
Redirection Policies for Mission-Based Information
Sharing

David Keppler
dkeppler@mitre.org

Vipin Swarup
swarup@mitre.org

Sushil Jajodia
jajodia@mitre.org

The MITRE Corporation
7515 Colshire Drive
McLean, VA 22102

ABSTRACT
When an access decision function denies a data access re-
quest by a mission participant in a mission-critical situation,
the mission often suffers. In this paper, we propose a shar-
ing control mechanism that computes and executes requests
that are mission-related to denied requests. We extend the
Flexible Authorization Framework (FAF) with predicates
and hierarchies that permit us to specify authorization rules
over denied requests and mission-specific relationships. We
illustrate our techniques using a prototypical information
sharing scenario, namely an emergency first-responder sce-
nario.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, Integrity, and Protection; D.4.6 [Operating
Systems]: Security and Protection—Access Controls; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Management, Security

Keywords
Data sharing, information sharing, access control policy, au-
thorization

1. INTRODUCTION
Access control policies specify whether requests by prin-

cipals to perform actions on resources should be authorized.
The access decisions can rely on a wide variety of informa-
tion including the principals’ attributes, the resources’ at-
tributes, the actions being requested, a history of previous
events, and environmental attributes [4].

If an access decision function denies an access request,
most current systems will reject that request and take no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’06, June 7–9, 2006, Lake Tahoe, California, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006 ...$5.00.

further action. Our investigations have revealed that in
mission-critical situations, humans and organizations vio-
late such strict rejection policies routinely, although in an
ad hoc manner. We address this problem by proposing a
general sharing control framework that, rather than merely
denying requests, determines a range of other possible ac-
tions to take. Our approach is based on our observation that
the very fact that a principal made a request is interesting
and may contain useful information based on the context in
which the request was made. To the best of our knowledge,
our sharing framework is the first systematic approach for
expressing policies with alternate actions.

There are two broad categories of alternate actions that we
consider. First, if a requestor is denied access, the sharing
control function determines whether some other principal
(who is related to the requestor and his mission) is autho-
rized and should be granted access, even if that principal did
not request it. For instance, if Joe requests read-access to a
data object but is denied, the sharing control system would
check whether the data is critical to Joe’s current mission,
and if so, would send the data to another principal (e.g.,
Joe’s manager) who is related to Joe’s role in the mission
and who is authorized to access the data. A filtering mech-
anism ensures that such sharing does not impose an undue
burden on either the network or any individual principal.

Second, if a requestor is denied access, the sharing con-
trol function considers whether this might be due to the
access decision function not having adequate privileges or
information to make the decision, and determines whether
other authorities may be able to make more informed ac-
cess decisions. If so, the original request (and optionally the
data object itself) is forwarded to those authorities for fur-
ther handling. For instance, some requests may be denied
since an individual access decision function is not authorized
to receive all the credentials relevant to making the access
decisions. Trust negotiation policies and mechanisms have
been proposed to address this situation, but there are many
possible scenarios where trust negotiation fails [13]. We ob-
serve that trusted intermediaries (i.e., trusted third parties)
may make more informed access decisions in such cases. Our
policy language includes several such options for redirecting
access requests.

In this paper, we present a formal sharing policy language
for expressing policies with the above categories of alternate
actions. Our language is based on the Flexible Authoriza-
tion Framework (FAF) [8] which is a general, logic-based
access control framework. A sharing policy includes both a

210

conventional access control policy and a redirection policy.
A sharing control system enforces a sharing policy by first
applying its access control policy to an access request. If the
request is denied by the access control policy, then the redi-
rection policy is evaluated to determine a set of alternate
actions to grant instead of the original requested action.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a running, motivational example and Sec-
tion 3 describes desirable sharing actions. Section 4 summa-
rizes the Flexibile Authorization Framework (FAF), while
Section 5 presents our Sharing Policy Language (SPL) that
extends FAF. Section 6 describes related work and Section 7
concludes this paper.

2. MOTIVATING EXAMPLE
Throughout this paper, we shall use a prototypical exam-

ple that exemplifies the information sharing problem. Con-
sider a hypothetical situation where the Federal Bureau of
Investigation (FBI) suspects that a terrorist cell is stockpil-
ing hazardous material (e.g., chemical and biological agents)
in a building. FBI agents are in contact with other agencies
(e.g., the Centers for Disease Control and Prevention (CDC)
and the United States Army Medical Research Institute of
Infectious Diseases (USAMRIID)) that have detailed knowl-
edge about the hazardous materials. A fire suddenly breaks
out in a warehouse adjacent to the building, and local fire-
fighters respond to the emergency. The fire grows rapidly
and is about to spread to the adjacent building. The fire-
fighters do not have adequate security clearances for terror-
ist threat information, and they may even be unauthorized
to know general information about the specific hazardous
materials suspected of being in the building. However, this
information is relevant to their current mission and the in-
formation may save lives. The sharing infrastructure must
determine how (and with whom) it should share this infor-
mation so that: (i) missions are not compromised, and (ii)
confidentiality is maintained both of the information and
of the sources and methods by which the information was
collected. Similar scenarios occur daily in numerous envi-
ronments including military operations, law enforcement,
counter-terrorism, border control, etc.

