if. and only if, \C is satisfied by u. Similarly,)\ C is satisfied by a
permission p if, and only if, \ C is satisfied by p.

Proor. Recall that C is the set of maximal elements in C.

= The result follows immediately since C 2 C.

& Suppose u satisfies /\ C. We can assume C C C (otherwise we are done).
Hence let ¢ € C\C. Then there exists ¢’ € C such that ¢ < ¢’. Now ¢’ € |R(u),
since u satisfies A\ C by assumption, and hence ¢ € | R(w).

The proof for permissions is similar and is omitted. O

5.2 SARBAC Relations

In addition to the admin-authority relation from RHA4, the SARBAC model
defines the relations ua—constraints € R x A(R) and pa—constraints C
R x A(R).® The purpose of ua-constraints and pa-constraints is similar to
can-assign and can-assignp in ARBAC97 (see Section 7). Specifically, an ad-
ministrative role a can assign a user u to a role r provided there exists a tuple
(r, A) € uva—constraints such that u satisfies /A A and r is in the administra-
tive scope of a. (To simplify the presentation we assume that for all r € R there
exists (r, A) € ua—constraints and (r, A’) € pa—constraints. We note that in
practice, it will be simpler to omit tuples of the form (r, @) from ua-constraints;
the assignment of a user u to such a role r succeeds provided r is in the admin-
istrative scope of a.) The administrative role a can assign a permission p to
a role r provided there exists a tuple (r, A’) € pa—constraints such that p
satisfies A\ A’ and r is in the administrative scope of a. The administrative
role a can revoke (u,r) € UA provided r is in the administrative scope of a.

8A tuple (r, A) € ua—constraints is equivalent to the role activation rule r < r; A --- A7y, [Yao
et al. 2001], where A = {rq,...,1r2}.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

216 . J. Crampton and G. Loizou

Table III. Conditions for User-Role Operations to
Succeed in SARBAC

Operation Conditions
AssignUser(a,u, 1) | r € S(a)

(r, /\ C) € ua—constraints
u satisfies A\ C
RevokeUser(a,u, 1) | r € S(a)

T1e T2 4

Fig. 7. Role deletion and SARBAC constraints: If r3 is deleted then the constraint r; Arg Arg is
replaced by /\ {r1,re,rq,r5,rg} =11 Are AT5 ATg.

Similarly, @ can revoke (p,r) € PA provided r is in the administrative scope
of a.

5.3 Updates to SARBAC Relations

There are two cases to consider: direct updates in which an administrative role
makes a change to a SARBAC relation, and indirect updates which occur as a
result of a hierarchy operation.

5.3.1 Direct Updates. An administrative role a can add a tuple (r, A) to (or
delete a tuple from) ua-constraints or pa-constraints provided r € S(a) and
A C S(a).

5.3.2 Indirect Updates to ua-constraints. We consider the effect of hier-
archy operations on ua-constraints following a hierarchy operation.

AddEdge(a,c, p). For all (r, A) € ua—constraints such that c,p € A, we
replace (r, A) by (r, A\{c}).

DeleteEdge(a,c, p). For all (r, A) € ua—constraints such that p € A, we
replace (r, A) by (r, A U {c}).

AddRole(a,r, Ar, Vr). We may need to update some constraints because the
addition of r will result in the creation of transitive edges between elements in
Ar and Vr. Therefore, the procedure outlined above for AddEdge may need to
be employed.

DeleteRole(a,r). For all (', A) € ua—constraints such that r € A, we re-
place (r’, A) by (', AU Ar\{r}). A schematic motivation for this procedure is
shown in Figure 7. (Note that role deletion requires that for all ¢ € Ar and all
p € Vr, the edge (c, p) is added to the hierarchy. However, no further changes
are required to ua-constraints because ¢ and p formed a chain prior to the
deletion of » and hence could not have belonged to any SARBAC constraint.)

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 217

PL1 anne

al
PE1

1
ENG1 az as

T4

r7

Fig. 8. Private hierarchies for discretionary access control.

5.3.83 Indirect Updates to pa-constraints. Clearly, similar procedures
must be applied to the pa-constraints relation following a hierarchy oper-
ation, except that if r is deleted from the hierarchy, then for all (', A) <
pa—constraints such thatr € A, we replace (', A) by (', AU Vr\{r}).

6. APPLICATIONS OF SARBAC

In this section we show how SARBAC can be used to support discretionary
access control and to reduce the level of inheritance in the role hierarchy.

6.1 Simulating Discretionary Access Control

Discretionary access control is essentially characterized by ownership of
objects by users, and by users having permissions to grant and revoke access to
objects they own. It is well known that, in general, the security properties of a
discretionary access control system cannot necessarily be established [Harrison
et al. 1976].

There have been several attempts to establish a correspondence between
features of discretionary access control and role-based access control [Barkley
1997; Friberg and Held 1997; Hua and Osborn 1998; Sandhu and Munawer
1998]. The most ambitious of these attempts, by Osborn et al. [2000], tries
to address the problem of ownership in RBAC. Unfortunately, the construc-
tion presented therein involves the creation of at least three administrative
roles and one normal role as well as eight permissions for each object in
the system. The authors do acknowledge that discretionary access control
appears to be more complex to simulate in RBAC than mandatory access
control.

