Role-Based Control of Shared Application Views

Lior Berry, Lyn Bartram and Kellogg S. Booth
University of British Columbia
Computer Science Department, Vancouver, BC, Canada
{berry,lyn,kshbooth} @cs.ubc.ca

ABSTRACT

Collaboration often relies on al group members having a
shared view of asingle-user application. A common situation
isasingle active presenter sharing alive view of her worksta-
tion screen with a passive audience, using simple hardware-
based video signal projection onto a large screen or sim-
ple bitmap-based sharing protocols. This offers simplicity
and some advantages over more sophisticated software-based
replication solutions, but everyone has the exact same view
of the application. This conflicts with the presenter’s need
to keep some information and interaction details private. It
also failsto recognize the needs of the passive audience, who
may struggle to follow the presentation because of verbosity,
display clutter or insufficient familiarity with the application.

Views that cater to the different roles of the presenter and
the audience can be provided by custom solutions, but these
tend to be bound to a particular application. In this paper we
describe a general technique and implementation details of a
prototype system that allows standardized role-specific views
of existing single-user applications and permits additional
customization that is application-specific with no change to
the application source code. Role-based policies control ma-
nipulation and display of shared windows and image buffers
produced by the application, providing semi-automated pri-
vacy protection and relaxed verbosity to meet both presenter
and audience needs.

ACM Classification H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General Terms Design, Security, Human Factors

Keywords: CSCW ,Sharing, Application, Bitmap, Role,
Policy, Privacy, Verbosity, View

INTRODUCTION

People working in groups increasingly rely on the ability to
share views of an entire work session or a specific applice
tion for co-located or distributed cooperative work. Although
new tools and frameworks introduced in recent years support
awide range of collaboration formats, the dominant format

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

UIST' 05, October 23-27, 2005, Seattle, Washington, USA.

Copyright 2005 ACM 1-59593-023-X/05/0010 ...$5.00.

isstill that of asingle person, the presenter, sharing aview of
her workstation while others, the audience, watch. This gen-
eralized presentation setting applies to people giving con-
ference or classroom presentations, demonstrating software,
training others, or engaging in collaborative work where a
shared document on a public display is the focus for group
discussion. The same pattern is applicable during turn-taking
editing sessionswhere at any given timethereisonly asingle
editor (the presenter) and others are just viewers (the audi-
ence).

For co-located groups, view sharing is often done by repli-
cating the video signal from the presenter’s computer onto
an external public display. For distributed groups bitmap-
based screen sharing protocols such as VNC [12] provide
view sharing. Functionally, both solutions are equivalent and
afford three properties that more sophisticated collaboration-
aware solutions may be hard-pressed to achieve: (i) collab-
oration is transparent because any application can be shared
without requiring it to know it is shared; (ii) viewers do not
need to install the application, which is often an unacceptable
imposition due to licensing or other issues; and (iii) thereis
no need to synchronize views between the presenter and au-
dience because only one copy of the application is running.

The last point is an important benefit, but it is also the chief
drawback of these schemes. A strict “What You See Is What
| See” (WY SIWIS) modeisimposed —all viewers are forced
to share the exact same view that the presenter sees, despite
the roles that they play within the group. This conflicts with
the different needs of the presenter and audience, so a “re-
laxed WY SIWIS" mode has been suggested in the litera-
ture [14]. Unfortunately, none of the current bitmap-based
solutions address this successfully.

Motivation

Theinitial problem motivating our work was the lack of sup-
port for presenter privacy. While generally interested in shar-
ing aview with her audience, there are often interactions or
document components a presenter would like to keep private.
These may be interactions with other running applications
on the desktop or with parts of the shared application that
are deemed private (e.g. afile open dialog showing a private
folder or a navigation history list). Recent work [6] shows
that most people would like to take measures to minimize
these exposures. Yet, it is clear that someone engaged in a
live presentation might not attend effectively to her privacy
at the same time. The need to limit publicly shared infor-
mation will only intensify as collaboration technologies and
application sharing are becoming part of day-to-day work.

23

Presenters may find themselves in an ad-hoc presentation-
like mode without having the time to prepare or while having
to do other tasks on their computer in parallel.

A different problem arises when we consider the audience
experience. Passive viewers may wish to control the type and
level of information presented to them and they may require
assistive cuesto accurately follow the presenter’sinteractions
with an application. Passive viewers often find themselves
searching for the current point of interaction (a problem in-
tensified on large screen displays[2]) or being forced to view
tedious interactions by the presenter (such as searching for a
menu item or adjusting display parameters) that areirrelevant
to their interests. So we may need to display lessinformation,
or we may need to display more information to compensate.
Some needs are already addressed by screen recording toals,
like Camtasia.! Visual enhancements and cleanup can be ap-
plied to arecorded moviein a separate editing session. Being
able to apply these enhancementsin real time would be ben-
eficial for effective collaboration.

These two problems are actually both manifestations of the
need to provide role-appropriate views of an application to
each group member. It is possible to use more elaborate
collaboration-aware tools or to adapt existing tools to run in
a synchronized mode [17], so that presenter and audience
have similar but non-identical views. While these custom
solutions enable one to flexibly craft views as desired, they
fall short of meeting the advantages of existing bitmap-based
protocols outlined before (namely requiring all parties to
have a copy of the application and depending on application-
specific features). The proof of thisclaim isthefact that time
and time again people resort to bitmap-based sharing rather
than more sophisticated solutions. Thus, any improvements
to bitmap-based sharing modes are still very relevant to im-
proving collaboration.

Our contribution

We have developed a novel framework for adapting the live
shared view of applications to meet the presenter’s privacy
requirements and to provide viewers with suitable cues and
level of detail, balancing concerns for privacy and aware-
ness. Our system uses bitmap-based techniques to transpar-
ently share visual information, while alowing policies to be
specified that control the generation of different views for
the different roles within a collaborating group, by reusing
the visuals from the running application.

The system conducts an “over the shoulder” monitoring of
what the presenter is doing, actively manipulating the pub-
lished visualsinthreeways: (i) spatial and hierarchical trans-
formations for selective sharing, repositioning and scaling
of application components (including sub-window regions);
(if) smple local or globa “chromatic” image filters, such
as blurring, applied to the visual surface of the application;
and (iii) temporal or application-state-based transformations
applied to the timeline of captured interactions.

