
Flexible Team-Based Access Control Using Contexts

Christos K. Georgiadis Ioannis Mavridis George Pangalos Roshan K. Thomas
Informatics Lab

Faculty of Technology
Informatics Lab

Faculty of Technology
Informatics Lab

Faculty of Technology
NAI Labs

Network Associates
Aristotle University of

Thessaloniki
Aristotle University

of Thessaloniki
Aristotle University

of Thessaloniki
8000 Westpark Drive

Suite 600
54006, Greece 54006, Greece 54006, Greece McLean, VA 22102-3015

chrisgr@eng.auth.gr imav@eng.auth.gr gip@eng.auth.gr rthomas@nai.com

ABSTRACT
We discuss the integration of contextual information with team-
based access control. The TMAC model was formulated by
Thomas in [1] to provide access control for collaborative activity
best accomplished by teams of users. In TMAC, access control
revolves around teams, where a "team" is an abstraction that
encapsulates a collection of users in specific roles and
collaborating with the objective of accomplishing a specific task
or goal. Users who belong to a team are given access to resources
used by a team. However, the effective permissions of a user are
always derived from permission types defined for roles that the
user belongs to. TMAC is an example of what we call "active
security models". These models are aware of the context
associated with an ongoing activity in providing access control
and thus distinguish the passive concept of permission assignment
from the active concept of context-based permission activation.
The ability to integrate contextual information allows models such
as TMAC to be flexible and express a variety of access policies
that can provide tight and just-in-time permission activation.

Keywords
Teams, access control, contexts, active security.

1. INTRODUCTION
In the past decade, we have witnessed many new emerging trends
in computing. These include massive large-scale distribution,
automated coordination of tasks using workflow technology and
collaborative computing. Accordingly, new models of access
control are required to meet the challenges of these new models of
computing. Traditional subject-object access control models such
as those based on subject-object models typically implemented
through access control matrices and access control lists are not
capable of embedding the required application-level context
information. As such, these models cannot express application-
level access control policies in these new application domains.
In this paper, we discuss the integration of team-based access
control (TMAC) with contextual information. The TMAC model

was formulated by Thomas in [1] to provide a natural way to
model access control for collaborative activity best accomplished
by teams of users. Thus, central to the TMAC approach is the
notion of a “team” as an abstraction that encapsulates a collection
of users in specific roles and collaborating with the objective of
accomplishing a specific task or goal. TMAC can be distinguished
by two key characteristics. First, it is an example of a new breed
of access control models called "active security models". Active
security models are aware of the context associated with an
ongoing activity in providing access control and thus distinguish
the passive concept of permission assignment from the active
concept of context-based permission activation. Second, when
compared to the development of role-based access control
(RBAC) models, TMAC is a hybrid access control model. It
incorporates the advantages of broad, role-based permission
assignment and administration across object types as in RBAC
and yet provides the flexibility for fine-grained activation of
permissions for individual users on individual object instances.
In TMAC, users are assigned to teams and by virtue of team
membership, get access to a team's resources. However, for each
user, the exact permissions he/she obtains to a team's resources
will be determined by his/her role and the current activity of the
team. For example, in a healthcare setting a doctor may have the
permission to prescribe certain medications. However, the doctor
should not be allowed to prescribe for anyone. Rather, he/she
should be allowed to prescribe only for the patient's he/she is
taking care of. TMAC can model the above requirement as it sees
a doctor as belonging to one or more care teams, where a care
team is concerned with the care of a patient. When a doctor joins
a patient's care team, he/she will be given access to the patient's
medical records. The specific level of access and permissions the
doctor can have to these records will be determined by his role in
the organization. Thus only a specialist doctor may be allowed to
see a section of the records that pertain to the results of very
sensitive medical test.
The use of contexts allows team-based access control to be
tailored to specify very fine-grained, flexible and context-based
access control policies. Thus one can consider such contextual
information as the time and shift of a nurse, the location of the
patient etc. in modeling access control policies.
Active security models provide very tight, just-in-time
permissions so that only the appropriate team members get access
to specific records and only when they provide their services,
without adding any significant administrative overhead. These
permissions are neither granted “too early” nor revoked “too late”,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’01, May 3-4, 2001, Chantilly, Vriginia, USA.
Copyright 2001 ACM 1-58113-350-2/01/0005…$5.00.