3. ACCESS REQUEST REDIRECTION
The motivating example highlights two key issues. First,

while individual firefighters might not have adequate priv-
ileges to receive critical information, other principals (e.g.,
their fire chief or an FBI agent at the scene) might have
the required privileges and might be in a position to influ-
ence the firefighting mission. Second, CDC and USAMRIID
might not have adequate information to make informed ac-
cess control decisions regarding local firefighters, whereas a
regional counter-terrorism center or the local fire chief may
be better situated to do so. These considerations motivate
several alternate actions that the system might grant when
a principal’s information access request is denied:

Data Redirection: Suppose that a principal P makes a re-
quest to read some data object O but the access control
policy is unable to authorize the action. There is some
other principal Q (or multiple principals Qi) which is
authorized to read O. Further, P and Q are related
such that providing O to Q instead of P will yield a
sufficient utility gain. A redirection policy might grant

the push action of sending O to Q in response to P ’s
read access request. Note that this assumes an en-
vironment with both push and pull style data access
methods, strong relationships between principals, and
some measure of the utility gained by one principal
when data objects are sent to certain other related
principals. Additionally, the data recipient Q is as-
sumed to make full use of the data pushed to it to
achieve the expected utility gain for the transaction.

Data object redirection results in indirect information
flows, i.e. a provider cannot directly grant a task-
related request from Alice, but it provides the data
instead to Bob who works with Alice on the task. This
sort of action is desirable in situations where the re-
questor and data provider are in separate organiza-
tions. The provider will likely not have sufficient con-
text to make decisions about every member of the con-
sumer organization, but may have some direct knowl-
edge of a certain subset of members of the other orga-
nization and some information about its structure.

Two practical considerations arise from data redirec-
tion that an implementation ought to address: 1) re-
quest originators may receive some notification indi-
cating when redirection was used to fulfill requests;
and 2) some filtering or rate-limiting mechanism must
exist to prevent overloading recipients with redirec-
tions and creating a denial of service situation. Any
response notifications delivered to requestors must be
subject to concerns of leaking information about the
existence, sensitivity, and contents of data objects as
well as the privileges of other principals.

Request Redirection: A principal P submits a request to
perform an action a on data object O and the system
makes an authorization request to the access decision
function α. α is unable to grant P ’s request, but a
redirection policy sends the request to access decision
function β instead. β’s access control policy might ei-
ther directly grant the requested action, or else grant
the action of sending α additional information which
might enable α to grant the requested action. In the
former case, β serves as an “override authority”, i.e.,
it overrides α’s access control policy. Note that this
applies to decentralized systems with many principals
and many access decision authorities, each with lim-
ited knowledge. Further, it requires that α has knowl-
edge of other decision authorities, including relations
between decision authorities and objects, and between
decision authorities and principals.

Redirection of Data and Request: This is a generaliza-
tion and combination of the data-object and request
redirection schemes. A principal P makes a request
for action a on data object O to decision authority
α. α is a responsible authority for the data O but
does not have the context to decide whether to grant
P ’s request. α is aware of several trusted intermedi-
ary decision authorities or has the means to discover
them. A trusted intermediary is an especially trusted
and knowledgeable decision authority to whom other
decision authorities can delegate responsibility over a
particular request and associated data object. One
or more trusted intermediaries that are authorized to

211

access the object O and have the most appropriate
context for making decisions about P are selected.
Then, the data object O and the original request are
forwarded to the selected trusted intermediaries who
may eventually grant access to the object to P . This
assumes a distributed network of principals and deci-
sion authorities in which the participants in any par-
ticular request/decision cycle may not have the proper
context and relations to complete the transaction. It
requires that decision authorities trust certain other
decision authorities as being trusted intermediaries.

Other alternate actions include temporarily elevating a
principal’s privileges by ‘reading in’ the principal to the
policies and penalties associated with the information, and
downgrading a sanitized version of the information so that
it can be released to the principal. Both involve manual
processes that require complex risk management decisions
and they are used primarily for information with short-lived
sensitivity. In the remainder of this paper, we focus on redi-
rection actions and present a general logic-based framework
for expressing policies regarding redirection actions.

4. FLEXIBLE AUTHORIZATION
FRAMEWORK

Our sharing control policy language is based on the Flex-
ible Authorization Framework (FAF) [9, 10, 8]. FAF is a
logic-based framework for managing access to data by users.
The framework permits system administrators to specify
multiple access control policies that can be enforced within
a single system. FAF provides a data system that consists of
users, groups, and objects, together with the roles they may
play, the access modes they may use, and three classification
hierarchies (user-group, object-type, and role hierarchies).
Our summary of FAF is adapted from [15].