To make these manipulations more useful, some reliance on
application-specific semanticsis required to extract locations

http://www.techsmith.com

24

of semantic Ul objects and to acquire the application’s state.
We designed a plug-in architecture and used a set of heuris-
ticsfor obtaining such semantics without giving up too much
generdizability.

Weimplemented a prototype of the system and demonstrated
how it can be applied to several commercia off-the-shelf
popular applications, disproving to some extent the miscon-
ception that bitmap-based application sharing forces strict
WY SIWIS (seediscussionin [3]).

A SAMPLE SCENARIO

Bob and Carol are both managers and Ted and Alice areteam
membersin agroup of employees. Bob, the presenter, isdis-
cussing the team’s budget using a spreadsheet on his laptop
that is being projected onto a large shared screen viewable
also by Ted and Alice. Carol views Bob’s laptop remotely,
using VNC. Some of the data, parameters and interactionsin
Bob's spreadsheet are confidential and should not be exposed
to Ted and Alice, but should be available to Bob and Carol
(see Figure 1). Bob resolves some parameters using other ap-
plications (e.g. an IM client with Carol). A key requirement
isthat Bob must see the private parameters and change them,
but without exposing them to Ted and Alice.

Bob could extract just the relevant data to a new spreadsheet
and project it on a shared auxiliary screen with the mas-
ter spreadsheet visible solely on his laptop. In theory this
solves the problem, but not in practice. Extracting the appro-
priate information with its dependencies is possible (though
not trivial). However, synchronizing the spreadsheet ver-
sionswhen changes are made i stime-consuming, error-prone
and requires redundant computations (even when using auto-
mated scripts). Bob will still need to make sure that updates
do not reveal private information. The cognitive overhead of
managing the session will diminish his ability to focus onthe
budget.

Carol has to watch Bob’s verbose Ul interactions, some of
which are distracting or take up her screen space. Ted and
Alice, on the other hand, only see the results of Bob’s manip-
ulations echoed in the secondary spreadsheet and are missing
critical interaction cues.

This scenario demonstrates the need for role-based viewing
policies. Bab and Carol need to see adifferent view than Ted
and Alice, because of privacy concerns. All passive viewers
need an augmented, “cleaned up” version of what Bob sees
in order to comfortably follow his actions.

PRIVACY CONCERNS

In the context of live generalized presentation scenarios, we
make a distinction between two types of privacy concerns.
There are privacy concerns that affect security (e.g. reveal-
ing one's credit card number), and there are privacy concerns
that do not pose a real security threat, but may put one in
an awkward position. As Palen and Dourish [11] note“... in
video conferencing, shared calendar management and instant
messaging communications, concerns most salient to users
include minimizing embarrassment, protecting turf (territo-
riality) and staying in control of one's time” Our system
supports both types of privacy concerns.

2 Microsoft Excel - Salaries_Marc... o |[0)X) N"'“'""“'M""“"" 5 Qg
) rp———

Neotes and gridelines 1]

) Flz Edt vew Inset Fomat Iogks Data

Calan [ndon Help -8 x

Hew,..
open... ko | BB | & B-F | o= - ||l
H B4 o ~ 1500

A c =
5 ‘ j
L Lennard Marius 16
N[Morty Nea 120!

1500

500

ctrks

e Orly team leaders get a 10%
e

rais
* Lennard Marius Morty Neo, +
Hopkin Groer can got a borms =

Bernie

600
Werry Gran 256
Philbert Trev 130
Bart Eljah 11

Total 8156
Average 1057

W4 v Wh\DatafParams Bl«] |

Corol says:
Howe Flesbls should we be ? (3
people vl be laied off...)

msn¥'

Figure 1: Bob's privacy needs. The “Params’ worksheet
(a) is entirely private, the salaries cell range (b, ¢) is also
private, and the file dialog and menu (d, €) expose private
files. Bob uses his notes (f) and an IM client with Carol (g).

Private information appearing on the screen can be dealt with
in severa levels:

Task — A presenter needs only to expose the windows and
components that are part of the shared task. This may entail
sharing several applications or only one instance of an appli-
cation (e.g. asingle document). It is often not necessary (or
desirable) to expose the entire desktop.

Window — An application usually comprises more than just a
singlewindow. There are dialog boxes, menus, palettes, tool-
bars and sub-window frames. In many cases these contain
private information (file browsing dialog), appear at awk-
ward moments (error dialogs) or just take up screen space.
Clearly, not all of these components should be shared.

Visual Surface— Information bits visible on awindow’s sur-
face, such as underlying document objects or the contents of
Ul widgets. Our approach demonstrates how these can be
dealt with in the image buffer level.

When working on our system prototype we realized that in
some casesit ismore effective to define a state of the applica-
tion as private and freeze updates on the public copy until the
application exits the state. Thisis useful when private datais
mapped to externally inaccessible objects or associated with
alarge set of objects that cannot be treated individually (e.g.
switching to a private worksheet or a show-comments mode
or when an arbitrary error occurs).

Some of the types of on-screen private data that require han-
dling are:

Semantic objects— Visual representations of document model
objects and their attributes (a specific range of cells in a
spreadsheet, a paragraph in a text document or their prop-
erties dialog). Often, a presenter would like to specifically
mark these objects as confidentia or private (one of the dif-
ficultiesis that an object may have more than one visual rep-
resentation even at the sametime)

Peripheral data — Sensitive data that is not part of the object
model of the shared document and appears in the applica-
tion’sUl asabyproduct of the presenter’ sinteractions (recent
files, browser navigation history, auto-complete text boxes).

Many applications introduce personalized convenience fea-
turesthat cache users' preferences and selections and appear
without explicit action on the part of the user. Other appli-
cations couple sensitive and non-sensitive Ul controls (a set-
tings dialog that contains both Color and Security settings)

Interactions — Some of the interactions a presenter makes
may be deemed private because they affect his reflected im-
age, regardless of the data they operate on. Some examples
are committing syntax errors or other mistakes, searching for
the right menu item, or struggling with awizard.