21

ensuring in this way a tight matching of permissions to actual
usage and need. In other words, the granting, tracking and
revoking of permissions are automated and synchronized with the
progression of associated tasks. In our healthcare example, as
soon as a patient checks out of the clinic or hospital, access to the
patient's medical records may be turned off for all or specific
members of the patient's care team.
One of the main advantages of TMAC over other access control
models such as RBAC is that it is able to leverage the scaleable
security administration benefits of role-based permission
assignment and yet able to provide fine-grained permission
activation and deactivation to individual users and object
instances. We can thus assign and administer broad permissions
for doctors on object types based on some role definitions and yet
activate a doctor's permission to a patient's records (object
instances) only when he/she is taking care of the patient.
In this paper, we extend the original TMAC proposal [1] in two
key directions. First, we give a framework to integrate TMAC
concepts with RBAC. Second, we extend TMAC to use general
contextual information. Such contextual information can among
others include the time of access, the location from which access
is requested, the location where the object to be accessed resides,
transaction-specific values that dictate special access policies etc.
This allows TMAC to model a richer set of access policies that are
more closely tied to application semantics and needs.

2. BACKGROUND
2.1 Role-based Access Control
With role-based access controls, access rights are grouped by role
name. This approach offers significant advantages because of
scalability. Each user is assigned one or more roles, and each role
is assigned one or more permissions that can be given to users in
that role [2].
Users are granted membership into roles based on their
competencies, credentials and responsibilities in the organization.
User membership in roles can be revoked easily and new
memberships established as needed. This simplifies the
administration and management of permissions since roles can be
updated without updating the permissions for every user on an
individual basis [3]. Moreover, the use of role hierarchies
provides additional advantages since one role may implicitly
include the operations that are associated with another role. A
recent well-known role-based approach is RBAC [4], which has
received considerable attention as a promising way to enhance
traditional mandatory and discretionary models.

2.2 Team–based Access Control
The TMAC model was originally proposed by Thomas in [1].
TMAC recognized the importance of context information
associated with collaborative tasks and the ability to apply this
context to decisions regarding permission activation. The
collaboration context of a team contains two pieces: the user
context, which could be the current members (users) of a team,
and the object context, which could be the set of object instances
required by the team to accomplish its task. TMAC allows us to
create a general structure (class/definition) of a team with role-
based permission assignments to object-types. However, when a

team is instantiated, the user context can be used to tailor the role-
based permissions defined on object types to user-specific
permissions on individual object instances considered to be part
of a team's resources.
By aligning access control to the metaphor of teams, TMAC can
provide a paradigm for access control that is natural and non-
intrusive to the way users work in collaborative environments.
We extend the original TMAC proposal [1] in two key directions.
First, we give a framework to integrate TMAC concepts with
RBAC. Second, we extend TMAC to use other contextual
information besides what is currently used in the user context and
object context. This generalized model is referred to in the rest of
the paper as C-TMAC (for context-based TMAC). Such
contextual information can among others things include the time
of access, the location from which access is requested, the
location where the object to be accessed resides, transaction-
specific values that dictate special access policies etc. This allows
TMAC to model a richer set of access policies that are more
closely tied to application needs.

3. TEAM-BASED ACCESS CONTROL
USING CONTEXTS (C-TMAC)

3.1 Integrating RBAC, TMAC and Contexts
As noted by other researchers [5, 6, 7, 8] a variety of factors and
contextual information (like time and location) have to be in
considered when influencing the desirable behavior of an access
control system during runtime. There are specific application
areas, such as the healthcare ones, where it is difficult to define
workflow tasks and their access control requirements in a static
way. Workflows often tend to be ad-hoc with several users
joining and leaving one or more teams in unpredictable way.
What is needed is an active access control system that supports
context-based permission activation. Our perspective is that all
these factors have to be considered in order to formulate the team
context associated with a particular task. Context thus identifies
the specific need-to-know requirements of each member of the
team.
Our proposed Context-based Team Access Control (C-TMAC)
approach is based on the integration of RBAC [4] and the TMAC
[1] approaches. C-TMAC consists of five sets of entities called
users, roles, permissions, teams and contexts, as well as a
collection of sessions, which are shown in the diagram of figure 1.
A user (U) is simply a person. A role (R) is a job function within
the organization with some associated semantics regarding the
authority and responsibility conferred on a member of the role.
Permissions (P) are approvals of a particular mode of access to
one or more data objects.
User assignment (URS) and permission assignment (PRS) are
both many-to-many relations. A user can be a member of many
roles, and a role can be assigned to many users. Similarly, a role
may have many permissions and the same permission can be
assigned to many roles. These relations are the fundamental
concepts in RBAC [4].