We adopt a different approach to simulating discretionary access control
within a role-based framework. Figure 8 shows a fragment of the usual hierar-
chy connected to a hierarchy rooted at the role anne. The intuition here is that
user Anne will be (the only user) assigned to the personal role anne. The role
anne is also an administrative role. Hence the hierarchy rooted at role anne can
be regarded as a private hierarchy which can only be administered by user Anne.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

218 . J. Crampton and G. Loizou

In the ensuing discussion, we will assume that Anne and anne are effectively
identical; we will refer to Anne throughout.

For illustrative purposes we have divided Anne’s private hierarchy into two
subhierarchies. The set of roles {aj, ag, ag} are all inherited by Anne. The only
role that can assign users to roles in this subhierarchy is Anne herself. The
intended interpretation is that this subhierarchy is to be administered solely
by Anne.

In contrast, the set of roles {ry, ..., r7} form a subhierarchy that can be partly
administered by d. In particular, C(d) = {r1,r3} and S(d) = {r1,rs3, 4, r¢}. (Note
that ro, 5,77 & S(d).) Hence, d can assign users to the roles ry, rs, r4, and rg,
for example. In other words, Anne can delegate certain administrative functions
by assigning a user to the role d. Note also that Anne is not implicitly assigned
(i.e., by inheritance) to any of the roles in the set {ry,...,r7}. Of course, Anne
can assign herself to any of the roles in this set if she wishes.

6.2 Reducing Hierarchy Inheritance

It is generally assumed that a role hierarchy incorporates two types of inheri-
tance. Firstly, if a permission p is assigned to a role r, then p is available to all
roles in 1r. Secondly, if a user u is assigned to a role r, then u can activate any
role in |r.

Goh and Baldwin [1998] and Moffett and Lupu [1999] have observed that
there may be situations where this may not be appropriate. In particular, this
aspect of the model does not necessarily accurately reflect the access control
requirements of most enterprises. In Figure 1(a), is it appropriate, for example,
that DIR has the permissions of PE1? Any user assigned to the role DIR presum-
ably has little or no day-to-day responsibility for, or competency to perform,
the activities expected of a production engineer. These issues are considered in
some detail by Goh and Baldwin [1998] in their discussion of subsidiarity.

An advantage of using SARBAC instead of ARBAC97 as the administrative
model is that the role hierarchy is not required to contain ranges. This is because
the extended hierarchy can fill gaps in the role hierarchy using edges in the
admin-authority relation; hence the number of edges can be reduced. In other
words, administration of the role hierarchy is still possible using SARBAC,
even if there are no ranges in the role hierarchy. Figure 9 shows an extended
hierarchy which is similar to our running example. However, we have reduced
the number of edges in the hierarchy. In particular, we have removed the edges
(PE1, PL1), (QE1, PL1), (PE2, PL2), and (QE2, PL2). (Note that ARBAC97 cannot be
used to administer this hierarchy.)

In other words, we have restricted the permissions of the DIR role to those
of the senior roles. This corresponds more accurately with the deployment of
responsibilities in a real-world enterprise than in the original hierarchy. Fur-
thermore, Claire is assigned to the DSO role which means that she can ad-
minister junior roles in the hierarchy although she is not actually assigned
to those roles. It has been argued [Sadighi Firozabadi and Sergot 1999] that
this distinction between having the authority to assign a permission (or role)
and being assigned a permission (or role) is an important and largely ignored

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 219

DSO
,.‘

PSOie” DI "ePS02
PLL /PL2 -)
. -
PE1 QE1 PE2 QE2 nne {Qe1}
Bill {PEl,QEl,PLl}
Claire | {DIR,DSO}
ENG1 ENG2
(b)
ED
[)
E

(a)
Fig. 9. Applying SARBAC to a reduced role hierarchy.

area in access control. Note also that it is necessary for Bill (who is assigned
to PL1) to be assigned explicitly to PE1 and QE1 in order for him to make use
of the permissions available to roles in the project for which he is responsible.
This corresponds more accurately with the spirit of least privilege.

7. ARBAC97

The SARBAC model is an alternative model to ARBAC97 for role-based ad-
ministration. In order to make a comparison between the two models, we first
summarize the URA97, PRA97, and RRA97 models.

7.1 URA97

The assignment of users to roles is controlled by the URA97 submodel of AR-
BAC97. Informally, AssignUser(a, u, r) succeeds provided u’s existing role as-
signments satisfy certain requirements and a is permitted to assign users to
r. (If the operation succeeds, then the UA relation is updated.) These require-
ments are expressed as a URA97 constraint.