Some exposures of private elements are an immediate out-
come of the presenter’s direct manipulations and fit well
within the presenter’s mental model of the application. These
may be avoided or bypassed by the presenter at the price
of forcing clumsier interactions or more careful preparation
ahead of time. Other exposures are byproducts of agents that
work on behalf of the user (e.g. an error message or the con-
tents of an auto-complete text widget). These are less pre-
dictable and require more automated help to avoid accidental
exposure. In either case it is disclosure to viewers we need
to control, not the appearance or content of these elements.

It may seem that some of the private interactions described
above are brief, so the amount of information viewers can ex-
tract islimited. However, it is common for shared sessionsto
be recorded, allowing later analysis (ephemeral information
becoming persistent [11]). It has also been shown that view-
ers are more likely to notice sensitive text on a large-screen

public display, [15].

IMPROVING VIEWER EXPERIENCE

In our scenario passive viewers follow Bob's interactions.
We can customize each person’s view by adding, deleting,
or modifying the application’s presentation (bitmap) to pro-
vide a more useful experience.

Inadequacy of single-user GUIs for passive viewers
Passive viewers must follow the interactions performed by
the presenter, but there is a perceptual gulf between presen-
ter and viewers. While the presenter trandates her intentions
and semantic-level operationsinto GUI interactions, the pas-
sive viewers are doing the reverse process, inferring the un-
derlying intentions and semantics from theinteractions. This
is not an easy process, even when verba explanations are
provided by the presenter (these are usually insufficient, in-
consistent, and they require extra effort on the presenter’'s
part).

One of the root problemsis that the visual language of most
GUIs is highly tuned for a single active user, ignoring the
needs of passive viewers. For example, when a presenter de-
cides to perform a contextual menu selection, the cue for a
passive viewer that some interaction is about to take place
is the appearance of the menu, by which time it already ob-
scures most of the context for the operation. Another prob-
lem is that passive viewers tend to follow the presenter’s
point of interaction (often highlighted in GUIs), yet in some
cases the presenter would like to draw their attention to other
regions.

25

Other low-level parameters such as cursor size or shape, the
time a menu or dialog remain on-screen after release, or in-
teraction without a specific visua indication (e.g. keyboard
shortcuts), are tuned for the performance of a single active
user. These are not suitable for passive viewers, who are
trying to follow the interactions without the benefit of know-
ing the intention of the action or experiencing the kinesthetic
feedback of mouse or keyboard interaction.

Controlling verbosity

Viewers may have different levels of expertise and familiarity
with a shared application. It is beneficial to adapt their view
to this level. A key aspect to be controlled is the verbosity
of interactions. For example, if Bob is to teach Ted and Al-
ice how to fill out areport using an application unfamiliar to
them, exposing the fine details of his interactions (menu se-
lections, dialog boxes, etc.) and adding cues (like keyboard
shortcuts and change highlighting) could be crucial. On the
other hand if Ted and Alice are experienced users, exposing
detailed interactions will prevent them from concentrating on
the report semantics. From a pedagogical point of view, it
sometimes makes more sense to show one logical interaction
unit asasingle visual step so the high-level semantics are not
obscured by the low-level details.

Mitigating visual clutter

We have already implied that it is desirable to share only rel-
evant windows or components, rather than the entire desktop.
This can assist viewers in making better use of their screen
space (especialy if they work with or view other applica-
tions in parallel or multiple users bring up applications on
a shared display [16]). However, if all sub-windows, dialog
boxes and menus are shared as well, it can quickly clutter
aviewer's display. Thisis somewhat like violating acousti-
cal privacy with cellular phones[11]. The presenter imposes
his*conversation” with the application on the viewers, much
like aperson talking on acellular phoneimposes on othersin
apublic area. A viewer should be capable of controlling how
much of this conversation penetrates his display and replace
some interactions with other “low volume” representations.
In al cases viewers need to maintain some level of aware-
ness of the presenter’s actions, but not alwaysin aone-to-one
manner.

SYSTEM DESCRIPTION

We have implemented a prototype of the system in C# on
Windows and tested it with three widespread commercial ap-
plications (MS Excel, Word, and Internet Explorer). The
principles apply to any modern operating system and they
work with any application, athough some “semantic glue”
layers that we describe later may be required.

Cloning Windows

In order to support differentiated views, the system grabs
the visual surface of shared application windows on the pre-
senter’'s machine and conveys a manipulated version of the
bitmap to the public display (published in clone windows).
This can be done using a modified version of the RFB proto-
col [12], adapted to work on separate windows. In the proto-
type, we simply relied on timer-based device context copying
(similar to MSR’s Wincuts [16]), which matched our initial
focus on co-located scenarios (where al displays are on a

26

Presenter’s display Viewer display

Video signal
Network
I Q ____|Frame Buffer
Player

|| Policy and
Rule base

r 0s

Application

| | visual rep-
resentation

|| semantic
model

Frame Buffer
Grabber

Plug-in interface

Semantic Glue

OS Windowing
|
Application API

base Plug-in

Plug-in Repository

Figure 2: System architecture

single machine). In both solutions the viewer client isasim-
pleimage buffer player (Figure 2).

We use an extended desktop mode. The public display is a
continuation of the presenter’s desktop (although often phys-
ically located on a wall behind the presenter). A clone of
each of the shared application’swindowsis created by query-
ing the system’s list of windows and making bitmap copies.
The clones are automatically placed on the part of the desk-
top lying on the public display. The presenter can move any
of the application’s windows on her display and cover these
with other windows without affecting the published clones.?
The novelty isin how we modify the bitmap images and win-
dow set before they are placed on the public display.

Applying “semantic glue”

To alter the shared view along the lines discussed in previous
sections, the system needs to monitor a shared application. It
should be able to tell where visual representations of private
elements or elements that need verbosity adjustments are on
the visual surface and determine if the applicationisin apri-
vate state. This requires methods for obtaining information
about the application’s GUI components, the underlying se-
mantic objects, and their visual representations. The follow-
ing query layers are used.

L1: OS windowing queries — Enumerating all windows be-
longing to a specific application (or process), detecting cre-
ation/destruction of such windows, visibility, titles and lo-
cations is possible in a modern operating system. Many of
the widgets used in an application are themselves windows
and can be accessed the same way. This layer also supports
capturing of keyboard and mouse events.