22

An important property of a session (S) is that the user associated
with a session, via the session-user function defined below, cannot
change. The association remains constant for the life of a session.
The permissions available to the user are the union of permissions
from all roles activated in that session. In addition, active roles in
a session can be changed at the user’s discretion.
In context (C) is included information regarding the required data
objects for a specific activity, as well as contextual information
such as locations and time intervals etc. The team (T) entity is
used to represent a group of users having specific roles with the
objective of completing a specific activity in a particular context.
However, the team concept is used also as a mechanism that
associates users with contexts. The use of a team as an
intermediary to enable a user to obtain a context is similar to the
use of roles as an intermediary between users and permissions.
Even when a user is acting alone, we may consider the user as the
only member of a private team. During a session, a user can
participate in a number of teams. So, each session is also a
mapping of one user to a subset of teams that he is a member of.
The contexts available to the user are the union of contexts from
all teams that he participates in. Moreover, “active” teams in a
session can be changed at the user’s discretion, just like his active
roles. A team can also be seen as a mapping to multiple users. The
roles activated by these users identify the permission set available
to the team as the combination of permissions from all roles
participating in that team.
Context assignment (CTS) and team assignment (UTS) are both
many-to-many relations. A team may have many contexts and the
same context can be assigned to many teams. Similarly, a user can
be a member of many teams, and a team may have many users.
However, there are constraints when assigning user to teams. An

obvious constraint is related to the roles already assigned to the
user. There are mutually exclusive roles and teams, e.g. a user that
has been assigned the roles Physician and Director cannot
participate in a care-team as a Director.

3.2 Formal Description of C-TMAC
The following definition, which is based on the definition of
RBAC0 [4], provides some formalization to the above discussion.
Definition: C-TMAC has the following components:

� U, R, P, S, T, C, stand for users, roles, permissions, sessions,
teams and contexts, respectively

� PRS ⊆ P x R, is a many-to-many permission to role
assignment relation

� URS ⊆ U x R, is a many-to-many user to role assignment
relation

� CTS ⊆ C x T, is a many-to-many context to team assignment
relation

� UTS ⊆ U x T, is a many-to-many user to team assignment
relation

� session-user : S → U, is a function mapping each session si to
the single user user(si) that is constant for the session’s
lifetime

� session-roles : S → 2R, is a function mapping each session si
to a set of roles roles(si) ⊆ {r | (user(si), r) ∈ URS}, which can
change with time, and session si has the permissions ∪∪∪∪ r ∈

PRS
PERMISSION

ASSIGNMENT
ROLES

SESSIONS

.

.

.

URS
USER TO ROLES

ASSIGNMENT

T E A M S

 assignment
 activation

CONTEXTS UTS
USER TO TEAMS

ASSIGNMENT

CTS
CONTEXT

ASSIGNMENT

PERMISSIONS

CONSTRAINTS
USERS

Figure 1 - The C-TMAC approach

23

roles(si) {p | (p, r) ∈ PRS} referred to as Session-Roles
Permissions

� session-teams : S → 2T, is a function mapping each session si
to a set of teams teams(si) ⊆ {t | (user(si), t) ∈ UTS}, which
can change with time, and session si has the contexts ∪∪∪∪ t ∈
teams(si) {c | (c, t) ∈ CTS} referred to as Team-Context.