Authorization subjects (AS) denote those entities for
which accesses are authorized (users, groups, and roles), and
authorization objects (AO) denote those entities on which
accesses are authorized (objects, types, and roles). Access
modes (A) are actions that authorization subjects wish to
execute on authorization objects. An authorization is a
triple (o, s, 〈sign〉a) where o ∈ AO, s ∈ AS, “sign” is ei-
ther “+” or “−”, and a ∈ A. The triple (o, s, +a) means
that subject s is authorized to execute action a on object
o, while (o, s,−a) means that s cannot execute a on o. The
set of all authorizations is called AUTH, while AUTH+ and
AUTH− denote, respectively, the sets of positive and nega-
tive authorizations.

Formally, FAF’s Data System (DS) is the five-tuple
〈Rel, OTH, UGH, RH,A〉 where:

• Rel is a set of (first order) predicates. In particu-
lar, it contains the unary predicate symbols isuser,
isgroup, isrole, isobject, and istype, which are
true if their argument is a user identifier, group iden-
tifier, role, object identifier, and object type, respec-
tively. These predicates define the sets of users (U),
groups (G), roles (R), objects (Obj), and object types
(T), respectively. Rel also includes predicates which
define relations between users, groups, roles, and ob-
jects. The definition of these will typically be specific
to a given environment and policy. One such predi-
cate is defined in Section 5 as an integral part of our
sharing policy language.

• OTH = (Obj, T,≤OT) is an object-type hierarchy
where Obj is a set of object identifiers, T is a set of
object types, and ≤OT is a partial order such that for
all o ∈ Obj and ot ∈ T , o ≤OT ot iff o is an object of
type ot.

• UGH = (U, G,≤U G) is a user-group hierarchy where
U is a set of user identifiers, G is a set of group identi-
fiers, and ≤UG is a partial order such that for all u ∈ U
and g ∈ G, u ≤UG g iff u is a member of group g.

• RH = (φ, R,≤R) is a role hierarchy where R is a set
of roles, and ≤R is a partial order such that for all
x, y ∈ R, x ≤R y iff x is a specialization of y.

• A is a set of access modes. Access modes are appli-
cation specific, and may include, for instance, read,
write, etc.

FAF uses a locally stratified logic programming language,
Authorization Specification Language (ASL), to specify the
set of authorizations (AUTH). ASL defines the following
predicate symbols:

• cando(s, o, 〈sign〉a) : represents particular authoriza-
tions directly defined by a system administrator.

• dercando(s, o, 〈sign〉a) : represents authorizations de-
rived through propagation policy rules.

• do(s, o, 〈sign〉a) : represents the affirmative action of
granting a specific authorization, rather than the abil-
ity to grant it as cando and dercando provide. The
do predicate is used in conflict resolution and decision
rules to resolve multiple cando and dercando terms
that might apply to a particular request.

• done(s, o, r, a, t) : represents that subject s playing role
r has executed action a on object o at time t.

• overAS(o1, o2, s, 〈sign〉a): represents an overriding
policy.

• overAS(o, s1, s2, 〈sign〉a): represents an overriding
policy.

• error : a propositional symbol that represents viola-
tion of integrity constraints.

• in(x, y, H) : represents that x ≤ y in hierarchy H.

FAF specifications consist of propagation policies that
specify basic authorization facts as well as rules to derive ad-
ditional authorizations, conflict resolution policies that elim-
inate contradictory authorizations, decision policies that en-
sure the completeness of authorizations, and integrity poli-
cies that check integrity constraints. Propagation policies
consist of authorization rules of the form:

cando(s, o, a)←− L1& . . . &Ln

where o ∈ AO, s ∈ AS, a ∈ A, and each Li is a done, hie-,
or a rel- literal; and

dercando(s, o, a)←− L1& . . . &Ln

where o ∈ AO, s ∈ AS, a ∈ A, and each Li is a cando, der-
cando, done, hie-, or a rel- literal. Conflict resolution poli-
cies use the override predicates over to resolve contradictory

212

(i.e., both positive and negative) authorizations, while in-
tegrity policies remove authorizations that violate integrity
constraints. Then, the authorization set AUTH consists of
a consistent subset of the derivable cando and dercando lit-
erals that satisfy all integrity constraints.

5. SPL: SHARING POLICY LANGUAGE
The Sharing Policy Language (SPL) extends FAF with

several new hierarchies, predicates, and rules. Conceptually,
sharing policies reside in a new layer over FAF access control
policies. Requests are processed through the access-control
and sharing policy layers as follows:

1. A request is received

2. The request is evaluated against the access-control pol-
icy

3. If the request is directly granted by the access-control
policy, according to the standard FAF method, evalu-
ation completes; otherwise the request is passed to the
sharing policy module.

4. The request is evaluated against the sharing policy rule
set possibly resulting in a direct grant of access, one
or more redirections, or a denial if no other recourse is
available.

Note that a sharing policy is evaluated only when the
underlying FAF access control policy denies a request. So
by default, in sharing policies, requests imply both that a
principal has made the request and that the access control
policy was unable to grant it. We also make the materialized
view of the underlying FAF access control policy available
to a sharing policy.

Much like FAF, the sharing data system consists of users,
groups, objects, roles, and hierarchies. The concept of pur-
pose or missions is added to requests in the system as an
extra data point for making grant decisions in response to
requests. The set of mission purposes will be known as MP.
A mission purpose is distinct from both groups and roles in
that it encodes the context in which a request is made or
the cause of that request. On the other hand, groups and
roles encode information about users identity or privileges,
not their intent.