L2: Accessibility APl — These are common APIs often tar-
geted to sight-impaired users. They enable third-party tools,
such as screen readers, to systematically expose information
about Ul elements. We have successfully re-purposed these
APIsasaresourceto expose elementsthat should be kept pri-
vate or highlighted (e.g. Ul widgets, menus and menu items).
These APIs are supported by many commercial tools and Ul
toolkits.® Our use of them can be further generalized.

2See [16] for more details.
3Supported by Microsoft Accessibility, Java APls, OS X and more. Some
level of accessibility is now required by law and will increase over time.

L3: Application specific APl — Many commercia applica-
tions provide an API for integration and automation. These
APIs can be used via COM (Windows), JavaBeans, Apple-
Script and other frameworks. Within our system, we used
these APIs in a simple manner to extract information on the
application’s state and identify the visual representations of
semantic objects. While writing some code to work with the
APl is required, our experience when developing the proto-
type showsthat thisis afocused effort with alimited amount
of coding. Modern APIs aready provide methods for locat-
ing an object on the document surface or an Application ob-
ject can usualy be queried for its current state. Furthermore,
coding occurs only once and can then be used in flexible

ways.

L4: Extracting information from surface drawing opera-
tions— Thisisatechnique introduced in [10] (seethe related
work section). Its requirements are quite problematic, espe-
cialy for the commercial tools we worked with, therefore
this technique was not used and it is not shown in Figure 2.
However, it is gtill a possible semantic glue layer that could
be used in some cases.

To create a generalizable framework, we chose to provide
all of these methods using a plug-in architecture for our sys-
tem. Each shared application has a middleware plug-in that
functions as the semantic glue. A plug-in encapsulates the
knowledge about a specific application and its monitoring,
and supports a common API that the Monitor module (Fig-
ure 2) can use. The PAPI (Plug-In API) provides methods
that return text or keyword-based descriptions of the current
state, dialog or menu. Other methods extract lists of areas of
the visual surface containing private information that need
highlighting or specific sub-window areas to be displayed
(instead of the full window). Each of the areas are accom-
panied by keyword descriptions that can be used to control
display parameters. A plug-in translates these general PAPI
gueries into appropriate queriesin one of the four layers.

A default base plug-in provides a set of general capabilities
to track common Ul entities. It serves as a toolbox for de-
veloping more specifically tailored plug-ins. Namely it runs
a background service that searches for dialog boxes, menus
and other widgets (like dropdown boxes) of a shared ap-
plication by tracking window creation events. It then uses
L1 calls to extract their window class (type), title and loca-
tion and the accessible object associated with the window.
L2 calls are then used to extract accessible name, role, text,
state, selection and location for the object and its child ele-
ments (e.g menu items or dialog fields) on the “accessibility
tree”. Hints on how to handle these items can then be ob-
tained by testing thisinformation against keywords specified
in an application-specific plug-in without additional coding.

For example, our Excel plug-in defines the keywords “ open”,
“save as’ and “options’ in a diaog title as private. When
the base plug-in finds these in a dialog a private state will be
issued and the dialogs will not be exposed. The keyword path
“Format Cells/ Protection” will tell the base plug-in that the
tab widget titled “Protection” in the “ Format Cells’ diadlogis
private and its entire contents should be blurred.

In addition, a path-regexp “File/(".*\ .xIs$)” orders al items
in the “File’ menu that match afile pattern to be blurred (i.e.
recent files).

To get regions for blurring or highlighting, Excel-specific
API calls (L3) are used to locate cell ranges marked in a
specific background color, the selected cell range and its sur-
rounding table, or changed cells. The on-screen bounding
box isthen computed (an Excel.Range object provides color,
bounding box and value properties that are simple to use
and an Application object has methods to get selection and
changed ranges). If the selection is in a private cell range,
additional L1 and L2 API calls are used to locate the for-
mula edit box or locate the sub-window frame containing the
document (these can be identified by their window class or
name and position in the window tree). Once a bounding
box is obtained the base plug-in provides generic blur and
highlighting filters that work on any image buffer.

Our web browser plug-in defines the keyword “favorites’ in
a menu as private. It aso defines keywords matching the
navigation history dropdown and auto-complete box (their
window class, accessibility name and role) as private. Thus
when any of these is opened and identified by the base plug-
in, a private state will be issued and they will not be echoed
on the public screen. We targeted our plug-in to Internet-
Explorer, but a similar plug-in for a different browser only
needs to replace the keywords with the appropriate names
(e.g. “bookmarks’ instead of “favorites’).

The Monitor module directs its calls to a plug-in repository
manager, which loads the appropriate application plug-in at
run time (possibly even from remote servers). If no appro-
priate plug-in exists the default base plug-in will be used,
offering some monitoring capabilities. (It could query the
presenter before displaying any menu or dialog box, and then
apply “program by example’ techniques.)

The Director module handles the published representation to
be played on the public display. It uses the Monitor module
to track the application and extract descriptions of its state
and visible elements. It then applies policies that determine
how to manipulate the visuals.

Policies and rules

When instantiating a policy, a tuple comprising the applica-
tion, the state or element, and the viewer's role is the input.
The output is arule that determines what manipulations will
be applied to the published visual representations.

We must determine how private elements, states or elements
that need verbosity control can be extracted, assuming shared
applications do not know about privacy. There are two com-
plementary approaches to consider.

The first approach (taken in the initial prototype) is letting
the presenter mark these elements explicitly. When working
with adocument in an editor we can readily support what we
call a“ Magic Marker” that maps avisua property of an ob-
ject to a privacy state (most editors have a notion of object
style properties). For example, a presenter can mark a doc-
ument object as private by coloring it with a specific color,
using the native application tools (e.g. a background color

27

for cellsin Excel or ahighlight color for paragraphsin Word
asshown in Figure 3). When writing in this color the seman-
tic glue layer will recognize these objects as private. A pol-
icy that regulates blurring for marked objects will create the
effect of a marker that cannot be seen by viewers, while the
presenter can interact normally (as opposed to using black on
black writing that will not be visible to the presenter). This
mode provides visual feedback and awareness on what the
audience cannot see (demonstrated in [13] to be useful).

Other means for coding attributes can also be used (like
adding a“Private” prefix for aworksheet’s name or comment
text). Another option is to use the application’s built-in se-
lection mechanism, so for example the paragraph containing
the insertion point can extracted by querying the application.