� team-users : T → 2U, is a function mapping each team ti to a
set of users users(ti) ⊆ {u | (u, ti) ∈ UTS} ∧ ∃ sj : user(sj) = u},
which can change with time

� team-roles : T → 2R, is a function mapping each team ti to a
set of roles roles(ti) ⊆ {r | (users(ti), r) ∈ URS}, which can
change with time, and team ti has the permissions ⊕ r ∈
roles(ti) {p | (p, r) ∈ PRS}, referred to as Team-Roles
Permissions, and where ⊕ means “combination”. We may
consider different ways in which team-roles permissions could
be combined as follows:

o Aggregation: The set of access permissions of the team is
the sum-up (union) of the individual assigned role-based
access permissions of all team members.

o Maximum/Minimum: The set of access permissions is
considered to be equal to the maximum or minimum
permissions sets of the individual members of the team.

o Current team structure: The structure (formation) of the
team is used to determine the credentials held by the team
members. According to a team template, a certain number
of members of the team is required. Individual users are
not permitted to perform actions on their own but only in
the presence of the remainder participants of the team.

3.3 Activation of Final User Permissions
In order to access specific objects using contextual information
such as time intervals or trusted locations, we approach access
control using role-based permission assignment and team-based
permission activation. At first (during the login phase), a user has
to complete the identification and authentication procedure,
presenting suitable credentials (such as user-id and password
information for local networks, or present digital certificates for
internet/intranet environments). Then, the user has to select a
subset of roles from the set of roles assigned to him/her.
According to this selection, a particular set of role-based
permissions is granted and these are called session-roles
permissions. Note that up to this point, no permissions are
available to any specific object instances.
After the role selection, the user has to select a subset of teams to
participate. It is worth mentioning that certificate-based
credentials, such as attribute certificates [9, 10] could be used for
both role and team membership user verifications. After the team
selection procedure is completed, the permission set of the user is
combined with the permission set available to the team.
As we have mentioned before, teams can be seen as groups of
current task contexts. This means that when a user participates in
a team he gains also the context of his task. The team context is
expressed in terms of ranges of values. For every team, there are a
variety of system variables that can hold sets of values for chosen
contextual information (factors). The binding of these variables to

actual values is accomplished during the runtime by the
administration subsystem of the organization.
Team contexts can be seen also, as restrictions on objects and/or
on conditions pertaining to the filtering of the access request in
such a way as to select appropriate result sets. Thus, the final
permission set of a user is filtered using the current context of his
team. Any subsequent user access request is allowed only when
the necessary role-based permissions have already been granted
and only when current values of context variables are contained in
the ranges of his team's context.
The activation of user permission is accomplished in accordance
with the following two-step procedure:
Step 1: Considering a user who has activated a subset of roles and
participates in a subset of teams, initially the role-based
permissions of this user are derived with the following definition,
where the symbol ⊕ stands for “combined with”:
� Role-based Permissions =

Session-Roles Permissions ⊕ Team-Roles Permissions
Step 2: The final permissions activated are the context-based
permissions, which are derived from role-based permissions (step
1) with the following definition, where ⊗ means “filtered by”:
� Context-based Permissions =

Role-based Permissions ⊗ Team-Context
The filtering process makes the C-TMAC access control very
dynamic. It is simple as a rule in order to determine the final
permission set of the user. We may consider it as a mechanism of
extracting meaningful subsets of the role-based permission set
based on the values of a team's contextual variable such as user
location, time, and patient to be billed. This requires that we
define valid ranges of acceptable context values for every team.

4. APPLICATIONS OF C-TMAC
We now discuss the applications of C-TMAC with an example
from the healthcare domain based on a prototype implementation.
The health care setting is an example where a variety of teams
may be involved in a task. Tasks also tend to very dynamic and
often ad-hoc. For example, a patient may be transferred from the
general wards to the coronary care unit (CCU) as a result of a
heart attack and the members of the cardiology team now have to
provide care for the next few hours with their specific services.
The cardiology team in this example is a group of users with
specific roles and contextual variables. In this example, the task
has a scope (i.e., taking care of cardiology patients, is executed in
a specific location, namely the CCU unit and by specific
roles/users, and has a start and a finish point). Therefore, tasks in
healthcare environments could be defined at runtime
(dynamically) on the basis of the following contextual variables:
� patient: a user (doctor, nurse) gains additional permissions for

a specific patient he is in care of.
� location: the collaborative activity depends on the specific

area wherein the users (members) of a particular team are
working.
� time: all permissions are valid during a certain time (periodic)

interval.