While FAF policies operate in isolation, i.e. there is a sin-
gle access control policy and a single enforcer of that policy
in the data system, sharing and redirection imply multi-
ple entities implementing multiple sharing policies. We will
term an implementer of a sharing policy a decision point,
and the set of all decision points will be known as DP. A
certain subset, TI ⊆ DP, of decision points may be con-
sidered trusted intermediaries. A trusted intermediary is a
decision authority that is not necessarily responsible for any
data objects itself, but is rather tasked especially to facilitate
data sharing. These nodes are strategically picked such that
they have a useful intersection between the set of data ob-
jects that can be granted to the intermediary and the group
of principals the intermediary knows well enough to make
decisions for. Since we seek to share data objects with de-
cision points in addition to the normal FAF authentication
subjects, we must extend the definition of the authentication
subject set to be AS = U ∪G ∪R ∪DP.

5.1 Hierarchies and Relations for Sharing
A number of new hierarchies and relation structures are

necessary to describe the various redirection scenarios out-
lined above. The redirection of data objects to decision
points requires knowledge of relationships among decision
points, the data objects they hold responsibility over, and
the users that reside within their domains. This entails
defining hierarchies relating authentication objects to deci-
sion points (ODPH) and authentication subjects to decision
points (SDPH) where:

• ODPH = (AO, DP,≤ODP) where AO is the set of au-
thorization objects Obj ∪ T ∪ R, DP is the set of
decision points, and ≤ODP is a partial order such that
for all o ∈ AO and d ∈ DP , o ≤ODP d iff d has the
authority to decide access requests for the object o.

• SDPH = (AS, DP ≤SDP) where AS is the set of au-
thorization subjects U ∪ G ∪ R ∪ DP, DP is the set of
decision points, and ≤SDP is a partial order such that
for all s ∈ AS and d ∈ DP , s ≤SDP d iff d has the
authority to decide access requests initiated by subject
s.

Redirection of data objects necessitates describing rela-
tions between authentication subjects. These relations will
be modeled as a directed graph of authentication subjects
(ASG) where:

• ASG = (AS,	AS) where AS is the authorization sub-
ject set and 	AS is a binary relation for all s, t ∈ AS.
s 	AS t iff t is related to s in such a way that fulfill-
ing a request, made by s, by positively responding to t
results in a net utility gain, in the economic sense, on
the part of s.

An example of such a subject relation graph, which we
will use later, appears in strongly hierarchical organizations,
such as the military. Each member of a chain of command
in such an organization, other than the highest ranking, has
a superior that issues them orders or tasking. Assuming at
least the root of this authority tree has sufficient privileges
to successfully request some subset X ⊆ AO of objects, then
any subordinate member of the chain of command can re-
quest x ∈ X with the result of at least one superior receiving
x. Subsequently, the recipient of x is guaranteed to be in a
position to issue orders based on x that will eventually have
an effect on the original requesting subject. Formally, the
relation ≺COC is defined as a strict partial ordering on AS
such that for all p, q ∈ AS, p ≺COC q iff p is a subordinate
of q in the tree-structured ASG. We will refer to an ASG
that uses the ≺COC relation as COC.

Missions are organized from a number of individual users,
groups, and roles. For example, a first-responder mission
may consist of various individuals, groups representing in-
volved organizations, and roles describing the responsibili-
ties and authority of those involved in the mission. This
structure can be represented by a hierarchy which we will
call the mission-purpose hierarchy (MPH):

• MPH = (MM, MP,≤MM) where MM = U∪G∪R, MP
is the set of mission-purposes, and ≤MM is a binary
relation such that for all mission members m ∈ MM
and missions p ∈ MP , m ≤MM p iff the user, group,
or role m is included in the mission p.

213

Finally, relations between decision points are modeled.
Like the inter-subject relation above, a directed graph is
used, which we will term DPG.

• DPG = (DP,⇒DP) where DP is the set of decision
points and⇒DP is a binary relation over all x, y ∈ DP .
x ⇒DP y iff x is willing to perform redirections with
decision point y as the target.

Depending upon how the edges of the DPG graph are as-
signed, it can be used to represent concepts such as visibil-
ity between decision points or trust between decision points,
among other possibilities.

5.2 Predicate Extensions for Sharing
The sharing policy language defines several logical predi-

cate symbols in addition to those FAF provides:

• request(o, p, m, a) : where o ∈ AO, p ∈ AS, and
a is an action. True when a request by principal p
to perform action a on object o for the purposes of
mission m has been received.

• grant(o, p, m, a) : where o ∈ AO, p ∈ AS, m ∈ MP
and a is an action. True if the materialized FAF ac-
cess control policy authorizes p to perform action a on
object o, and if the predicate in(p,m, MPH) is true.
This predicate is used to describe situations that re-
quire a request with certain parameters to be grantable
before conducting a redirection, no matter the way in
which it was granted.