A second approach isto use arule-guided search for privacy
leaks. We have experimented with searching for private text
in a spreadsheet or document (phone numbers, names, etc.)
and automatically blurring them. Ancther interesting domain
are web pages, where we partially implemented a search of
the HTML code for private Ul widgets and content elements
(e.g. examining al form field names and blurring ones that
may contain private information, such as userids, credit card
number, etc.).

We already described the keyword based services of the base
plug-in. These can be extended to conduct rule-guided search
for private information in any menu, dialog or wizard (e.g.
search for error messages, field names related to security,
network settings or personal information)

We believe that a combination of these approaches is re-
quired for better privacy protection. Together with the visual
manipulations (described later), it allows a flexible range of
rules: “do not expose any dialog related to files or the net-
work in any application to any public viewer,” “blur any doc-
ument element in any application marked in pink to group
A members’ or “if there is any viewer from group B, do not
expose in apublic view any web page not coming from com-
pany servers” Also useful is an inclusive policy of “blur
everything unless specifically marked by the presenter” (in
the prototype we worked with exclusive policies).

Our prototype is a work-in-progress that serves as a proof-
of-concept. We have concentrated on the system architecture
and a collection of manipulations (discussed in the next sec-
tion) and illustrated the value of having role-based policies
to control these. Our goal has not been to develop a robust
mechanism for describing policies. In fact, earlier work on
access control in collaborative systems (see survey in [18])
aready suggested some schemes. We intend to adapt these
schemes to control viewing rather than control access. We
will discuss a potential extension of our system that can ap-
ply access control to collaboration-unaware applications.

MANIPULATING THE VISUAL REPRESENTATION

The Director component takes in the “raw” captured frame
buffers grabbed from the application windows and applies
one or more of the following manipulations.

28

Blurring

When private elements are visible, the challenge is guaran-
teeing viewers cannot see them, while the presenter works
freely. The PAPI can extract the locations of such elements
on the visual surface at any time (with attributes and hints,
such as the suggested blur effect to use). In some cases a
private information unit may appear in several places (e.g.
the contents of a selected private spreadshest cell will also
appear in the formula bar). This demonstrates why tighter
integration with application semanticsis crucial for ensuring

privacy.
ES Microsoft Excel - Sala.... [2][B]&]

B4 - A 1500 B4 hd fx
TS B

Lennard Marius
Mory Neo
Hopkin Greer

1
Lennard Marius 1600 2
3
4
5 |Bemie Bryant
6
7
8

Morty Nea 1200

Hopkin Greer TEO0
Bernie Bryant

Kenten Evan

Merry Grant

Philbert Trev 1300
Bart Elijah 1100

]

B

Lennard Marius -

Morty Nea -

Hopkin Greer]

Bernie Bryant

Kenton Evan Kenton Evan

Merry Grant Merry Grant | |
[__| Philbert Trev
- 9 |Bart Elijah
3456

Philbert Trev
Bart Elijah

[eo] ||t oo~

=

Tatal 11 |Tatal 8456
Average 1057 12 |Average 1067 -
w4 » nhpatafpraf«] [] W <« » whData(Pale| | |

SUr=3256 Sum=3256

Total 8456
Average 1057+
< » nhData Pa|«| |]

SUM=3256

]

Figure 3: (a) The presenter view of a spreadsheet, (b)
Greeking cellsmarked in pink, exposing selection and style,
and (c) fully concealing a cell range.

The Director can apply severa image blurring operators on
extracted private zones (Figures 3 and 4). Since blurring oc-
curs at the frame buffer level it can be applied regardless of
what the underlying element is (Ul control, text, image etc.)
or how the bitmap was drawn. Different filters offer different
visual affordances, balancing between the presenter’s privacy
and the audience’s awareness.

e Draw over —Invoked for full privacy, with no awareness.

e Greekify — Creates a “Greeked text” effect by searching
text line boundaries on the image and replacing them with
filled rectangles. Useful for exposing structure, style and
some notion of the presenter’s interactions (such as selec-
tion).

e Pixelize — This is a general purpose filter, mostly useful
for image-based content. It provides awareness cues for
viewers, but may be insufficient for full privacy.

Fie | Edt View Insert Fomet Tools Table [CJNA{HNK:

Allj open, Curl+0 A

B s Cctri+s
Save s,

& ik ke
|
i Hl-x-h
L= 1]

A
j
:

™ ABSTRACT El
Esch paper showld begin with an absti &
fowed by a set of keywords, beth placed in ©
- columa of the first page under the left hal 3

Figure 4: (a) Word document with blurred paragraphs and
image, (b) recent files menu items blurred, and (c) login
web page where the userid field was detected and Greeked.

Salience and highlighting

The system supports a highlighting mechanism that is inde-
pendent of the shared application’s own selection and high-
lighting tools. In Figure 5athe presenter is interacting with
the tools pal ette, but wants to keep viewers focused on a spe-
cific paragraph. The PAPI provides a method, through which

the shared application can be queried for regionsto highlight.
We found it useful to highlight the context for the active se-
lection as changes are made. This is application-dependent
(the paragraph, sentence or section containing the insertion
point in Word, the table surrounding the selected cells or de-
pendent cellsin Excel and the active dialog field). The high-
lighting effect is application-independent and works on the
image buffer by placing a semi-transparent colored mask on
top of non-highlight areas (visually similar to [10]). Detach-
ing the highlighted object from selection is also useful and
can be done by caching the previous highlighting bounds or
by caching a pointer to the previously selected object within
the plug-in.

Another mode of highlighting makes changes more salient
to viewers (mostly indirect changesin parts of the visual sur-
face far from the presenter’s interaction). A considerate pre-
senter would point out these changes to an audience and per-
haps even mark them on the screen. To assist the presenter,
the semantic glue layer can extract such changes and provide
automatically generated highlighting (Figure 5¢c shows hand-
style circling of changed cells that also exposes changes in

blurred data).
Name Salary 20
Bertuzzi Todd
Cloutier Dan
King Jason

- | Sopel Brent —
Total $10,800,000 |y

Average g $2,160,000-

Figure 5: Auto-highlighting of active context: (a) active
paragraph is highlighted, (b) outlining the table surround-
ing selection,(c) “by-hand” style circling of changed and
dependent cells, and (d) highlighting active dialog field.