Formally, let r € R. Then r and —r are URA97 constraints. Let ¢; and ce
be URA97 constraints. Then ¢1 A ¢3 and c¢; Vv ca are URA97 constraints. The
conditions for a user u to satisfy a URA97 constraint are given in Table IV. We
denote the set of URA97 constraints by C and the set of ranges in R by R. Note
that all users satisfy the constraint r v —r.%

9Technically, we believe (¢) (where ¢ is a URA97 constraint) should also be a URA97 constraint
which is satisfied by « provided u satisfies ¢, otherwise we have no way of expressing a constraint
of the form (cq Vv ¢9) A c3, for example (assuming the evaluation of A takes precedence over v). We
also note that Sandhu et al. [1999] used the notation 7 rather than —r.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

220 . J. Crampton and G. Loizou

Table IV. Satisfaction of URA97 Constraints

Constraint Conditions

r re lR)

—r r¢|Ru)

c1ACy u satisfies ¢ and u satisfies co
c1Vey u satisfies ¢ or u satisfies co

Table V. Conditions for User Assignment Operations to
Succeed in URA97

Operation Condition
AssignUser(a,u,r) (@', ¢, G) € can—assign
a €la

u satisfies ¢

reQG

RevokeUser(a, u,r) d(a’, G) € can—revoke
a € la

reG

URA97 defines the relations can—assign C AR x C x R and can—revoke C
AR x R to control the assignment and revocation of roles to users. Table V
states the conditions that must be satisfied for user-role assignment operations
to succeed.

Remark 7.1. URA97 distinguishes between weak and strong revocation.
This distinction is only meaningful if R(«) is not an antichain [Crampton 2002].
We will discuss this further in Section 8.

Figure 11 shows examples of the two URA97 relations [Sandhu et al. 1999].
For illustrative purposes we assume (Anne, QE1), (Bill, PL1) € UA. Hence, any
role in 1PS01 can assign Anne to PE1 (by the first row of can-assign). Further-
more, if Anne is not assigned to PL2, any role in 1DS0 can assign her to PL1 (by
the fourth row of can-assign). Conversely, any role in 4PS01 can revoke the
assignment (Anne, QE1) (by the first row of can-revoke).

7.2 PRA97

The structure and semantics of the PRA97 relations can-assignp and
can-revokep are identical to their counterparts in URA97, except that a per-
mission p satisfies the PRA97 constraint r if r € 1 R(p) and satisfies —r if
r € TR(p), where R(p) denotes the set of roles assigned to p. Permission-role
assignment is broadly analogous to user-role assignment in both ARBAC97 and
SARBAC. We will refer to permission-role assignment explicitly only when it
differs from user-role assignment.

7.3 RRA97

The fundamental idea in RRA97 is that of an encapsulated range. The following
definition is due to Sandhu et al. [1999].

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 221

Table VI. Conditions for Hierarchy Operations to Succeed in RRA97

Operation Conditions
AddRole(a,r, {c}, {p) lf(cg) i §(§)< :
hadrole(a,), (p) | S it ™ | VS W
AddRole(a,r, {c}, {p) lf(pg) czg(cfjg :
DeleteRole(a,r) rewz)
AddEdge(a, ¢, p) ZIU(cg) i f(j)z

No operation can violate | w <¢,p <z
AddEdge(a, ¢, p) the encapsulation of any | (c, z) is an authority range
authority range

w<e,pLz

(w, p) 1s an authority range

(¢, p) is not an authority range
w<e,pLz

AddEdge(a, ¢, p)

DeleteEdge(a,c, p)

Definition 7.2. Arange (x, y)is said to be encapsulated if for all w € (x, y),
and for all z ¢ (x, y),

z > w if,andonlyif,z > y, and 3)
z < w if,and onlyif, z < x. (4)

Informally, an encapsulated range is a self-contained subhierarchy in the
role hierarchy with all external edges passing through one of the end points of
the range. (E, ED), (ENG1, PL1), and (ED, DIR) are examples of encapsulated ranges
in Figure 1(a).

The can—modify C AR x £(R)relation, where AR is the set of administrative
roles and £(R) is the set of encapsulated ranges in R, determines the encap-
sulated ranges over which administrative roles can act. Figure 10(a) shows a
typical example of the can-modify relation [Sandhu et al. 1999]. An encapsu-
lated range that appears in the can-modify relation is called an authority range.
RRA97 also requires that for any two authority ranges, they either be disjoint
or one be entirely contained in the other.

Hence, for every role r € R, there is a unique smallest authority range to
which r belongs. This is called the immediate authority range of r, which we
will denote by I(r). For example, given the can-modify relation in Figure 10(a),
the immediate authority range of PE1 is (ENG1, PL1), not (ED, DIR).

Table VI shows the conditions that need to be satisfied in order to perform
a hierarchy operation. The second column indicates the conditions that must
be satisfied by all hierarchy operations. Multiple rows for a given operation
indicate that there are several different sets of criteria that the arguments
of the operation can satisfy. Note that RRA97 requires that a new role has
precisely one parent role p and one child role ¢ such that ¢ < p. Furthermore,
DeleteRole(a, r) failsifr is the end-point of any range in any ARBAC97 relation.

Remark 7.3. We note that Definition 7.2 implies no range can be encapsu-
lated since y ¢ (x,y), y > w for all w € (x, y) but y # y. Hence conditions

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

222 . J. Crampton and G. Loizou
admin-authority
can-modify PS01 PL1
PSO1 | (ENG1, PL1) PS02 PL2
PS02 | (ENG2, PL2) DSO PSO1
DSO (ED, DIR) DSO PS02
DSO DIR

(a)
(b)

Fig. 10. ARBACY97 and SARBAC relations for hierarchy administration.

ua-constraints
ENG1 {ED}
- PE1 {ED}
can-assign
can-revoke QE1 {ED}
PSO1 ED [ENG1, PL1)
PS01 [ENG1, PL1) ENG2 {ED}
PS02 ED [ENG2, PL2)
PS02 [ENG2, PL2) PE2 {ED}
DSO | ED A —PL1 | [PL2, PL2]
DSO [ED, DIR] QE2 {ED}
DSO | ED A —PL2 | [PL1, PL1]
PL1 {PE1}
b
(a) (b) PL1 {QE1}
PSO1 {PL1}

(c)
Fig. 11. ARBAC97 and SARBAC relations for administration of user-role assignment.