24

Our example uses a backend relational database management
system. Thus, the objects of protection are relations, tuples,
attributes and views using modes of access operations such as
SELECT, INSERT, DELETE and UPDATE.
The permissions of users can be defined as data views (e.g. by
using the SELECT statement of the Structured Query Language -
SQL). Using views of the relational model results in a view-based
protection model [11]. A significant advantage of this definition is
the use of flexible granularities to define the objects to be
protected [12]. So, it is easy to introduce detailed specifications of
specific items (e.g. fields), as well as, more general declarations
for coarser groups of data sets (e.g. tables) in order to save storage
space.
In the following example, we intend to demonstrate the way C-
TMAC active security concepts can be implemented on top of
well-accepted passive security models in a collaborative
environment. For this reason, we use a relational database access
control system that has been defined according to the previously
proposed eMEDAC (enhanced Medical Environment Database
Access Control) security policy [13] and the corresponding
definition methodology of its security mechanisms.
The eMEDAC (enhanced Medical Environment Database Access
Control) security policy is based on both mandatory and
discretionary security models. It also exploits the RBAC security
features that have been tailored to meet the specific needs of a
healthcare information system.

Discretionary security is implemented by using user roles that are
authorized to execute specific database operations on predefined
sets of data on behalf of users that activated them. Those sets of
data are defined by using the concept of a view. As a result,
instead of authorizing users to have access to the base relations of
a database system, user roles are permitted access only to the
virtual view relations.
eMEDAC utilizes the notion of a Hyper Node Hierarchy (HNH).
This is a mechanism for inheriting permissions (discretional
control) and deriving security labels (mandatory control). HNHs
are used to construct User Role Hierarchies (URH) and Data Set
Hierarchies (DSH) and to derive the security labels (consisting of
a security level and a category set) of user roles and data sets. The
construction of HNH hierarchies for different administrative
domains conforms to a number of constraints. Access control data
are centrally defined and stored separately from the application
data holders. A flexible number of refinement levels can be
specified and these do not have to be strictly equal to the number
of mandatory security levels. However, the HNH mechanism
specifies (in a mandatory way) a certain number of security levels
that cannot be overridden.
In general, the definition of various configurations (role and data-
set hierarchies, user to role assignments and session-roles
permissions) are accomplished for a particular application during
the design phase and is based on static conditions. So, it has to be
executed once initially and subsequently requires minimal
modification.

User identification
and authentication

Role activation Team participation

Session-Roles permissions Team-Roles permissions

COMBINATION

Team context

FILTERING

MDB

Role-based permissions

Context-based permissions

SELECT
field1, field2, field3
FROM PATIENTS

SELECT
field1, field3, field4
FROM PATIENTS

SELECT
field1, field2, field3, field4
FROM PATIENTS

 SetOfPatients: (200, 351, 402, 667)

 TimeZones: ([10:00;12:00])

 SetOfLocations: (ER-1,ER-3,GW-2)

SELECT
field1, field2, field3, field4
FROM PATIENTS

WHERE CurrentPatientID IN (200, 351, 402, 667)
 AND CurrentTime IN ([10:00;12:00])
 AND CurrentLocation IN (ER-1,ER-3,GW-2)

Figure 2 - Context-based permissions activation in healthcare domain.

 25

Our objective is to focus on a simple case in a healthcare
environment and define a set of representative factors that
constitute the active access control mechanisms. Subsequently,
these mechanisms are used to manipulate a given user access
request and determine the final access decision. For this purpose,
we assume the presence of the following table in the medical
database: PATIENTS (PatientID, field1, field2, field3, field4,
field5).
For roles Doctor, Head Nurse and Nurse, the sets of role
permissions for this table, with view-based protection expressed
in SQL form, are as follows:
� Permissions (Doctor): SELECT field1, field2, field3 FROM