Other manipulations that can affect salience and attention are
magnifying relevant regions of the visual surface or even re-
rendering of textual elementsin abigger font (many of these
underlying texts can be extracted through the semantic glue

layer).

Spatial manipulations

One set of manipulations allows the presenter to share only
apartial view of an application’s window. Thisis useful for
reducing screen space use and clutter, and in addressing pri-
vacy. The PAPI provides a method through which the win-
dow part to be shared can be accessed. Computing this win-
dow part can take into account several policies.

e Excluding the Ul — Remove Ul layers such as toolbars
and embedded windows that take a substantial amount of
screen space (a plug-in will use L1 and L2 calls to search
the application window tree)

e Active context — Share only the active context, based on
the presenter’s selection as described in the previous sec-
tion.

e Sharing a specific element — Sharing only a specific se-
mantic object (paragraph, table) or Ul element chosen by
the presenter.

The semantic layer guarantees that the window part com-
puted will adhere to the stated policy and will take into
account changes to the window’s dimension, scrolling or
Ul changes, as opposed to the manual definitions presented
in [16] or to fixing a portion of the screen to be shared.

Another set of manipulations uses affine transformations.
Rotating windows is useful for single tabletop display ses-
sions, where viewer orientation should be part of the policy.
Automatically scaling down the size of dialog boxes, palettes
and other secondary windows (identified by PAPI), together
with a careful placement of these next to the full sized main
window can assist in reducing clutter and support privacy
(Figure 6¢). Combining several spatial transformations to-
gether can be quite powerful. For example, it is possible
to publish only the selected paragraph context, flipped ver-
tically so a viewer on the opposite side of atable can follow
the discussion without requiring replication of the full docu-
ment window(Figure 6a).

TR T o7 SR
o e vy Qv Kpsteaney i i oo

Lip7 AGEAD S TaReu iy

eeeeeeeeeee
[8dd] 31 [ada][1 [add]

sund.
29 (2aa][30

Wiemorial
\Day [USA] %
5 [add)[6 [add)|7 [add][B Madd]
week || oy
4

1 IDRG B ==

12 [add] (13 [add] M [add] |15 [add]
e 1pIDRG |Fl2g Doy
[usa)

19 [add] (20 [add] |21 [add] [22 [add]
1p IDRG

(Father's
Day [USA]

w 8
b

Figure 6: Spatia manipulations: (a) publishing only ac-
tive context (paragraph containing insertion point) + verti-
cal flip, (b) auto-exclusion of toolbars, menus and embed-
ded frames from an Explorer window, and (c) automatically
downsizing an “options’ dialog.

Temporal manipulations

There are situations when it is more reasonabl e to define the
entire state of the application as private, rather then exten-
sively applying blurring transformations (e.g. when the pre-
senter interacts with a private worksheet, uses the file open
dialog, or works with awizard).

brochure. doc - Microsoft Word a
D Fle Edt Vew lperl | Fomet Took Teble D

vy ek o *

Canada b

Web |mages Groups Mews Local™™™ mores

Google

[e

in vacation nov

| cpsc160 assignment 1
cracked software photashop

Figure 7: (a) File open dialog is dynamically replaced with
an iconic representation. (b) A private worksheet replaced
with an iconic indicator, and (¢) an auto-complete text box
will be detected and will not be exposed.

The semantic glue layer can query the application state. If
it matches the privacy policy, the system can trim the inter-
action timeline by not sending updates to the viewer's dis-
play until the presenter exits the private state. To keep some
level of awareness for the viewer, the system can display an
animated iconic representation summarizing the state. For
example, an open file icon appears instead of exposing the

29

dialog itself (Figure 7a) to prepare a viewer for a document
change or an icon indicating interactions on a private work-
sheet givesthe viewer hints about what the presenter isdoing.

In other situations, it is better to not provide any indication
at al, maintaining complete privacy. For example, when
the presenter interacts with an auto-complete text box (Fig-
ure 7¢), an error dialog, a private comment or commits syn-
tax errors when taking notes in public. Some of these states
are quite unpredictable by the presenter (e.g. an error dia-
log popping up or auto-complete suggestions), so automatic
detection of theseis crucial.

Another set of timeline manipulations can be applied to the
pace at which certain operations (as extracted by PAPI) are
played on the public display or by letting viewers roll back
recorded interactions (for instance using the semantic glue to
tag recorded interactions for quick roll-back). One example
we implemented involves menu selections, discussed in the
next section.

Handling Menus

Menus are fundamental interaction components that are of-
ten problematic in a generalized presentation scenario. They
create alot of clutter (being arbitrarily long, regardliess of the
size of their parent window), and they often bundle private
information (recent files, bookmarks). More importantly,
menus are becoming highly tuned for the active user and less
for apassive viewer (adaptive menus with personalized order
and gestural menus that do not show on the screen). As de-
scribed previously the base plug-in obtains the relevant menu
attributes (name, items, locations, selection) from any menu
through L2 calls and can issue blurring on specific items or
prevent a menu from showing on the public display (these
are highly generalizable techniques)

A critical moment iswhen the presenter makes a selection on
amenu. From her point of view thereisno need for the menu
anymore and it istaken away. The system, however, can cap-
ture the selection event and pause the timeline so that the
menu lingers on the public screen for an extended “decay”
period suitable for passive viewers (possibly with animated
highlighting of the selected menu item). It isalso possible to
identify the creation of a context menu, and smoothly move
its clone to a neutral placement that does not block the oper-
ation’'s context (Figure 8a). We also used these techniques to
stall a dialog on the public screen after the presenter closed
it.

Watching interactions with menusis not the best way to con-
vey operations to viewers. In many cases, replacing a menu
selection with a different feedback, such as specifying the
selection in a semi-transparent subtitle is better (Figure 8b).
Consider a presenter who scrolls through a menu until find-
ing a specific item. It ishard for aviewer to tell if the menu
was closed because a selection was made or the menu was
released with the ESC key. On the other hand, the subtitle
scheme reports only when a selection is actually made. This
scheme still works if the presenter uses keyboard shortcuts
or gestural menus because the semantic glue translates these
back to amenu item description for display.