(3) and (4) should be replaced by

zZ > Ww

if,and only if,z > ¥ and (5)
z <w <

if, and only if, z < «, (6)

respectively.

8. COMPARISON OF SARBAC AND ARBAC97

In this section we first consider some concrete examples of administrative oper-
ations and whether they would succeed using ARBAC97 and SARBAC. We then
compare the two models using several different criteria including completeness,
simplicity, practicality, and versatility.

Figure 10 shows an example of the can-modify relation [Sandhu et al.
1999] and of the admin-authority relation. Figure 11 shows examples of
the can-assign and can-revoke relations [Sandhu et al. 1999] and of the
ua-constraints relation.

Note that the tuples in can-assign and ua-constraints are divided by a
horizontal line. In the case of can-assign, the tuples below the line cannot be
expressed within the SARBAC framework. In the case of ua-constraints, the
tuples above the line are used to approximate the behavior of the can-assign
relation. For example, since S(PS01) = {ENG1, PE1, QE1, PL1}, PSO1 can assign a
user to any of these roles, provided the user satisfies the constraint ED. The tu-
ples below the line are used to illustrate features of SARBAC that are different

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 223

from ARBAC97. The tuples (PL1, {QE1}) and (PL1, {PE1}) illustrate alternative
criteria that a user can satisfy in order to be assigned to PL1 (and would be ex-
pressed using the constraint PE1 v QE1 in ARBAC97). The tuple (PS01, {PL1})
illustrates how the assignment of users to administrative roles can be
controlled.

Table VII provides a comparison of the success or otherwise of ARBAC97
and SARBAC administrative operations applied to the hierarchy in Figure 1(a)
using the administrative relations in Figures 10 and 11. We assume that the
effect of the operations is not cumulative. That is, each operation is applied in
turn to the hierarchy in Figure 1(a). We will use this table to illustrate several
points in the course of the discussion that forms the remainder of this section.
For illustrative purposes, we assume (as before) that (Anne, QE1), (Bill, PL1) €
UA.

It is immediately obvious from Table VII that SARBAC is a more permis-
sive model than ARBAC97. In particular, the requirement that encapsulated
ranges be preserved significantly reduces the number of legitimate hierarchy
operations in ARBAC97. This observation can be formalized in the following
two propositions.

ProrosiTion 8.1. A range (x, y) is encapsulated if, and only if;

Ma, y\ty =(x,y) and (7

Proor. This proof assumes the characterization of encapsulated range given
in Remark 7.3.

= Suppose for all z ¢ (x, ¥) and for all w € (x, y) we have z > w if, and only
if, z > y. We now prove that 1(x, y)\1y C (x, y). Let ¢ € t(x, y)\1y. Then
there exists b € (x, y) such that b < a and y € a. Since (x, y) is encapsulated,
a € (x, y) (otherwise we have a ¢ (x, y) such that ¢ > b for some b € (x, y) and
y % a). Clearly, (x, y) € t(x, y)\1y and hence we have tx, y \ty = (x, y).
The corresponding proof for |(x, y)\|y is similar; we omit the details.

< Suppose tMx, y\ty = (x,y). Let w € (x, y) and z ¢ (x, y) with z > w.
Hencez € 1(x, y). Sincez & (x, ¥),z € 1y and hence z > y. The corresponding
proof for | (x, y)\|y is similar; we omit the details. O

ProposiTion 8.2. If(x, y) is an authority range, then (x, y) € S*(y).

Proor. Suppose z € (x, y). Then x < z < y and hence tx D 1z D ty.
Therefore, 1z\1y € t(x, y)\1y = (x, y) by (7), and (x, y) € | y\{y}. That is,
zeST(y). O

8.1 Completeness

The RBAC96/ARBAC97 model includes the following components: R, RH,
AR, ARH, UA, PA, can-assign, can-revoke, can-assignp, can-revokep, and
can-modify. The dynamic components are R, RH, UA, and PA. However, it is
unlikely to be appropriate that can-assign, for example, is a static relation. For
example, if a new role is added to the hierarchy, how can constraints be imposed
on the assignment of users (and permissions) to that role? It is also impossible

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

224 . J. Crampton and G. Loizou

Table VII. Operations in ARBAC97 and SARBAC (with reference to Figures 1, 10, and 11)

ARBAC97 | SARBAC

x AddRol1e(DSO, X, {QE1}, {DIR) v
encapsulation of authority range (ENG1, PL1) S(Ps01) = {PE1, PL1}

is violated
< AddRole(PS01, Y, ¥, {PE1) W
encapsulation of authority range (ENG1, PL1) Y € S(PS01)

is violated (and also Y has no child role)