• redirectdata(o, q, m, a) : Has the same arguments as
the request and grant predicates. This predicate rep-
resents an outcome to a sharing policy evaluation for
which request(o, p,m, a) is true. The statement
redirectdata(o, q, m, a) dictates that the data object
o be sent to the principal q rather than the original
requestor p, where p �= q and a = ‘read’.

• redirectreq(β, 〈o, p, m, a〉) : where β ∈ DP and the
second argument is a tuple of o ∈ AO, p ∈ AS, m ∈
MP , and action a, representing a data access request.
redirectreq(b, 〈o, p,m, a〉) represents an outcome to a
sharing policy evaluation for which request(o, p, m, a)
is true. The request is forwarded to a decision point β
from α, the decision authority implementing the for-
warding rule. α �= β.

• redirectti(β, 〈o, p, m, a〉, o) : The first and second ar-
guments are the same as those of redirectreq , and the
third argument is o ∈ AO. The predicate represents
an outcome to a sharing policy evaluation of the re-
quest represented by the tuple 〈o, p, m, a〉, indicating
that both the request and the object of the request be
forwarded from this decision point, α, to the decision
point β. β will then decide whether to grant access to
the requested object o to the requesting subject p.

• trusted-intermediary(β) : where β ∈ TI. True when
β is allowed to perform the role of a trusted interme-
diary.

• says(β, L) : This predicate asserts that the decision
point β has asserted the statement L, where L is any
statement in the sharing policy language. If another
decision point α trusts β to make such statements (e.g.,
if α⇒DP β), then α’s sharing policy can derive L.

5.3 Sharing Rules
A number of sharing rules can be expressed given the

above defined predicates. Note that request predicates rep-
resent access requests, while grant predicates represent the
materialized view of a FAF policy. The sharing rules de-
scribed below are only applied when a request is not granted
by the FAF policy and they attempt to redirect the request
itself, the requested data, or both.

5.3.1 Data Redirection Rules
Data redirection rules are triggered by denied requests

and proactively push data to authorized principals that are
related to the original requestors.

Definition 5.3.1. Data Redirection Rules are specified
as follows:

redirectdata(o, q, m, read)←− request(o, p, m, read)

∧ grant(o, q, m, read) ∧ L1 ∧ · · · ∧ Ln

where o is an object identifier, p and q are authorization
subjects, and m is a mission identifier. The Li are hierarchy
or relation literals that establish a connection between p and
q for mission m.

Data redirection rules must encode useful relationships be-
tween principals. In particular, data should only be redi-
rected to principals that: a) are authorized to read the data
themselves; and b) are mission-related to the original re-
questors so that they can propagate some (or all) of the
benefit of the data to the mission without breaching confi-
dentiality. Inter-user relations that fulfill the necessary con-
ditions for data redirection can be found in well-defined,
hierarchical organizations and mission tasking structures.
Note that data redirection rules require that the underlying
data sharing network that implements the sharing policy is
capable of unsolicited, push-style messaging.

Example 5.3.1. Consider the firefighter example of Sec-
tion 2. Suppose that firefighter Joe is part of the mission
FM to fight the fire in the warehouse. Fire Chief Bob is the
commander of this mission as well as Joe’s superior. Joe is a
member of the firefighter role ff and Bob is a member of the
fire-chief role fc. Joe requests information on any hazardous
material known to be in the warehouse or adjacent buildings,
and an information broker matches his request with an object
bc.

request(bc, ff, FM, read).

However, bc’s access decision function denies this request.
On the other hand, Bob does have permission to view the
desired information.

grant(bc, fc, FM, read).

Joe’s request may be partially fulfilled by sending the data
to Bob instead. This can be specified via use of the chain-
of-command relation for the fire department, which specifies
Bob as Joe’s superior:

redirectdata(bc, fc, FM, read)←−
request(bc, ff, FM, read)

∧ in(ff, fc, COCfd)

∧ grant(bc, fc, FM, read)

214

or by leveraging mission membership, which relates Joe and
Bob via their participation in the mission, FM :

redirectdata(bc, fc, FM, read)←−
request(bc, ff, FM, read)

∧ in(ff, FM, MPH)

∧ in(fc, FM, MPH)

∧ grant(bc, fc, FM, read)

5.3.2 Request Redirection Rules
If a decision point’s access control policy does not grant

an access request, the decision point might determine that
another decision point is better suited to make the access
decision. For instance, that other decision point might have
a different version of the object (with a different authoriza-
tion policy), or it may be authorized to receive additional
credentials that are required to grant access. Request redi-
rection rules capture such situations and specify that an
access request be redirected to another decision point.

Definition 5.3.2. Request Redirection Rules take the
form:

redirectreq(β, 〈o, p, m, a〉)←− request(o, p, m, a)

∧ L1 ∧ · · · ∧ Ln

where o is an object identifier, a is an action, p is an autho-
rization subject, m is a mission identifier, and β is a remote
decision authority different from the decision authority α im-
plementing this rule. The Li terms are hierarchy or relation
literals that represent relations between the decision point β
and either decision point α or principal p.