30

- 311289 related

rving the Williams Famill's

ork Tirmes - all 921 related by

IRANY

nags $15M global
ates Foundation

Figure 8: Manipulating menus: (a) moving a context menu
to the side + highlighting selection after release, (b) replac-
ing amenu selection with a subtitle bel ow the mouse cursor,
and (c) reporting a keyboard shortcut command

Access Control

Tools like [12], [8] and remote desktop solutions enable the
presenter to give a viewer full control over keyboard and
mouse input to her machine (coarse floor control). This
is highly undesirable, since a viewer may make changes to
non-shared applications or make unwanted changes to the
application shared. We integrated the basic functionality of
PointRight into our system, yet we are able to use the seman-
tic layer to identify locations of widgets, menus and controls
that should not be accessed. Thus when a viewer sends a
mouse click event on such a control, the system will not pass
this event to the OS. Similar treatment can be applied to key-
board events (this requires more queries on the application).
This scheme alows finer grained access control policies to
be applied to applications that were not designed for it.

RELATED WORK

There is a large corpus of research on collaboration-aware
tools and frameworks that allow custom view sharing, in-
cluding commercial tools (see a survey in [3] or [17]). Our
systemistargeted at existing collaboration transparent single-
user tools, that were not designed for multiple views and can-
not accommodate code changes. Inthiscontext, itisuseful to
classify these based on a mapping of the sharing architecture
space. The Zipper model, presented in [4], looks at the com-
mon layers comprising an application: User, Screen, Win-
dow, Widget, View, Model to determines the share branching
level. In each architecture one of these layers is the branch-
ing point. All layers below it are shared and all layers above
it are replicated.

Closest to our approach are tools that replicate the screen
or window layers (known as centralized tools), such asVNC
[12], NetMesting® or XTV [1]. VNC sharesthe entire screen,
including windows of applications a presenter might like to
keep private. NetMeeting and XTV share all windows of a
chosen application, but lack the ability to keep some dialogs
or palettes private. In terms of supporting different views,
NetMeeting allows a presenter to manually “pause and play”
the view sharing. It requires the presenter to identify privacy
concerns, some of which are unpredictable, while heis “on-
the-air” and is therefore error-prone. In our solution the pre-
senter specifies rules for controlling these private elements
in advance. All of these tools lack any ability to systemati-
cally change the contents of the replicated screen parts and
therefore cannot handle sub-window elements or provide au-

4http://www.microsoft.com/windows/netmeeting/

tomated highlighting. Sometoolsdo alow manual highlight-
ing or sketching on the application surface that will become
invalid once the window is scrolled or resized.

Flexible AMM [3] isaframework for transparently replicat-
ing the widget layer. It is based on replacing some widgets
and components of existing single-user applications with
multi-user versions that can be synchronized with some de-
gree of differentiation. This approach puts different con-
straints on the running environment and underlying code that
make it unsuitable for commercial off-the-shelf applications.

Recently some research efforts have focused on synchroniz-
ing two running single-user applications (i.e. replicating the
Model layer), using operational transformation techniques.
A prominent example, working with an off-the-shelf editor
(MS Word) is CoWord [17]. Each user has independent con-
trol of her copy while the system synchronizes the underly-
ing document models using the application’s API (typically
without support for private document parts). This solution
assumes complete independence of views, which is not suit-
able for presentation scenarios. Still, with some effort views
can be synchronized as well (replicating the View layer).

Themgjor drawback of JAMM, CoWord and other replication-
based solutionsisthat both presenter and viewer need a copy
of the application (or two instances running on a single com-
puter) which is not always possible. These solutions aso
need to synchronize the application replications, which can
be a hard problem [4], requiring resource locking or forcing
expensive calculations to be carried out multiple times.

Wincuts [16] is a bitmap-based system that provides some
spatial manipulation of shared windows. It allows a presen-
ter to manually select a region of the window and publish
only that part. Similar ideas are presented in regards to win-
dow layouts and screen space usein [7]. While till allowing
alot of flexibility and addressing clutter and privacy issues,
this approach quickly breaks down when a presenter needs
to resize or scroll a window. Our system completely sub-
sumes these approaches, automating spatial manipulations
and blending them with other filters.

A limited set of manipulations to the application’s visual sur-
face were presented in [10]. Some of the manipulations are
similar to ours (e.g. region highlighting), but they are en-
tirely targeted at supporting the work of a single user. Our
system demonstrates how these can be used in a multi-user
shared view scenario. On thetechnical side, thisapproach re-
quires overriding some of the low-level drawing routines and
consistent ordering and grouping of component drawings; it
cannot reason about information that does not go through the
display pipeline (like field names). These demands are not
fully met by off-the-shelf tools and are quite hard to support
under some operating system (Windows). Still, this may be
a viable way for performing some of the semantic glue op-
erations and other manipulations. Our plug-in architecture
allows us to incorporate these techniques into our system.

In regards to privacy and clutter, Pebbles [9] offers to repli-
cate some application components on a handheld device.
Thus apresenter may choose to conduct someinteractionson

her handheld or auxiliary computer to avoid exposure. This
approach requires extra hardware to be present and it does
not address viewer needs for awareness cues. Most impor-
tantly this approach is limited in the type and complexity of
components that can be recreated on the handheld (text fields
and menu work well, but part of aworksheet relying on other
Spreadsheet parts may not).

Research into single display privacyware has resulted in sev-
eral platforms enabling each user to have a different view of
a shared display [13]. However, these systems still require
running software that is capable of supporting differentiated
views, so collaboration-aware tools must be used. Our so-
Iution enables using such systems with off-the-shelf applica-
tions.

Finally, commercial presentation authoring and playback tools
such as Microsoft PowerPoint or Apple Keynote have re-
cently taken advantage of multi-display technology to play
the presentation on a public screen, while providing a private
view to the presenter (where she can view her notes or check
other dlides). Our approach can provide similar advantages
to other single-user applications.

DISCUSSION AND FUTURE WORK

Our prototype showed that the proposed techniques, espe-
cialy relying on Accessibility APIs, can work well with off-
the-shelf applications. Some limitations of our approach and
required improvements were also evident.

Private information is handled only on the visual surface
level and not in the underlying document model level. This
implies that tracking and handling al cases where private
information can leak is not aways trivial and is bound by
the capabilities of the application’s APl and the quality and
integrity of the Accessibility information or requires extra
marking effort from the presenter. Furthermore, blurring or
eliminating private information on the public display can still
expose some private properties of the data (the Greeking ef-
fect in Figure 3c exposes orders of magnitude and concealing
information isitself an indication on the nature of the data).