PATIENTS

� Permissions (Head Nurse): SELECT field1, field3, field4

FROM PATIENTS
� Permissions (Nurse): SELECT field1, field4 FROM

PATIENTS
Let assume as context parameters for clinical tasks are the patient-
ids, the current time and the current location of the users. This
means that the context for every team can be expressed with the
corresponding variables SetOfPatients, TimeZones and
SetOfLocations, wherein are placed the sets of actual values
regarding charged patient-ids, work time zones and responsibility
locations, respectively.
In our example, we assume an Emergency Room care-team (ER-
Team). Possible locations of users could be ER-1, ER-3 for
emergency rooms 1 and 3 respectively, as well as GW-2 for the
general ward. Then the context assigned to the ER-Team could be
as follows:

Context (ER-Team): SetOfPatients: (200, 351, 402, 667)
TimeZone: [10:00;12:00]
SetOfLocations: (ER-1, ER-3, GW-2)

This context can be expressed as a WHERE clause that is going to
be added subsequently to the view definition of the role-based
permissions of the user in order to filter them:
WHERE CurrentPatientID IN SetOfPatients

AND CurrentTime IN TimeZone
AND CurrentLocation IN SetOfLocations.

We assume that users Mary and Helen have already started their
sessions s1 and s2 and activated their roles HeadNurse and Nurse
respectively, and they are participating in the ER-Team.
Session 1:

session-user(s1) = ‘Mary’
session-roles(s1) = [HeadNurse]
session-teams(s1) = [ER-Team]

Session 2:
session-user(s2) = ‘Helen’
session-roles(s2) = [Nurse]
session-teams(s2) = [ER-Team]

Team-users (ER-Team) = [Mary, Helen]
Team-roles (ER-Team) = [Head Nurse, Nurse]

The permissions of the ER-Team are determined as the union of
the permissions of the participating roles:
Team-Roles Permissions (ER-Team) =

SELECT field1, field3, field4 FROM PATIENTS
Continuing our example, we assume that user Chris is starting his
session s3 and is activating the role Doctor and is participating in
the ER-Team.
Session 3:

session-user(s3) = ‘Chris’
session-roles(s3) = [Doctor]
session-teams(s3) = [ER-Team]

Team-users (ER-Team) = [Chris, Mary, Helen],
Team-roles (ER-Team) = [Doctor, Head Nurse, Nurse].

According to the proposed procedure for defining the team-roles
permissions, we have chosen to use the aggregation (union) as the
combination method for role-based permissions:
Step1: Role-based Permissions(Chris) =

= Session-Roles Permissions (Doctor) ⊕ Team-Roles Permissions
(ER-Team) =

= {SELECT field1, field2, field3 FROM PATIENTS} ∪

 ∪{SELECT field1, field3, field4 FROM PATIENTS}
= SELECT field1, field2, field3, field4 FROM PATIENTS

Step2: Context-based Permissions (Chris) =

= Role-based Permissions (Chris) ⊗ Team-Context (ER-Team) =

= SELECT field1, field2, field3, field4 FROM PATIENTS
WHERE CurrentPatientID IN (200, 351, 402, 667)

 AND CurrentTime IN [10:00;12:00]
 AND CurrentLocation IN (ER-1,ER-3,GW-2)

(view-1)
CurrentPatientID, CurrentTime and CurrentLocation are variables
that are bound to concrete values during the access request. In
order to make this clear, we assume Chris places the following
access request:

SELECT field1, field4 FROM PATIENTS
WHERE PatientID = CurrrentPatientID

(view-2)
at 11.30 (CurrentTime = [11:30], from Emergency Room Nr.1
(CurrentLocation = ER-1) and for patient with ID = 351
(CurrentPatientID = ‘351’).