For request redirection to be feasible, the set of decision
authorities must fulfill certain properties. First, there must
be an intersection between the subset, DPS, of authorities
that can make decisions about requests from a particular
principal and the subset, DPO, of authorities that can make
decisions concerning a particular data object. We will label
this intersection as the subset DPI = DPS∩DPO. Second,
there must be a mechanism for any given decision authority
to find a member of DPI for a particular request. Finally,
there must be a mechanism to prevent request redirection
loops.

Example 5.3.2. Continuing with the firefighter example,
suppose that the fire departments server had a local limited
cache of terrorist threat and biohazard information and also
had a local access decision point DPF D. Suppose also that
the authoritative repository of threat information is on an
FBI server with access decision point DPF BI . If a fire-
fighter’s data access request cannot be granted by the local
decision point, the request can still be fulfilled by a request
redirection rule implemented at DPF D:

redirectreq(DPF BI , 〈bc, ff, FM, read〉)←−
request(bc, ff, FM, read)

∧ in(bc, DPF BI , ODPH).

request(bc, ff, FM, read).

Another type of request redirection rule in the sharing pol-
icy language embodies the concept of delegation of autho-

rization authority from one decision point to another. Dele-
gation allows for the separation of policy decisions from pol-
icy enforcement which can make the management of large-
scale sharing policies more manageable. A logic-based trust
management framework (e.g., Binder [5] or RT [11]) may be
used for such derivations. We present one such rule here:

Definition 5.3.3. A Decision Delegation Rule is a rule
of the form:

grant(o, p, m, a)←− request(o, p, m, a)

∧ β says grant(o, p, m, a) ∧ Li ∧ · · · ∧ Ln

where o, p, m, a, and β are members of the sets of data
objects, principals, missions, actions, and decision author-
ities, respectively, and n ≥ 0. The relation and hierarchy
terms, Li, define relations between β, o, p, m, a, and the
decision authority, α, implementing this rule, that constitute
reasons why α trusts β to make this decision for it, e.g. the
logical representation of the result of some out-of-band trust
establishment protocol.

The existence of a strong trust relationship between the
decision points involved in a delegation is paramount. Trust
can be formulated in two ways in the rule set, namely implic-
itly and explicitly. The very existence of an unconditional
delegation rule implies that the delegate decision point is
trusted implicitly; otherwise the rule would not have been
inserted in the rule set. An out-of-band establishment of
trust between decision points is necessary. Acceptance of a
delegation may also depend on some explicitly stated con-
ditions that, taken together, dictate a required level of trust
in the delegate. The explicit conditions are represented by
application-specific predicates symbolized by the Li terms
in the rule formulation above. For example:

Example 5.3.3. Consider the following example decision
redirection rules:

grant(SecretDoc, p, m, a)←−
Pres says grant(SecretDoc, p, m, a)

grant(o, p,m, a)←− β says grant(o, p,m, a)

∧ certified(β)

The first rule is an explicit override of the local sharing ac-
cess policy for the SecretDoc object. It delegates access con-
trol to a remote authority, in this case the President. The
very act of adding this rule to a sharing policy rule-set means
that the system security officer of this decision point has
declared the President decision authority as trusted. The
second rule declares a remote authority β to be trusted, and
delegates decisions to it, if β has been verified and accredited
by some certifying authority that the local security adminis-
trator trusts.

5.3.3 Data and Request Redirection Rule
The third type of redirection rule combines aspects of for-

warding data objects and forwarding requests. This double
forwarding makes use of special decision authorities called
trusted intermediaries.

215

Definition 5.3.4. Trusted Intermediary Rules have the
following form:

redirectti(β, 〈o, p,m, a〉, o)←− request(o, p, m, a)

∧ grant(o, β, read)

∧ trusted-intermediary(β)

∧ L1 ∧ · · · ∧ Ln

where o, p, m, a, and β are members of the sets of data ob-
jects, principals, missions, actions, and decision authorities,
respectively, and n ≥ 0. Decision point β must be consid-
ered a suitable trusted intermediary from the point of view
of decision point α, the node implementing this policy rule.
Further, β must be authorized to receive the data-object o.
The Li terms represent relations between the decision au-
thorities α and β, the principal p, the mission m, and the
data object o.

Example 5.3.4. Let us revisit the firefighter example and
assume that the FBI has no knowledge of local firefighting
missions or the local firefighters participating in those mis-
sions. However, a trust relationship is established between
the FBI decision point and the fire department decision point
such that DPF BI considers DPF D to be a trusted interme-
diary and grants data access to DPF D:

DPF BI : trusted-intermediary(DPF D).

DPF BI : grant(bc, DPF D, FM, read).

The fire department decision point contains rules to redirect
requests it receives from firefighters for the building contents
data to DPF BI :

DPF D : redirectreq(DPF BI , 〈bc, ff, FM, read〉)←−
request(bc, ff, FM, read)

∧ in(bc, DPF BI , ODPH).

The FBI decision point is configured to trust DPF D to make
the appropriate access decisions for firefighters so its rule
set contains a trusted intermediary rule. Note that the FBI
returns the current state of the data object back to the fire
department:

DPF BI : redirectti(DPF D, 〈bc, ff, FM, read〉, bc.data)←−
request(bc, ff, FM, read)

∧ grant(bc, DPF D, FM, read)

∧ trusted-intermediary(DPF D)

∧ in(ff, DPF D, SDPH).