X AddRole(PS01, Z, {PE1, QE1}, §) Vi
encapsulation of authority range (ENG1, PL1) Z € S(PS01); (PS01, Z) € admin-authority
is violated (and also Z has two child roles (as a side effect of the AddRole operation)
and no parent role)

x AddRole(PS01, W, {ED}, (PE1)) x

encapsulation of authority range (ENG1, PL1) ED ¢ S(PS01)
is violated
X AddRo1e(DSO, W, {ED}, {PE1})) J
encapsulation of authority range (ENG1,PL1) | W e S(PSO01)

is violated
X AddRole(DSO, PS03, ¥, 0) v
PS03 does not have a child or parent PS03 € S(DS0)

(although the addition of administrative
roles is not part of the ARBAC97 model)

X DeleteRole(PS01, ENG1)
(ENG1, PL1) € can-modify | S(PsD1) = {PE1, QE1,PL1}
J DeleteRole(PS01, PE1)

| S(PsD1) = {ENG1, QE1, PL1}
X DeleteRole(PS01,PL1)
(ENG1, PL1) € can-modify C(Ps01) = {PE1, QE1}; S(PSO1) =

{ENG1, QE1, PE1}

X DeleteEdge(DSO, ED, ENG1) W

encapsulation of authority range (ENG1, PL1)
is violated (since transitive edges (ED, PE1)
and (ED, QE1) must be added to hierarchy)

v DeleteEdge(PSO1, ENG1, QE1) Vv
X AddEdge(PS01, ENG1, PED) X
there does not exist (a, G) € can-modify PE2 ¢ S(PS01)

such that @ € |PSO1 and PE2 € G

X AddEdge(DSO, ENG1, PED) VA

encapsulation of authority range (ENG2, PL2) S(Ps01) = {PE1, QE1, PL1}
is violated

v AssignUser(PSO01, Anne, PE1) Vv
Vv RevokeUser(PS01, Anne, QE1) v
? AssignUser(DSO, Bill, PSOY) N4

A tick indicates the operation would be permitted; a cross indicates the operation would not be permitted.
Immediately below most operations is a comment indicating either why the operation fails or the effect
of the operation on administrative relations. Note that, given the role hierarchy in Figure 1(a) and the
admin-authority relation in Figure 10, S(PS01) = {ENG1, PE1, QE1, PL1}.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 225

to delete a role that is the end-point of a range in an ARBAC97 component. In
short, we believe that the ARBAC97 components should be dynamic.

The RBAC96/SARBAC model, however, includes the following components:
R, RH, UA, PA, ua-constraints, pa-constraints, and admin-authority. We
have ensured that each of these is dynamic. In particular, the deletion of a
role in a SARBAC relation is permissible, the relation being updated in a well-
defined manner.

Furthermore, the set of administrative roles is static in ARBAC97 and the
assignment of users to administrative roles is not considered. (We note that it
is probably possible to extend the ARBAC97 relations to include administrative
roles. For example, can-assign could contain the tuple (DSO, PL1, [PSO1, PSO1]).
The operation AssignUser(DSO,Bill, PS01) in the last row of Table VII would
then succeed in ARBAC97.) SARBAC defines a set of roles R, where a € R is
an administrative role if there exists r € R such that (a,r) € admin-authority.
This approach means that the assignment of users (and permissions) to roles
(including administrative roles) can be performed within the same framework.

8.2 Simplicity

Obviously the simplicity of a model is a somewhat subjective quality, but we
believe that the relationship between SARBAC relations and the role hierarchy
is more intuitive in SARBAC than in ARBAC97. Administrative scope is a
simple notion to describe informally. Furthermore, we believe that the extended
hierarchy provides a useful way of visualizing administration. In short, there
is an intuitive and immediate interpretation of the admin-authority relation
that is lacking in the can-modify relation.

Possibly the most compelling evidence to support our claim for the greater
simplicity of SARBAC is the conditions that must prevail for an administrative
operation to succeed. If we compare the conditions for hierarchy operations in
Table I (SARBAC) with Table VI (ARBAC97) and for user-role assignment in
Tables ITI (SARBAC) and V (ARBAC97), it is apparent that the tests that need
to be applied are both simpler and have a much greater uniformity in SARBAC.
We believe that this gives the SARBAC model greater coherency and that the
interaction between hierarchy operations and SARBAC relations is far simpler
than in the ARBAC97 model.

Structurally every SARBAC relation is simpler than its ARBAC97 coun-
terpart. (Note also that SARBAC defines three relations compared to five in
ARBAC97.) It is clear that the admin-authority relation is far simpler than
can-modify. In addition, the only constraints on tuples (a, r) € admin-authority
are that a £ r and (r,a) ¢ admin—authority. However, every authority range
in can-modify must be an encapsulated range and any pair of authority ranges
must not overlap. A tuple in the ua-constraints relation consists of a role
and an antichain. It can be seen from the examples in Figure 11(c) that this
antichain will often consist of a single role.

8.3 Practicality and Versatility

It is apparent from Table VII that RHA, is more “permissive” than RRA97,
in the sense that it is less likely to cause hierarchy operations to fail. (This

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

226 . J. Crampton and G. Loizou

observation is confirmed by Proposition 8.2.) In particular, of the thirteen
hierarchy operations in Table VII, only two succeed in ARBAC97, while only
two fail in SARBAC. Given that none of these operations are unreasonable, it
raises concerns about the utility of ARBAC97.