We suggested some basic automated extraction of private ele-
ments, states, and augmentation hints, but clearly more work
is required. One possible direction is applying user mod-
elling and machine learning techniques to learn what ele-
ments are considered private by a presenter and apply these
to search the widget space and document model. Another di-
rection is harnessing “programming by example’ techniques.

There is an innate limitation on the public display update
rate, since we copy image buffers. In theory performance
should match that of VNC. The overhead of adding seman-
tic glue queries and image buffer filters can slow down the
update rate. Our experience showed these were sometime
noticeable but reasonable. While image filters were quite
efficient, it is clear that some of the APIs we use were not
designed with performance in mind or evento work in all ap-
plication states (APl calls varied in execution time between
application states and even resulted in errors in some cases).
It may be required to synchronize the semantic queries and
the image buffer captures more carefully.

31

We intend to replace the inefficient timer-based updates with
apaint event based solution to improve performance and also
support sharing of image buffers over the network. There are
different possible models of where blurring and other win-
dow manipulations occur (presenter’s machine, viewer's ma-
chine, a trusted third party server) that affect performance,
privacy and security. We could aso enable the sharing of
more than one public view (alimitation of the current imple-
mentation).

We will run a formal user study on the next version of the
system to evaluate its benefit to viewers and presenters. To
date we have verified the problems identified through infor-
mal studies and have tested the framework with several col-
laboration practitioners.

CONCLUSIONS

We have introduced a unified solution for privacy concerns
and verbosity control to assist apresenter and her audiencein
generalized presentation scenarios. These growing concerns
are not addressed by current single-user application sharing
modes. Our design introduces role-driven views for each
type of participant, balancing between the presenter’s privacy
needs and the audience's awareness needs. Our system is
based on applying image filters and spatial and timeline ma-
nipulations to bitmap representations of shared windows, in
contrast to similar techniques that have been recently shown
to be unsuitable for addressing privacy in video [5].

The system’s framework is general and works with off-the-
shelf applications, requiring only a limited glue layer. A
prototype of the system was created and tested with several
commercial applications. As part of our work we discovered
how Accessibility APIs can be leveraged to address privacy
concerns. Our system allows additional intermediate sharing
layers to be introduced through an extensible plug-in archi-
tecture beyond the conventional screen, application or win-
dow layers of the Zipper model [4].

The system improves the quality of generalized presentation
sessions. It protects a presenter from exposing private in-
formation and elements, allowing her to work normally and
comfortably. It assists viewersin maintaining asuitable level
of awareness and in better understanding the presenter’sin-
tentions.

ACKNOWLEDGEMENTS

The authors thank the Natural Sciences & Engineering Re-
search Council of Canada and NECTAR for their financial
support, and Maureen Stone for providing interesting in-
sights and suggestions.

REFERENCES
1. Abdel-Wahab, H. M., and Feit, M., XTV: A framework
for sharing X Window clientsin remote synchronous col-
laboration. In Proc. of |EEE Conference on Communica-
tions Software, 1991.

2. Baudisch, P, Cutrell, E., and Robertson, G., High-
Density Cursor: A visualization technique that helps
users keep track of fast-moving mouse cursors. Proc. of
Interact 2003, 236-243.

32

10.

11.

12.

13.

14.

15.

16.

17.

Begole, J.,, Rosson, M. B., and Shaffer, C. A., Flexi-
ble collaboration transparency: Supporting worker in-
dependence in replicated application sharing systems.
ACM Trans. Comput.-Hum. Interact., 6(2), pages 95-
132, 1999.

Dewan, P, Architectures for collaborative applications.
In Trendsin Software: Computer Supported Cooperative
Work, pages 169-193, 1999.

Greenberg, S., Neustaedter, C., and Boyle, M., Blur fil-
tration fails to preserve privacy for home-based video
conferencing. ACM Trans. Comput.-Hum. Interact.,
2005.

Hawkey K., and Inkpen K. M., Privacy Gradients: Ex-
ploring ways to manage incidental information during
co-located collaboration. In Proc. of CHI 2005, 1431~
1434,

Hutchings D. R., Stasko, J., Revisiting display space
management: Understanding current practice to inform
next-generation design. Proc. of Gl 2004, 127-134.

Johanson B., Hutchins G., Winograd T., and Stone M.,
PointRight: experience with flexible input redirection in
interactive workspaces. Proc of UIST 2002, 227- 234.

MyersB. A., Peck C. H., Nichols J., Kong D., and Miller,
R., Interacting at a distance using semantic snarfing. In
Proc. of UbiComp 2001, pages 305-314.

Olsen, D. R., Hudson, S. E., Verratti T., Heiner J. M., and
Phelps M., Implementing interface attachments based on
surface representations. In Proc. of CHI 1999, 191-198.

Palen L., and Dourish P, Unpacking privacy for a net-
worked world. In Proc. of CHI 2003, 129-136.

Richardson, T., Stafford-Fraser, Q., Wood, K.W., and
Hopper, A., Virtua Network Computing IEEE Internet
Computing. 2(1), pages 33-38. 1998.

Shoemaker G. B. D., and Inkpen K. M., Single display
privacyware: augmenting public displayswith privatein-
formation. Proc of CHI 2001. 522-529.

Stefik, M., Bobrow, D. G., Foster, G., Lanning S., and
Tatar, D., WYSIWIS revised: early experiences with
multiuser interfaces. ACM Trans. Inf. Systems 5 (2),
pages 147-167. 1987.

Tan, D. S., Czerwinski M., Information voyeurism: so-
cial impact of physically large displays on information
privacy. In Proc. of CHI 2003, 748-749.

Tan D. S, Meyers B., Czerwinski, M., Wincuts: manip-
ulating arbitrary window regions for more effective use
of screen space. In Proc. of CHI 2004, 1525-1528.

XiaS., SunD., Sun C., Chen D., and Shen H., Leverag-
ing single-user applications for multi-user collaboration:
the CoWord approach. In Proc. of CSCW 2004, 162-171.

. Tolone W., Ahn, G.-J., and Pai T., Access Control in

Collaborative Systems. ACM Comput. Surv. Vol. 37, No.
1, 2941, 2005.