Finally, the fire department decision point contains access
rules that state the data should be redirected to the chief
instead of the individual fire fighter who does not have access:

DPF D : grant(bc, fc, FM, read).

DPF D : redirectdata(bc, fc, FM, read)←−
redirectti(DPF D, 〈bc, ff, FM, read〉, bc.data)

∧ in(ff, FM, MPH)

∧ in(fc, FM, MPH)

∧ grant(bc, fc, FM, read).

The data flow proceeds as follows:

1. a request is submitted to DPF D:
request(bc, ff, FM, read)

2. the request is redirected to DPF BI

3. DPF BI sends the request and data back to DPF D for
a final decision

4. DPF D evaluates the request against its rule set and
redirects the data to the fire chief

5.4 Redirection Filtering
A rule set containing many grants and redirection rules

will not necessarily yield a single action for a given input
request. In fact, a single redirection rule may yield a large
set of possible results. Below we describe methodologies for
choosing the most appropriate action or set of actions in
response to a request. A sharing policy, by definition, will
do its best to maximally share data. In pursuit of this goal,
a large number of possible outcomes may be generated from
a given request. While this maximizes the number of paths
by which information can flow, and thus maximizing the
probability that useful data objects will find their way to
those users who need them most, it can lead to a great deal
of unnecessary transmission of data, which is wasteful and
taxing to both the distributed data system and its users.

FAF contains mechanisms for resolving conflicting autho-
rization results. These are necessary because both posi-
tive and negative authorizations can be specified or derived
which may cause contradictions. Sharing policies only deal
in the positive but yield a set of results rather than a discrete
decision. The analogous problem to conflict resolution is one
of filtering this result set to maintain scalability in the sys-
tem and relevance of the data that is shared. For example,
a data redirection rule making use of the chain-of-command
relation will necessarily result in a set of potential recipients
that includes the entirety of the chain of command above the
original requestor. That is, if a low ranking soldier were to
request some informational document in such a system, the
data might be returned to every single individual from his
or her immediate superior all the way up to the command-
ing general. Obviously this situation is not scalable and will
cause more harm than good as users become overwhelmed
with unsolicited data. The optimal result would be to for-
ward the document to one or a handful of the individuals
immediately above the requestor in the chain of command.

A selection strategy must satisfy the following properties:

1. Maximize the value of sharing data

2. Minimize the overloading of any particular user

The second goal will often dominate and constrain the per-
vasiveness of sharing. This effect will be especially apparent
when the sharing decision path is not automated end-to-end
from the information provider to the initial requesting con-
sumer, as is the case with redirection of data-object rules.
We now propose a basic mechanism that fulfills the neces-
sary properties.

Assume that the set of possible redirections resulting from
the sharing policy can be preferentially ordered in some fash-
ion. Incomparable redirections are considered to be equally
preferable. The result is a set orderings that includes all
possible redirections generated by the sharing policy. The
most preferred redirections from all the orderings are then
executed. The measure of value or preference in comparable
redirections is assumed to be additive, i.e. of two compa-
rable redirections, the more preferred will confer all of the

216

value of the less preferred and then some. A pair of incom-
parable redirections may provide value to different, disjoint
groups of data consumers. Therefore, both redirections must
be done to achieve maximal value. This scheme fulfills the
first property of a selection strategy.

While the above scheme maximizes the benefit of data
sharing, it will not prevent degenerate cases which lead to
overloads and bottlenecks. To fulfill the second property of
a selection strategy, the targets of redirection must be pro-
vided with a mechanism to limit their intake of data-objects
to an acceptable amount. The described data-sharing en-
vironment is a message-based push-style system much like
email, and so the same filtering strategies that apply to man-
aging large volumes of email are applicable here. Let each
sharing system node that accepts redirections define a fil-
tering list of either redirections they are willing to accept, a
white-list approach, or a black-list of redirections they will
not accept. In either case, the filter is advertised such that
a decision point initiating a set of redirections per the al-
gorithm described above can discover and apply the filter.
The filter is iteratively applied to each ordered list in the
set of ordered redirections. The most preferred redirection
of each list that is passed by the filter is then executed. The
complete algorithm proceeds as follows:

Let R be the set of possible redirections
Let p be the preference relation
Let Fα be the filter for decision point α
Let RO be the set of ordered lists resulting from sorting
the members of R using p
for all elements ROi of RO do

while ROi �= ∅ do
r ← head element of ROi

α← the target node of the redirection r
if r is allowable by Fα then

execute the redirection r
ROi ← ∅

else
ROi ← ROi − r

end if
end while

end for

6. RELATED WORK
Numerous access control models (e.g., RBAC, trust man-

agement, etc.) have been proposed in the literature. We
are unaware of any prior access control model that grants
actions other than those requested by principals. In con-
trast, our sharing framework extends the Flexible Autho-
rization Framework [8] with a redirection policy layer that
determines alternate actions to grant if a requested action
cannot be granted.