We can immediately see that the requirement that an authority range be an
encapsulated range imposes considerable limitations on the hierarchy opera-
tions that can be performed. In particular, many of the hierarchy operations
in Table VII fail in ARBAC97 because the encapsulation of one or more ranges
would be violated by the operation.

The other factor that severely limits the success of hierarchy operations is
the requirement in RRA97 that a new role has precisely one child and one
parent in the resulting hierarchy. This requirement is imposed because the
creation of a role with either no parent or no child will violate the encapsula-
tion of some authority range in the hierarchy (unless the only authority range
is the whole hierarchy). In short, encapsulated ranges, although conceptually
appealing, limit RRA97 to the point where it is unlikely to be of any practical
use.

The required existence of encapsulated ranges also limits the number of
hierarchies to which RRA97 can usefully be applied. For example, Figure 12(a)
shows a hierarchy in which the only encapsulated range is (E, ED). Figure 12(b)
shows the same hierarchy with a bottom element MinRole appended. This gives
rise to a hierarchy with the same characteristics as a role graph [Nyanchama
and Osborn 1999]. However, it only introduces a single encapsulated range
(MinRole, DIR), which does little to contribute to decentralized and autonomous
administration of the hierarchy. (The hierarchy depicted in Figure 12(a) can
easily be administered by RHA,. In particular, the admin-authority relation
defined in Figure 5(a) is perfectly suitable. In other words, RHA, is applicable
to many more classes of role hierarchy than RRA97.) In short, encapsulated
ranges place strict requirements both on the nature of initial role hierarchies
and on their subsequent development.

Finally, we note that SARBAC can be used to build real hierarchies in a de-
centralized manner. Consider Figure 13. We first assume that an administrative
role DSO has been created. DSO then creates the “backbone” of the department
containing the roles ED and DIR. DSO now creates two administrative roles PS01
and PS02 each of which builds a (sub)hierarchy. Finally, DSO connects the back-
bone to the two hierarchies. Of course, this construction is not unique. We are
merely illustrating how SARBAC might actually work in practice.

In contrast, it is not obvious how ARBAC97 is intended to work. Note that
the administrative relations in ARBAC97 are static and are defined in terms
of the role hierarchy. In other words, the role hierarchy is assumed to have an
existence (at least conceptually) before ARBAC97 relations can be defined. The
question is: at what point does ARBAC97 become applicable to a role hierarchy?
Let us assume that can—modify = {(DSO, (ED, DIR))}, the backbone of the role
hierarchy exists and that the administrative role hierarchy exists (far stronger
assumptions than are required to build a hierarchy using SARBAC). Then DSO
can now build the role hierarchy. However, additional tuples need to be added
to can-modify (which is assumed to be a static relation in ARBAC97).

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 227

DIR

PE1

MinRole
(b)
Fig. 12. A problematic hierarchy for RRA97.

(a)

8.4 Implementation Considerations

An implementation of role-based administration must include operations that
update the relations of the underlying model as well as the RBAC96 relations
RH, UA, and PA. Hence, the number of operations required will be at least
twice the number of relations involved. (We can envisage operations in an im-
plementation of role-based access control to be analogous to the six primitive
operations in the protection matrix model due to Harrison et al. [1976]. These
operations can be grouped into three pairs consisting of a delete operation and a
create operation for the three dynamic components in the model.) Hence, SAR-
BAC will require a minimum of 14 primitive operations (since there are four
RBACY96 relations and three SARBAC relations), while ARBAC97 will require
at least 18 primitive operations.

A detailed analysis of complexity is beyond the scope of this paper. This will be
the subject of further research. However, we believe that hierarchy operations
will be easier to implement and have lesser algorithmic complexity in SARBAC
than in ARBAC97. We note in passing that to establish whether or not an
administrative operation in ARBAC97 fails, it is necessary to examine every
tuple in the appropriate ARBAC97 relation. In SARBAC, however, it is sufficient
to establish whether the parameters of the operation satisfy a suitable condition
pertaining to administrative scope.

8.5 Expressive Power

A rigorous analysis of expressive power is beyond the scope of this paper. Fur-
thermore, we do not agree with some of the assumptions that informed the
development of ARBAC97. In other words, we do not necessarily think it is
worthwhile simulating ARBAC97 using SARBAC or vice versa. However, we
will sketch the differences between ARBAC97 and SARBAC in order to convince
the reader that little has been sacrificed to gain the simplicity and versatility
of SARBAC. There are two main differences to consider.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

228 . J. Crampton and G. Loizou

o,

DSOe’ DSO'
DIRS pS01e” DIRf “ePS02
ED ED

(a) (b) (c)

DSO
PSOls” DIRy “ePSO2 PSO1s” DI
PL1s
PE1 PE1 »PE2
ENG1
ED ED
(d) (e)

(a) = (b) AddRole(DSO, DIR, §), 0) AddEdge(DS0, ED, ENG1)
AddRole(DSO0, ED, (), DIR) AddEdge(DS0, PL1, DIR)

(b) = () AddRole(DSO, PSO1, 0, 0) AddRole(PS02,PL2,),)
AddRole(DSO, PS02, {), 0) (d) = () AddRole(PS02,PE2, (), 0)
AddRole(PS01,PL1, (), () AddRole(PS02, QE2, 0, 0)

(©) = (d) AddRole(PSO1,PE1,), {PL1}) AddRole(PS02, ENG2, (), {PE2, QE2})
AddRole(PS01, QEL,), {PL1}) AddEdge(DS0, ED, ENG2)
AddRole(PS01,ENGL, (), {PE1, QE1}) AddEdge(DSO, PL2, DIR)

Fig. 13. Constructing a role hierarchy using SARBAC operations.