26

This action has two effects. Firstly, view-1 expression is
evaluated, since all variables contain specific values. Secondly,
based on the user access request, the system evaluates and
compares view-1 and view-2. The access control system examines
whether the set of results from access request (view-2) is included
(IN clause of SQL) in the set of results of context-based
permissions (view-1).
In summary, Chris indeed gets access and his request (view-2)
is satisfied, as all relative parameters of his specific access
request belong to the contextual information of ER-Team. If at
least one of the parameters CurrentTime, CurrentLocation,
CurrentPatientID, has a value that is outside the range of ER-
Team context (e.g. Chris requested access from Emergency Room
Nr. 2), then the request would have been denied.
In summary, we used a relational database management system to
model all role-based permissions of a healthcare organization as
views (SELECT statements) according to the eMEDAC security
policy. We then exploited the advanced characteristics of
Dynamic SQL in modern relational DBMSs. Dynamic SQL
statements are stored in character strings that are input to or built
by the program at runtime. We store in appropriate data structures
the context values of every team. Naturally, these values can be
changed at runtime by the administration of the organization. It is
important to note that these values are implemented by using
Dynamic SQL statements. These contextual values are capable of
implementing the filtering process of C-TMAC model. The
character strings that contain the role-based permissions are
extended in order to attach additional WHERE clauses to the
initial SELECT statements. When these extended strings are
executed as dynamic SQL statements, the newly added WHERE
clauses provide selections of rows of data objects according to the
team context.
From our development and implementation experience we are
convinced that C-TMAC provides significant capabilities to
model and implement permission activation mechanisms in a
flexible manner, so as to meet the needs of collaborative
environments.

5. CONCLUSION
We have presented an approach to integrating team-based access
controls with RBAC and contexts. TMAC preserves the
advantages of scaleable security administration that RBAC-style
models offer and yet offers the flexibility to activate permissions
for individual users and to specific object instances. The C-TMAC
model developed in this paper allows the use of general
contextual information and gives TMAC the capability to model a
rich set of security policies and to tune permission activation and
deactivation in very flexible ways. We have also shown in this
paper, how C-TMAC concepts can be implemented over passive
role-based security policies and mechanisms such as that found in
relational database systems and eMEDAC. We believe that
TMAC and its variations will prove to be an interesting starting
point for further investigations of security models for next-
generation collaborative applications.

6. REFERENCES
[1] Thomas R.K. Team-Based Access Control (TMAC): A

Primitive for Applying Role-Based Access Controls in
Collaborative Environments, Proceedings of the Second
ACM workshop on Role-based Access Control, Fairfax, VA
USA, 1997.

[2] NIST. Role Based Access Control, National Institute of
Standards and Technology, 1999, available in URL:
http://hissa.ncsl.nist.gov/rbac

[3] NIST. An Introduction to Role-based Access Control, NIST
CSL Bulletin on RBAC, National Institute of Standards and
Technology, 1995, available in URL:
http://csrc.nist.gov/nistbul/csl95-12.txt

[4] Sandhu R. Role-Based Access Control, Advances in
Computers, Vol.46, Academic Press, 1998.

[5] ISO. ISO / IEC 10181-3 Model of Access Control, X/ Open
Guide Basic Security Facilities - Authorization in Distributed
Security Framework, 1994.

[6] Beznosov K. Requirements for Access Control: US
Healthcare domain, Proceedings of the Third ACM
Workshop on Role-Based Access Control, October 1998,
Fairfax, VA, USA, 1998.

[7] Lupu E. and Sloman M. Reconciling Role Based
Management and Role-based Access Control, Proceedings of
the Second ACM Workshop on RBAC, Fairfax, VA, USA,
1997.

[8] Giuri L. and Iglio P. Role Templates for Content-Based
Access Control, Proceedings of the Second ACM Workshop
on RBAC, Fairfax, VA, USA, 1997.

[9] Farrel S. and Housley R. An Internet Attribute Certificate
Profile for Authorization, Internet Draft:
draft.ietf.pkix.ac509prof-03.txt, work in progress, May 2000.

[10] Mavridis I., Georgiadis C., Pangalos G. and Khair M. Using
Digital Certificates for Access Control in Clinical Intranet
Applications. Journal Technology and Health Care, Vol. 8,
Nos. 3, 4 (2000), ISSN 0928-7329, p. 173-174, IOS Press,
2000.

[11] Pernul G. Database Security, Advances in Computers,
Vol.38, M.C. Yovits (Ed.), Academic Press, 1994.

[12] Pangalos G. and Khair M. Design of a Secure Medical
Database Systems, in IFIP/SEC’96, 12th international
information security conference, 1996.

[13] Mavridis I., Pangalos G. and Khair M. eMEDAC: Role-
based Access Control Supporting Discretionary and
Mandatory Features, Proceedings of 13th IFIP WG 11.3
Working Conference on Database Security, Seattle,
Washington, USA, 1999.

27