Automated trust negotiation [14] refers to techniques that
permit principals to bootstrap mutual trust by exchanging
credentials iteratively. Push authorization [12] has been pro-
posed as a way of actively pushing credentials to access de-
cision points that might need them. Our redirection policies
also involve active (“push”) actions. However, our actions
involve pushing data objects and requests, not credentials.

We have used the term mission to refer to the context
within which a request is made. A mission includes a set
of mission goals, mission participants (principals) and their

roles and relationships, and the current mission state in-
cluding organizational structure and workflow state. This
is similar to the notion of “context” in Team-Based Access
Control [7] and “purpose” in Purpose-Based Access Con-
trol [3]. In this paper, we have not used the structure of
contexts but have only referred to the relationships between
principals, data objects, and contexts.

Publish-subscribe systems [6] are event-based systems in
which providers publish data while consumers subscribe to
published data with specified attributes. In such systems,
publish and subscribe actions are matched and data objects
routed from publishers to appropriate consumers. Access
control mechanisms for publish/subscribe systems typically
control the publish and subscribe actions. Only principals
with specific roles or other attributes are authorized to ex-
ecute those actions. This involves standard access control
models (e.g., RBAC) applied to a push-style data dissemi-
nation system [2, 1]. In contrast, our approach proactively
routes data objects and access requests based on requests
that are denied by access control policies.

7. CONCLUSIONS AND FUTURE WORK
If an access decision function denies a principal’s data ac-

cess request, most current systems will reject that request
and take no further action. In this paper, we have presented
a general sharing control framework for expressing access
policies that, before denying unauthorized requests, deter-
mine other possible actions to take. These actions include
sending the requested data to authorized principals which
are related to the original requestor, sending the request to
an overriding authority, and sending both the request and
the requested data to a trusted intermediary. Our investi-
gations have revealed that such actions are performed rou-
tinely, in an ad hoc manner, by humans and organizations
in mission-critical situations. To the best of our knowledge,
our sharing framework is the first systematic approach for
specifying policies that incorporate such alternate actions.

Our future work includes the implementation of a redi-
rection mechanism, based on our sharing policy language,
within a data sharing system. In this paper, we have fo-
cussed on redirection policies for requests that are denied
by access control policies; however, the concept of redirec-
tion is equally applicable to successful requests and we are
exploring this further. Another direction for future work is
to explore other alternate actions such as returning a sim-
ilar, less sensitive version of a data object (e.g., an older
version or a sanitized version of the object) in response to a
request rather than denying the request.

8. REFERENCES
[1] J. Bacon, D. M. Eyers, K. Moody, and L. Pesonen.

Securing publish/subscribe for multi-domain systems.
In Middleware 2005, ACM/IFIP/USENIX, 6th
International Middleware Conference, volume 3790 of
Lecture Notes in Computer Science, pages 1–20.
Springer, 2005.

[2] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch,
J. Bacon, and K. Moody. Role-based access control for
publish/subscribe middleware architectures. In
Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems, DEBS 2003, 2003.

[3] J.-W. Byun, E. Bertino, and N. Li. Purpose based
access control of complex data for privacy protection.

217

In SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies,
pages 102–110, New York, NY, USA, 2005. ACM
Press.

[4] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The Ponder policy specification language. In POLICY
’01: Proceedings of the International Workshop on
Policies for Distributed Systems and Networks, pages
18–38, London, UK, 2001. Springer-Verlag.

[5] J. DeTreville. Binder, a logic-based security language.
In IEEE Symposium on Security and Privacy, pages
105–113, 2002.

[6] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35(2):114–131, 2003.

[7] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K.
Thomas. Flexible team-based access control using
contexts. In SACMAT, pages 21–27, 2001.

[8] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access
control policies. ACM Trans. Database Syst.,
26(2):214–260, 2001.

[9] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A
logical language for expressing authorizations. In
IEEE Symposium on Security and Privacy, pages
31–42, 1997.

[10] S. Jajodia, P. Samarati, V. S. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In Proceedings ACM SIGMOD
International Conference on Management of Data,
pages 474–485, 1997.

[11] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a role-based trust-management framework. In IEEE
Symposium on Security and Privacy, pages 114–130,
2002.

[12] T. B. Quillinan and S. N. Foley. Synchronisation in
trust management using push authorisation. In First
International Workshop on Security and Trust
Management (STM’05). Elsevier Science B. V.,
September 2005.

[13] W. H. Winsborough and N. Li. Safety in automated
trust negotiation. In IEEE Symposium on Security
and Privacy, pages 147–160, 2004.

[14] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated trust negotiation. In DARPA Information
Survivability Conference and Exposition (DISCEX
’2000), volume 1, pages 88–102. IEEE Press, 2000.

[15] N. Zannone, S. Jajodia, F. Massacci, and
D. Wijesekera. Maintaining privacy on derived
objects. In WPES ’05: Proceedings of the 2005 ACM
workshop on Privacy in the electronic society, pages
10–19, New York, NY, USA, 2005. ACM Press.

218

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