First, it is not possible in general to define administration over a range in
SARBAC because the administrative scope of a given role will not necessarily be
a range. However, it is not obvious to us that the correct unit of administration
is a range. In particular, we are unaware of a practical justification for this
approach, beyond the requirement that undesirable side effects be avoided.
Obviously, a range may be appropriate in certain cases: for example, the range
[ENG1, PL1] is a natural unit of administration for an administrative role with
limited powers, but this range is also identified by SARBAC as the correct unit of
administration. Moreover, we have seen compelling evidence to suggest that the
use of ranges in general, and encapsulated ranges in particular, severely limits
the applicability of ARBAC97. Indeed, the fact that no role can administer the
set {Y, ENG1, PE1, QE1, PL1}in Figure 12(a), a set of roles obviously associated only
with project 1, suggests that ARBAC97 is rather lacking in expressive power.

Second, it is not possible in SARBAC to define arbitrary constraints on user-
role and permission-role assignments. However, we do not believe that thisis a

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 229

significant shortcoming in our model. We have shown that it is not necessary to
include disjunctions in constraints. Nevertheless, it is impossible in SARBAC
to prohibit the assignment of a user u to a role if u is currently assigned some
other specified role r because we do not use constraints of the form —r. Clearly,
such constraints could be used to implement static separation of duty. Moreover,
given that URA97 constraints apply to all users, it would seem that the sole
purpose of a tuple such as (DS0, ED A —PL1, [PL2, PL2]) in can-assign is to enforce
static separation of duty between PL1 and PL2. It seems to us, therefore, that
constraints of the form —r can be specified using RCL 2000 [Ahn and Sandhu
2000], a role-based constraint specification language which is specifically de-
signed to express separation of duty constraints in RBAC96. (Constraints of
the form —r in can-assignp can be used to implement operational separation
of duty constraints, which can also be specified using RCL 2000.) In short, al-
though constraints of the form —r provide more options in controlling user-role
and permission-role assignments, we would argue that RCL 2000 is a more
appropriate way of specifying such behavior. (It should not be forgotten that
constraints of the form —r give rise to the possibility that the can-assign and
can-assignp relations are not consistent, and also increase the complexity of
administration.)

ARBAC97 supports weak and strong revocation for users and permissions.
We noted in Remark 7.1 that a distinction can only be made between weak
and strong revocation if it is assumed that the set of roles assigned to a user
is not an antichain. However, this assumption introduces redundancy into the
model because implicit user-role assignments can be recovered from explicit
user-role assignments in the UA relation and the structure of the role hierarchy.
Nevertheless, if we do not assume that R(u) is an antichain, we can support
both weak and strong revocation.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have defined the concept of administrative scope and used it to
construct a series of models for administering a role hierarchy. This culminated
in the RHA4 model which can be extended to a complete model for role-based
administration. SARBAC, the resulting model, has a number of advantages
over ARBAC97, the most comprehensive role-based administrative model in
the literature. In particular, SARBAC is a complete model in that it provides
for updates of all RBAC96 and SARBAC relations. We also believe that it is
easier to understand the semantics of SARBAC and hence should be easier
to maintain, and that the complexity of implementing SARBAC should be no
worse than ARBAC97.

In the preceding section we discussed the relative merits of ARBAC97 and
SARBAC, and found that our model is more attractive than RRA97 according to
several different criteria. In short, we believe that our model offers significant
practical and theoretical advantages over RRA97.

A couple of points worth noting about the extended hierarchy is that it can be
used even when the set of roles is unordered (i.e., there is no role hierarchy), as
in OASIS [Yao et al. 2001], for example. It can also be used to administer a set

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

230 . J. Crampton and G. Loizou

of groups which naturally form a hierarchy under subset inclusion. That is, we
can envisage a set of administrative subjects and an admin-authority relation
where the most senior administrative subject assigns users to the largest groups
and devolves the responsibility of assigning users to more specialized groups
to less senior administrative subjects.

SARBAC also offers some unexpected benefits. First, it is possible to make
the role hierarchy more fragmented because there is no reliance on ranges,
one of the characteristics of the ARBAC97 model. Second, we have shown that
it is possible to support discretionary access control in a rather natural way
compared to existing approaches [Barkley 1997; Osborn et al. 2000].

Our immediate priority is to complete the SARBAC model by incorporating
administration of separation of duty constraints into SARBAC. This should be
relatively straightforward since a separation of duty constraint can be modeled
as an antichain, and the administration of antichains arises when considering
the ua-constraints and pa-constraints relations. We also intend to give op-
erational semantics for RBAC96/SARBAC by writing pseudo-code functions to
implement the SARBAC operations. In particular, we must define the atomic
actions and the body of the functions. The work in this paper will be used to
specify the conditional statements in the functions. Having achieved this, we
will be in a position to consider complexity issues in more detail and examine
the safety problem in the context of role-based access control. In the longer term,
we hope to implement RBAC96/SARBAC in a prototype system and to consider
the administration of separation of duty constraints using SARBAC. In addi-
tion, we intend to undertake a more thorough investigation of how SARBAC
can be used to support discretionary access control in general, and delegation
in particular.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their helpful
comments.

REFERENCES

AnN, G.-J. aND SanDHU, R. 2000. Role-based authorization constraints specification. ACM Trans.
Inf Syst. Sec. 3, 4, 207-226.

Barkigy, d. 1997. Comparing simple role-based access control models and access control lists. In
Proceedings of Second ACM Workshop on Role-Based Access Control (Fairfax, VA), 127-132.

BeLL, D. AND LAPADULA, L. 1973. Secure computer systems: mathematical foundations. Tech. Rep.
MTR-2547, vol. I, Mitre Corporation, Bedford, MA.

CrampPTON, J. 2002. Authorizations and antichains. Ph.D. thesis, Birkbeck College, Univ. of
London, UK. Available at http://www.isg.rhul.ac.uk/~umai001/Pubs/thesis.pdf.

Davey, B. anDp PriestiEYy, H. 1990. [Introduction to Lattices and Order. Cambridge University
Press, Cambridge, UK.

FriBeErG, C. aAND HELD, A. 1997. Support for discretionary role-based access control in ACL-
oriented operating systems. In Proceedings of Second ACM Workshop on Role-Based Access Con-
trol (Fairfax, VA), 83-93.

GAVRILA, S. AND BarkLEY, . 1998. Formal specification for role based access control user/role and
role/role relationship management. In Proceedings of Third ACM Workshop on Role-Based Access
Control (Fairfax, VA), 81-90.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

Administrative Scope: A Foundation for Role-Based Administrative Models . 231

GLIGOR, V. 1995. Characteristics of role-based access control. In Proceedings of First ACM Work-
shop on Role-Based Access Control (Gaithersburg, MD), I19-1114.

GoH, C. anD Barpwin, A. 1998. Towards a more complete model of role. In Proceedings of Third
ACM Workshop on Role-Based Access Control (Fairfax, VA), 55-61.

Harrison, M., Ruzzo, W., anp ULLmaN, J. 1976. Protection in operating systems. Commun.
ACM 19, 8, 461-471.

Hua, L. anp OsBorN, S. 1998. Modeling UNIX access control with a role graph. In Proceedings of
International Conference on Computers and Information (Winnepeg, MB, Canada).

JosHl, J., GHAFOOR, A., AREF, W., AND SPAFFORD, E. 2001. Digital government security infrastructure
design challenges. IEEE Comput. 34, 2, 66-72.

Kocn, M., Mancint, L. V., anp Parist-Presiccg, F. 2002. A graph-based formalism for RBAC. ACM
Trans. Inf. Syst. Sec. 5, 3, 332-365.

MorreTT, J. AND Lupy, E. 1999. The uses of role hierarchies in access control. In Proceedings of
Fourth ACM Workshop on Role-Based Access Control (Fairfax, VA), 153-160.

MuUNAWER, Q. AND SANDHU, R. 1999. Simulation of the augmented typed access matrix model
(ATAM) using roles. In Proceedings INFOSECU99 International Conference on Information
Security.

NvyancHAMA, M. AND OsBORN, S. 1999. The role graph model and conflict of interest. ACM Trans.
Inf. Syst. Sec. 2,1, 3-33.

OsBORN, S., SANDHU, R., AND MUNAWER, Q. 2000. Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM Trans. Inf. Syst. Sec. 3, 2, 85—106.

SapigHI FirozaBapi, B. aND SErRcoT, M. 1999. Power and permissions in security systems. In
Proceedings of 7th International Workshop on Security Protocols, B. Christianson, B. Crispo,
J. Malcolm, and M. Roe, Eds. Cambridge, UK, 48-59.

SANDHU, R., BHAMIDIPATI, V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based admin-
istration of roles. ACM Trans. Inf. and Syst. Sec. 1, 2, 105-135.

Sanpay, R., Covng, E., FEmnsTEIN, H., AND Youman, C. 1996. Role-based access control models.
IEEE Comput. 29, 2, 38-417.

Sanpay, R., FErRraTOLO, D., AND Kunn, D. 2000. The NIST model for role-based access control:
towards a unified standard. In Proceedings of Fifth ACM Workshop on Role-Based Access Control
(Phoenix, AZ), 47-63. Available at http://www.acm.org/sigsac/nist.pdf.

SANDHU, R. AND MUNAWER, Q. 1998. How to do discretionary access control using roles. In Pro-
ceedings of Third ACM Workshop on Role-Based Access Control (Fairfax, VA), 47-54.

Yao, W., Bacon, J., aAND Moopy, K. 2001. A role-based access control model for supporting ac-
tive security in OASIS. In Proceedings of Sixth ACM Symposium on Access Control Models and
Technologies (Chantilly, VA), 171-181.

Received July 2002; revised November 2002; accepted December 2002

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.

